Classmate Peer Effects in First-Year Core Courses

A Progress Report: Year 1 of 3
What Are Peer Effects?

Effects of peers on student learning
- Classmates
- Roommates
- Dormmates
- Fellow organization members
- Romantic partners
- Friends
Why Are Peer Effects Economics?

- Primary/secondary: Tracking vs. streaming
- Higher education
 - Rothschild and White: Peers help “produce” education services
 - Efficiency of resource allocation may be enhanced by compensating these peer providers
 - This argument can be used to support merit aid for good peers
Existing Studies: Primary/secondary

- Multitude of studies
- Peer effects seem to exist but are weak
- Some support for streaming: strong help weak more than weak hurt strong
Existing Studies: Higher Education

• Roommate studies at Dartmouth, Williams, C&B schools find weak and inconsistent roommate effects.

• Hoel, Parker, and Rivenburg (2005) find nonlinear classmate quality effects, strong gender peer effects in Hum 110 at Reed.
Teagle Grant

Teagle Foundation grant to Reed, Whitman, and Lewis & Clark to examine peer effects in freshman core courses

- Quantitative study: evidence that core-course peers affect GPA and/or graduation outcomes

- Qualitative study: interviews with core instructors to get observations about peer effects in classroom
Measuring Peer Quality

• How to measure quality distribution of peers?
 - SAT
 - “Reader rating”
 - High school GPA
 - High school class rank
• All are important, not collinear
• We use predicted GPA based on all of the above plus ethnicity, gender, etc.
Missing Data Problems

• Can’t have missing data because we need to measure quality of (nearly) all peers
• Numerous missing cases for some variables in data set (especially HS class rank)
• How to estimate models working around the missing variables?
Why Are Data Missing?

• **Missing completely at random:** probability that a case is missing does not depend on observed or missing variables

• **Missing at random:** probability that a case is missing does not depend on missing variables

• **Missing not at random:** probability that a case is missing depends on missing and/or observed variables
Missing Data Solutions

• Complete Case Analysis
 - Can’t use because we need prediction for all cases

• Dummy Variables for Missing
 - Used in 2004, but may have biased results

• Dummies with Interactions
 - Difficult to implement with complex patterns of missing data

• Multiple Imputation Models
 - Available in Stata via ICE do-file
Simple Illustrative Model

- Dependent variable is G (college GPA)
- Two regressors: S and R (SAT and HS class rank)
 - S has complete data
 - R has many cases missing completely at random
 - M is dummy variable that is one if R is missing and zero if it is observed (missing data indicator)
Simple Dummy Variable Model

\[R_{0,i} = \begin{cases}
R_i & \text{if } M_i = 0, \\
0 & \text{otherwise.}
\end{cases} \]

\[G_i = \beta_0 + \beta_S S_i + \beta_R R_{0,i} + \beta_M M_i + \epsilon_i \]

For \(M_i = 0 \): \(G_i = \beta_0 + \beta_S S_i + \beta_R R_i + \epsilon_i \),
For \(M_i = 1 \): \(G_i = \beta_0 + \beta_S S_i + \beta_M M_i + \epsilon_i \).
Simple Dummy Variable Model

- OLS estimate of β_S is biased if S is correlated with R.
- Standard omitted-variable bias: S is picking up the effect of both S and R for those cases for which R is missing, but measures only (correct) effect of S for complete cases.
Dummy Model with Interaction

\[G_i = \beta_0 + \beta_M M_i + \beta_S S_i + \beta_{SM} S_i M_i + \beta_R R_{0,i} + \varepsilon_i \]

For \(M_i = 0 \):
\[G_i = \beta_0 + \beta_S S_i + \beta_R R_i + \varepsilon_i, \]

For \(M_i = 1 \):
\[G_i = (\beta_0 + \beta_M) + (\beta_S + \beta_{SM}) S_i + \varepsilon_i. \]

Equivalent to running separate regressions on complete and missing sub-samples.

Not feasible with complex pattern of missing data.
Multiple Imputation by Chained Equations (MICE)

• **Imputation**: Replace missing variables with random draws from their posterior (estimated) probability distribution conditional on observed variables

• **Combination**: Repeat the imputation process multiple times and combine the results to obtain a single estimator
MICE Example: Imputation

- For complete-data sub-sample, regress

\[R_i = \gamma_0 + \gamma_1 S_i + \eta_i \]

- Determine the distributions of the estimators for \(\gamma_0 \), \(\gamma_1 \), and the estimated distribution of \(\eta_i \).

- For each missing case, draw \(m \) random samples from estimated distributions of \(\gamma_0 \), \(\gamma_1 \), and \(\eta_i \) and calculate \(m \) imputed values for missing \(R_i \).
MIC E Example: Estimation

- For each of the m imputed full samples, estimate the regression

$$G_i = \beta_0 + \beta_s S_i + \beta_R \hat{R}_i + \epsilon_i$$

- Save the resulting estimates of β and related estimated variances and variances.
MICE Example: Combination

- Combine the m estimates from the imputed samples to form single estimator for β and its variance:

\[
\bar{\beta} = \frac{1}{m} \sum_{j=1}^{m} \hat{\beta}_j
\]

\[
V\text{ar} (\bar{\beta}) = \frac{1}{m} \sum_{j=1}^{m} V\text{ar} (\hat{\beta}_j)
\]

\[
+ \frac{1}{m-1} \sum_{j=1}^{m} (\hat{\beta}_j - \bar{\beta})^2
\]
MICE Complications: Imputation

• If missing data pattern is more complex, there may be few complete cases
 - Draw initial imputation for each missing value from univariate distribution of variable (estimated from available cases), then cycle through imputation of all missing variables k times (k = 20?).

• Missing regressors may not be continuous
 - Use logit, multinomial logit, or ordered logit as appropriate
MICE Complications: Post-estimation

- Still working on these issues:
 - Testing of composite hypotheses
 - Prediction
Preliminary Results

• Preliminary complete-case and MICE estimates for Reed and Whitman

• Still to do (next summer!):
 - Estimates for Lewis & Clark
 - Composite test statistics
 - Prediction of GPA based on imputation model
 - Calculation of classmate peer statistics
 - Estimation of models with peer measures
• Qualitative analysis
 - Interviews with ~10 core-course instructors at each school
 - Looking for evidence to complement, confirm, explain (or perhaps contradict) quantitative findings
 - Looking for ideas about variables to attempt to measure in future studies