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Abstract 

This thesis unfolds in two main parts: the first is an exploration of brain-
computer interfaces and mental imagery, the second is a follow-up study from a 
2012 paper by Ehsan Esfahani and V. Sundararajan. In the first section, I review 
history, definitions, and applications in the deeply interdisciplinary realm of 
brain-computer interfaces. Afterward, the brief chapter on mental imagery 
discusses some history, as well as the neuroscience behind mental imagery. 
Connecting the two is the present study, which is a brain-computer interface for 
classifying shape mental imagery, a subject on which there is little existing 
research. The goal of the study is to replicate the classification accuracy results of 
Esfahani & Sundararajan, particularly Experiment 1.2, in which researchers were 
able to classify the five shapes with a 44.6% average accuracy across all 
participants (n = 10). We performed an extension to this study that employs 
similar preprocessing, feature extraction, and classification methods, but using a 
standard wet EEG system with 64 electrodes, as compared to the dry 14-
electrode wireless system used in the original study. We hypothesized that the 
addition of both more electrodes as well as the use of the conductive gel that 
gives "wet" EEG systems their names will significantly increase classification 
accuracy of the five shapes. Results showed that, in fact, overall classification 
accuracy was comparable (43.3%) to the 14-electrode system, even in a second 
experiment that increased the number of trials. These findings support the 
growing evidence that portable, dry EEG systems are equally as reliable as 
traditional systems for brain-computer interface use. All code is available in a 
Github repository: https://www.github.com/orbitalhybridization/bci-shape.





 

 

Brain-Computer Interfaces 

The ability to interface directly with the enigmatic electro-chemical wiring 
of the human body is an idea that has long existed in the collective imagination 
of scientific endeavor and fiction alike. With the introduction of computers into 
the realm of scientific research decades ago, this technology supplemented brain 
recording tools to create brain-computer interfaces (BCIs), making possible a new 
modality of interaction between humans, machines, and their shared 
environment. Since their introduction, BCIs have increasingly garnered attention 
for their use as prostheses and communication devices in primarily laboratory 
settings, with even more excitement toward their futuristic implications. 
However, in order to understand how these systems work, we must first begin 
with a little history. 

 

A Brief Overview of Neurotechnology 

We will define neurotechnology as technology that interacts with any of 
the biological circuitry of the central or peripheral nervous systems. This 
definition sets a wide scope, but we will focus our history on those technologies 
most pivotal to the development of BCIs (summarized in Figure 1), which are 
defined in the subsequent section. 

Perhaps the most prominent and widely used of these is 
electroencephalography (EEG), meaning scalp-measured electricity (electro= 
“electricity,” head/scalp= “cephalus,” measure= “graph”). The first to discover 
that there was live, measurable brain activity in the form of tiny voltages from 
the scalp was Hans Berger in a series of experiments that occurred between 1924 
and 1929, and it marked a cornerstone discovery in both neuroscience and 
electrical engineering alike (Wolpaw & Wolpaw 2012). In its purest form, an EEG 
system requires two electrodes, one for recording and one to act as a baseline for 
reference, and ideally some method to output the information, which in Berger’s 
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time was a simple pen writer on paper. Though taken at first with some 
skepticism, EEG’s introduction led to a spike in related research in laboratories 
around the world. Of this research, one of the most notable findings was the 
discovery that EEG could measure a difference in brain activity between epileptic 
and healthy patients (Walter, 1940). This allowed clinicians to more easily 
diagnose epilepsy in patients, though the approach lacked some reliability in its 
early stages, which led some to over-interpret abnormal EEG readings (Kennett, 
2012). However, with the passing decades, gradual improvements to EEG 
systems ever-improved their diagnostic capabilities, which are still widely used 
for epilepsy cases today. 

Invented nearly a century ago, EEG was an early modality that bridged 
two previously unrelated fields: neuroscience and electrical engineering. This 
marriage of fields turned the problem of understanding the brain into one of 
engineering. Rather than relying on lesion studies (cutting out parts of the brain 
for medical purposes and observing changes in subjective experience and/or 
behavior) and other anatomy-related techniques that were popular in 19th 
century neurology, solving the inner workings of the brain suddenly became a 
matter of recording tools and computation. A closing note from Grey Walter’s 
1940 paper on EEG and epilepsy diagnosis stated that “the method is still too 
complicated to be used by anyone but an electrical expert.” (Walter, 1940). Thus, 
with the establishment of EEG, the problems of neuroscience gained solutions 
that lay in electrical engineering, and Hans Berger’s revolutionary technology 
leapt both fields forward. With the digitization of signals via the laboratory-
accessible computers in the 70s, which allowed for further processing of the data 
to more easily observe features in a signal, EEG became even more useful. 

    Related to EEG is magnetoencephalography (MEG), which came along 
soon after following the discovery of the ability to detect magnetic fields 
generated from within the body by physicist David Cohen in the 1960s (Stefan & 
Trinka, 2017). MEG measures the magnetic fields associated with neuronal 
activity; the sum of excitatory and inhibitory potentials flowing through a given 
neuron. Related by their electromagnetic approaches to brain interfacing, both 
EEG and MEG have high temporal resolution. In other words, they are both able 
to measure activity at the millisecond-level, a time-scale that matches common 
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neural firing rates. At the same time, however, they have poor spatial resolution, 
meaning they are less equipped to elucidate the exact location of a given signal 
from the brain. This limitation is due in part to the location of the EEG/MEG 
sensors on the scalp, and in part to the ability of electrical potentials to spread 
across wide swaths of neural tissue. EEG and MEG signals related to specific 
sensory or motor processing also can suffer from a low signal-to-noise ratio due 
to the distance between the source signal and the sensors, the obstructing 
material of the meninges, skull, skin, and the spatio-temporal overlap of 
background neural activity. 

    The next neurotechnology for review, electrocorticography (ECoG), 
bypasses many of these limitations due to its invasiveness; it is a modality that 
interfaces directly with brain tissue. One of the main benefits of non-invasive 
technologies is that it is unethical to recruit participants for open-brain surgery 
for purely experimental purposes (due to the high level of medical risk involved 
in penetrating the skull). For this reason, invasive technologies are typically used 
either when an individual is already undergoing brain surgery, or in animal 
subjects. ECoG’s history stretches back to 1929, when a pioneering 
electrophysiologist, Edgar Adrian, used glass electrodes paired with platinum 
wiring to record from nerve activity (peripheral nervous system), which was 
later extended to recordings from the central nervous system  (Patil & Thakor, 
2016). From this point, developments in materials science improved the quality 
of invasive recordings, allowing for a plethora of ECoG-based discoveries to be 
made. A most notable of these subsequent findings comes from the Nobel Prize-
winning studies of Hubel and Wiesel, who used electrodes to map with 
unprecedented spatial precision the sensory cortex processing of visual stimuli in 
cats and monkeys (Hubel & Wiesel, 1962). 

    Upon the introduction of electrode arrays in the late 1960s and the 
fabrication techniques that gave rise to integrated circuitry about a decade later, 
ECoG technology enjoyed a massive upgrade. This improvement came in three 
main forms: 1) smaller electrodes, allowing for higher density recording over a 
given area, 2) more flexible electrodes 3) multiplexing, which granted the ability 
for the number of output lines to be fewer than the number of electrodes (Patil & 
Thakor, 2016). Nowadays, even further developments of fabrication technology 



18 

 

have allowed for a wider array of biocompatible materials to be used for ECoG 
on the scale of nanometers, compared to the micrometer-level of their 
beginnings. 

There are, on the other hand, other brain interfacing techniques that 
utilize the metabolic and molecular properties of the brain rather than 
endogenous electromagnetic processes for measuring activity. One of these is 
functional magnetic resonance imaging (fMRI), widely used since the 1990s, 
which extends a structural imaging technique (MRI) that utilizes an 
exogenously-produced magnetic field to change the spin axes of hydrogen atoms 
in the area of effect (typically the entire brain). This way, one can image the brain 
at different time periods, contrasting the blood oxygenation-level dependent 
(BOLD) signals. Because more active nervous tissues require more oxygen 
carried by the blood for metabolic processes, these BOLD signals give 
information about what areas of the brain are more active at a given time. This 
technique has the improved spatial precision that EEG and MEG lack, but is 
limited in temporal precision, which comes from the fact that the movement of 
blood is slow (on the order of seconds) compared to the actual firing activity of 
neurons (on the order of milliseconds). Regardless, fMRI has been invaluable to 
the mapping of brain regions and related activity using 2- and 3-dimensional 
imaging. 

Our final two neurotechnologies for review, positron emission 
tomography (PET) and functional near-infrared spectroscopy (fNIRS) are less 
common than EEG/MEG but are more accessible for BCI applications than fMRI 
and ECoG. PET is an imaging technique that utilizes the radioactive properties of 
unstable isotopes, known as tracers, that are injected in very small amounts (in 
the sub-picomolar concentration range) into a patient’s bloodstream. The 
biological principle used for imaging is that more active brain regions recruit 
more of the blood-borne isotopes, and so more radioactivity will be detected 
from these regions. PET has somewhat poor temporal resolution, as it requires at 
least 40 seconds to construct a single image (Wolpaw & Wolpaw, 2012). fNIRS, 
on the other hand, exposes the brain non-invasively to near-infrared light, using 
spectroscopy at this frequency to measure the difference of oxygenation levels in 
the blood (the BOLD signals that fMRI uses). Though faster than PET, fNIRS is 



19 

 

only able to measure activity only a few millimeters beyond the surface of the 
cortex, and has poorer spatial resolution (Wolpaw & Wolpaw, 2012). 
 

 

Figure 1: A summary of some neuroimaging methods (from Nicolas-Alonso & 
Gomez-Gil, 2012) 

 
There are other forms of neurotechnology such as cell therapy, 

electrostimulation, and pharmacological approaches, but the goal of this section 
is to provide an overview of the foundational technology that has driven forward 
the development of BCIs. In all of its century of development, the history of 
neurotechnology is not a particularly ancient one. Nevertheless, it is a rich 
history with a variety of approaches that offer implications reaching far into the 
possibilities of engineering and human biology. 

 

What’s In A BCI? 

A comprehensive textbook definition of a BCI can be found in Brain-
Computer Interfaces: Principles and Practice, edited by Johnathan and Elizabeth 
Wolpaw: 
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“...a system that measures [central nervous system] activity 
and converts it into artificial output that replaces, restores, 
enhances, supplements, or improves natural [central nervous 
system] output and thereby changes the ongoing interactions 
between the [central nervous system] and its external or 
internal environment.” (Wolpaw & Wolpaw, 2012) 

 

Figure 2: The basic components of a BCI system.  
The left side being for invasive systems and the right side for non-invasive. For 
the purposes of this review, the two will be summarized into a single pipeline, as 
they are similar in overall design. (from Chaudhary, Birbaumer, & Ramos-
Murguialday, 2016). 

 
We now have a definition for a BCI, but what exactly does such a system 

look like? A basic BCI has the following primary components: data acquisition, 
feature extraction, feature translation, and output (Wolpaw & Wolpaw, 2012). 
The first of these, data acquisition is performed using the neurotechnologies that 
are summarized in the previous section. Of course, depending on the modality of 
acquisition, the data given to the computer side of a BCI system takes on a 
different form, which determines how it is processed. In the following section, 
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we will go over the processing steps that lead to output for the most popular 
forms of BCI data acquisition: EEG and ECoG. 

 

Preprocessing: Filtering & Artifact Rejection 

The first step to any signal processing paradigm is to clean the data. In 
this case, cleaning and transforming the data will help make the input more 
readable to the computer. As mentioned before, noise is an inherent concern 
when collecting any kind of signal, so there are special techniques that are 
employed to reduce and decouple noise. The most basic of these is a filter, which 
can be implemented at either the hardware or the software level. These take an 
incoming signal and allow certain frequencies to pass through, while blocking 
the rest. Common types of filters include: highpass, which cuts off frequencies 
below a threshold, lowpass, which cuts off frequencies above a threshold, 
bandpass, which only allows frequencies within a threshold band to pass 
through (e.g. 4Hz to 8Hz), and notch, which does the opposite of bandpass and 
blocks frequencies within a band. One standard filter for an EEG signal 
acquisition device, for example, is a bandpass filter that allows frequencies 
between .1Hz and 150Hz. These parameters are standard, as the frequencies of 
interest in the brain tend to be between these thresholds, and because electrode 
potential offset (the tiny measure of how far off from zero voltage recordings are) 
tends to occur below .1Hz (Burgess, 2019). Another example of noise comes from 
power lines, the constant flow of voltage required to power and run the signal 
acquisition device (60Hz in the USA, 50HZ in Europe). In addition to noise, there 
are artifacts that occur in brain data. These are aspects of the signal that stand 
out, but are not of interest, and so tend to confuse rather than help analysis. 
These include eye blinks (detected by electrodes near the eyes in EEG, but also 
visible in distant electrodes on the forehead and front of scalp), alpha wave 
activity (a frequency that occurs when an individual is tired or relaxed), and 
general physical movement of a participant (especially facial muscle 
movements). These are usually detected using researcher-arbitrated criteria and 
removed from the data or corrected using manual or automatic approaches. 
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Though fundamental aspects of processing brain data, filtering and artifact 
rejection are just the tip of the iceberg. 

 

Feature Extraction: Types of Features & Data 
Transformations 

After this step, there are a couple directions one can go to create what are 
known as features, or the properties of data that are used to drive a BCI. For 
electrocorticography, these features can simply be neural spike trains; direct 
voltage data from a cell or population of cells (Rao, 2013). Another common 
feature used in both EEG and ECoG are power spectra frequency bands. 
Frequency bands are calculated using a technique called Fourier Transform, 
which decomposes the signal into a sum of waves, each with a different 
frequency. The power spectra result from squaring amplitudes of each wave, 
thus they represent the strength of a signal in square volts per frequency (v2/Hz) 
(Rao, 2013). Common frequency bands that are used as features, often in 
combination with one another, are known as delta (2-4Hz), theta (4-7Hz) alpha 
(8-12Hz), beta (16-25Hz), gamma (>30Hz), and mu, a sensorimotor rhythm in the 
alpha range that occurs with motor activity (Kilmesch, 2018). The mu rhythm is a 
good example of a feature used in motor imagery paradigms, where BCI users 
imagine moving a part of their body in order to control the device. Another 
common type of feature is the event-related potential (ERP), typically recorded 
with EEG but also used in ECoG nonetheless. As the name suggests, these 
patterns in brain activity occur as a result of a stimulus event response. The P300 
is a robust, well-studied ERP that has been used in a number of paradigms 
(Wolpaw & Wolpaw, 2012). It gets its name from its valence relative to reference, 
positive, and its timing, around 300ms after stimulus onset (Rao, 2013). Steady-
state visual evoked potential (SSVEP) is another ERP frequently used as a feature 
for BCI training. It occurs in reaction to stimuli that flash at a certain frequency, 
thus evoking the same frequency in regions of the brain associated with visual 
processing. 
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Other than the aforementioned Fourier Transform, there are other useful 
transformations on the data in order to make it easier to analyze. The results of 
these signal transformations can be used to extract features as well. Take for 
example the component analysis family, whose most popular members are 
principal component analysis (PCA) and independent component analysis (ICA). 
The primary goal of these algorithms is to reduce dimensionality of a given data 
set, effectively finding the primary properties of the signal across all electrodes, 
which typically elucidates either desired activity or strong artifacts (Artoni, 
Delorme, Makeig, 2018). Such component analyses can be used to extract ERPs as 
well as frequency band data (Artoni, Delorme, Makeig, 2018). So, 
transformations on filtered data work to bring a BCI’s processing pipeline a step 
closer to output. Next, the resulting features must be used to train the system. 

 

Feature Translation & Machine Learning 

The feature translation step in a basic BCI system utilizes models that 
translate the data from features to commands. Depending on the question a 
researcher wants to answer, the kind of data at their disposal, and the paradigm 
used to get that data, different models are used. In fact, there are an infinite 
number of models one can apply to any given observation (Kieseppa, 2001). The 
models used in BCI systems are either regressive, with output on a continuous 
spectrum, or discriminant/classifying, with output divided into distinct 
“classes.” Models interact with user input to create output using three main 
approaches: 1) the model learns to create the proper output through machine 
learning, 2) the user learns how to create the input that gives the desired output, 
or 3) a hybrid approach known as “co-adaptation” (Wolpaw & Wolpaw, 2012).  

When it comes to brands of machine learning models, there are 
supervised learning models and unsupervised learning models, both tasked with 
the job of decoding brain activity. With supervised approaches, a model is given 
training data with labels (e.g. “Left Hand” or “Right Hand”) attributed to the 
output. After learning from the training data, these models can be used to 
determine to which label the features extracted from novel data belong. 
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Unsupervised learning approaches, on the other hand, do not use labels. Models 
using this technique are more left to their own devices to connect trends of input 
data to types of outputs. ICA and PCA are examples of these, as they calculate 
the most principal features in the data, which can be used as output parameters 
(Rao, 2013). Linear least-squares classification functions are a commonly used 
discriminant, supervised learning model. They use the linear formula:  

Y = b1*x1+b2*x2+…+bn*xn+a        (1)   

where b is a weight, a is a constant, each x is a feature, and the output is Y. 
Using the output Y provided in a training session, the b weights can be 
calculated by a separate equation and saved to be used for novel data (Wolpaw 
& Wolpaw, 2012). One limitation of models like this one is that they assume 
linearity of the relationship between the data and the output. There are also 
nonlinear approaches like artificial neural networks, a regression approach 
which mimics the decision-making capabilities of neurons using weighted inputs 
that are summed together and outputted based on an activation threshold (Rao, 
2013). Feature translation can be done either online (during a session for live 
feedback) or offline (anytime after a session's data has been collected). Once the 
features have been translated into commands, they are ready to be externalized 
into the world through the device. 

 

Output & Feedback 

In general, the purpose of BCI outputs is to either choose a goal or control 
a process (Wolpaw & Wolpaw, 2012). Choosing a goal could mean something as 
simple as switching on or off a lightswitch, or something as complex as moving a 
robotic arm to a location in 3D space. Once a goal is chosen, the interface does the 
work to produce whatever processes lead to that goal. In the robotic arm 
example, these processes would include any necessary rotations and translations 
required to reach the outputted goal state. An output that controls a process, 
however, involves the user in every step required to reach the goal state. Using 
the same example, the outputs would be the rotations and translations 
themselves. This gives the user more control over the path that reaches the goal 
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state, but can be more demanding on both the user and the BCI (Wolpaw & 
Wolpaw, 2012).  

The inner workings that drive BCI usage from end-to-end is a closed-loop 
system. As we have now explored, the user’s input is processed translated into 
commands that are outputted to the interface, which then performs a function 
that is externalized to the user, who subsequently updates their input according 
to the new state of the system. Now that we know how these systems work, let’s 
look at some examples of how they’ve been used. 

 

Applications of BCIs 

There are BCIs that use all of the neurotechnology covered above and 
more. The first known brain-computer interface was used as far back as the 
1960s! Remember our friend Grey Walter from earlier? He performed an 
experiment in which he asked a patient who was undergoing brain surgery to 
press a button to advance the slides on a slide projector whilst he recorded the 
corresponding brain activity with an electrode (Graimann, Allison, & 
Pfurtscheller, 2011). After finding the ideal recording spot, Walter connected the 
other end of the recording electrode to the slide projector, and found that the 
slide would advance even before the patient’s intention to press the button. 
Despite this early discovery, the term “brain-computer interface” itself wasn’t 
actually used until Vidal coined the term in the 70s, for his “Brain Computer 
Interface project,” which sought to use EEG-acquired visual evoked responses 
for input into a computer program (Vidal, 1973). Following an uptick in DARPA 
funding around that time, the field of brain-computer interfaces slowly grew. 
The 1990s saw the pioneering studies of Wolpaw, McFarland, and colleagues, 
who successfully developed a BCI for one-dimensional cursor control using 
sensorimotor rhythm activity (Wolpaw, McFarland, Neat, Forneris, 1991). This 
allowed completely paralyzed patients to communicate by moving a computer 
cursor “with their minds.” Even more than twenty years ago, non-invasive BCI 



26 

 

were reaching levels of 90% accuracy and greater, but at the cost of long selection 
periods up to 5 seconds (Doris, Wolpaw, Pfurtscheller, McFarland, 1997).  

At their current stage, BCIs have become most useful as drivers of 
assistive technology (AT) in cases of stroke, muscular atrophy diseases like 
amyotrophic lateral sclerosis (ALS), cerebral palsy, spinal cord injury, all of 
which tend to be causes of locked-in syndrome -- a state of complete or near-
complete loss of muscle movement, but normal cognitive function. Examples of 
assistive technologies are wheelchairs, communication boards, and text-to-
speech software.  

 

Figure 3: Another outline of a BCI pipeline, with various examples of BCI 
applications on the right side.  
© 2012 IEEE. 

 
BCIs have been paired with movement-related assistive technologies in 

several paradigms using wheelchair control as well as robotic arm control simply 
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with brain activity (Achic, Montero, Penazola, & Cuellar, 2016; Bousseta et al., 
2018). Beyond replacing (loco)motor capabilities, BCIs have also aided in speech 
rehabilitation via what are known as BCI spellers. These are systems that use 
various brain signals in order for the user to type words on a computer. One 
popular paradigm uses the P300, the ERP mentioned previously. In this 
paradigm, letters are shown on a screen in rapid succession, also known as 
rapid-serial visual presentation (RSVP). When the user sees the letter they want 
to type, the surprise or “aha!” feeling associated with detecting a target typically 
elicits a P300, which can be recognized by the BCI and outputted to the 
application (Oken et al., 2018). There have also been video game- and VR-related 
applications to BCIs, such as the Pacman-like BCI created at the Fraunhofer 
Institute in Germany (Krepki, Blankertz, Curio, & Müller, 2007; Coogan & He, 
2018). BCIs have also been used for recognition of other cognitive and perceptual 
phenomena. For example, multiple studies have used EEG to classify a user's 
emotions (Nafjan, Hosny, Al-Olahi, & Al-Wabil, 2017). Another group was able 
to classify a user’s perception of a Necker cube, an illusion that can be seen as 
having different orientations depending on one’s perception (Hramov et al., 
2017). This classification of more abstract mental states spells quite a versatile 
future for BCI applications, as they can be used in more than just motor-related 
contexts. It is important to note that a BCI is not the same as its application, 
rather it is a component of the application that is used for control (Wolpaw & 
Wolpaw, 2012). ATs, for example, exist outside of BCIs, but bringing them 
together opens up a whole new world of interaction for a user.  

 

Usability 

An important aspect of the application side of BCI is usability, the 
relationship between the user and the application. Feedback, or what the user 
experiences from the interface as a result of their actions, is one facet of usability 
that is studied in BCI research. Better feedback helps to better control and 
understand a device and how it can be used to reach goal states. If a user tries an 
input and it leads to the wrong output that is clearly shown (e.g. the robotic arm 
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moves in a direction that is just slightly off), this feedback helps the user 
understand how to interact with the interface. Cognitive psychologist Donald 
Norman, who has extensively developed design and information theory for 
decades, puts the idea of feedback into perspective using the examples of both 
auditory and visual feedback: “Imagine trying to talk to someone when you 
cannot hear your own voice, or trying to draw a picture with a pencil that leaves 
no mark: there would be no feedback” (Norman, 1988). Proper feedback drives 
our usage of systems, be they cognitive or physical. Thus, the effects of a BCI 
system’s output on the application or on itself must be unambiguous to the user. 
Two other facets of usability that are considered in BCI research are the 
practicality of the mode of acquisition and the interface design (Baek, Chang, 
Heo, & Park, 2019). Aspects of the device experience like how comfortable the 
headset is, how practical the interface is for daily life, and the longevity of its use 
are all important to how the application itself is designed in accordance with the 
BCI. 

 

Figure 4: Usability factors in BCI. 
(From Nam et al., 2017) 

 
An invaluable asset to both biomedical research and the healthcare 

industry, BCIs have seen numerous applications in the past few decades. While 
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they have grown considerably with time, like any relatively new technology, 
there are still areas on both the computational and the usability sides that are 
under constant improvement. 

Current Limitations 

As we now know, each approach to building a BCI has its limitations from 
the signal acquisition level to the output and application levels. The following 
section will explore some of the main limitations of BCI research and the 
practical use of BCI applications. 

 

Limitations of Signal Processing & Classification 

The issue with many signal processing algorithms is that they only work 
for specific problems (Rashid et al., 2020). For example, algorithms like empirical 
mode decomposition (EMD), and independent vector analysis (IVA) are good for 
small numbers of features, but suffer drawbacks of artifact detection in certain 
frequencies. Other approaches that work better for a higher dimensionality of 
features sometimes do so at the cost of being too slow and are thus impractical 
for live use (Rashid et al., 2020). Furthermore, “tried and true” techniques like 
PCA and some implementations of ICA have been found to cause 
“eigenspectors,” artifacts that cause a misallocation of spectral density (Leichter, 
2013). Moving forward, researchers seek to create signal processing algorithms 
that are both sensitive to artifacts, while also working efficiently and accurately 
enough to be used in live sessions. 

In terms of classification, one of the main issues is the information transfer 
rate (ITR) of BCIs. ITR, also known as bit-rate (bit/min), is a common metric that 
synthesizes classification accuracy, the number of classes, and the time that it 
takes to make a selection (McFarland, Sarnacki, & Wolpaw 2003). BCIs that use 
P300 spellers are known to have poor ITR, which is even lower for those that are 
used in virtual reality and gaming applications. One solution to this has been the 
use of hybrid BCIs, which utilize the higher ITR of activity like SSVEP alongside 
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those with lower ITR in order to boost the net ITR of the system (Achic, Montero, 
Penazola, & Cuellar, 2016). Higher ITR systems also have a decreased calibration 
time, so it means all the more to user experience to increase classification speed 
and accuracy. 

 

Limitations of EEG Signal Acquisition & Interface Design 

As we have seen before, modalities of signal acquisition have strengths in 
some areas but suffer from weaknesses in others. Despite its wide availability, 
the lower signal to noise ratio in EEG makes it harder to develop BCIs that use 
finer movements. ECoG can alleviate this, but at the cost of a timely and 
expensive surgery. Another end of EEG’s limitation is the timely and often 
uncomfortable process required to apply “wet” EEG systems, which use 
conductive gel to increase signal quality. The introduction of “dry” EEG systems 
have erased the need for conductive gel and are, therefore, easier to use but 
possibly at the cost of signal strength and quality (Mathewson, Harrison, & 
Kizuk, 2017). The advent of mobile or wireless EEG systems also exemplify a 
development toward more portable EEG recording. Traditional wired systems 
are typically considered a reliable gold standard in research, though there is 
increasing evidence that wireless systems are equally as reliable (Kam et al., 
2019). 

In terms of interface design, some paradigms like the RSVP paradigm 
mentioned earlier require a great deal of focus on rapidly displayed letters, 
which may be tiring to a user over a long period of time (Oken et al., 2018). One 
direction could be to display the letters more slowly, but this would turn typing 
a word into a much longer process. When it comes to interaction design, 
tradeoffs like these are common issues that are considered deeply to find the best 
attributes to a system for ideal user experience.  

The technical and design realms are not the only areas for improvement. 
There are other factors that limit the current capacity for BCIs in daily use, such 
as the price accessibility of such a system and the generalizability of usage (e.g. 
the availability for a single device to be used at different levels of fatigue, or by 
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multiple parties). Each approach to improving BCIs is unique and focuses on 
different levels of the overall system, but all aim for the same goal: “to provide a 
direct link between the inductive mental processes used in solving problems and 
the symbol-manipulating, deductive capabilities of the computer” (Vidal, 1973).





 

 

Mental Imagery 

As you read these words, imagine a piece of paper in your mind. Now, 
have you got it? Chances are your paper is rectangular and white. This is likely 
due to the fact that most leaves of paper you have seen in the past have been 
white, like the one these sentences are written on (Kosslyn & Moulton, 2009). 
Now take that piece of paper from your mind and bring it outward. Let it fly 
around you, flutter right in front of your face, even go behind you. Now, you can 
not see behind you but, somehow, you may now have an image of what this 
“something behind you” is. Finally, imagine yourself grasping that paper, 
crumpling it. Can you hear the crackling? Feel the light material bend? Let the 
paper dissolve, now, into nothing. Or was it anything to begin with? 

This thought experiment, an extended reimagining of one given in 
Kosslyn & Moulton’s paper on mental imagery as emulation, is meant to 
exemplify mental imagery’s multifunctionality as a process involving memory, 
visuo-spatial reasoning, and multisensory emulation (Yates, 1966; Kosslyn & 
Moulston, 2009). Beyond this exercise, in daily life outside of experimental 
paradigms, mental imagery does so much more. It is a central part of our 
interaction with the world. Thus, as with psychological science in general, the 
concept of mental imagery has been a subject of study, and profound debate, for 
millennia. Looking into its history, it is clear that contemporary theories of 
mental imagery and its role in cognition have well-alive roots in ancient theories 
from ages ago. As we will explore, what has changed over time alongside these 
theories are the empirical evidences that are used to support or refute them. 

 

A History of Debate 

What philosophers and scientists of today may call “mental 
representations” Aristotle knew as “phantasma,” or residue from actual, 
stimulus-driven perception (Thomas, 2014). He believed that these images of the 



34 

 

mind provided us with the energy and direction required to reach goal states in 
the world (McMahon, 1973). Aristotle also held the idea that semantics, the 
meaning behind language, was related to imagery (Thomas, 2014). Though 
ancient in comparison to the developments in modern psychology that have 
occurred since, Aristotle’s early conceptions of mental representations in the 
human mind have analogs to comparatively more recent theories of mental 
imagery. 

One of these analogs came in the form of Thomas Hobbes’ argument for 
materialism, which theorizes an answer for a fundamental question of mind 
itself: is there a difference between the physical properties of the brain and the 
inscrutable phenomenon of conscious experience? In the scope of mental 
imagery, this question asks about the necessity of the separation between 
perception, actually seeing a stimulus, and imagination, seeing a stimulus from 
an internal source, i.e., “in the mind’s eye”. The nature of mental imagery was, 
and still is, cause for metaphysical debate. Indeed, materialists like Thomas 
Hobbes defended the idea that images were nothing but “decaying sense,” which 
can be thought of like a “pendulum swing gradually decreasing in amplitude” 
(Leviathan I.2; Thomas, 2014). This bears much similarity to Aristotle’s 
“phantasma” which he thought were also remnants of exogenous sensation. 
Hume was another one of the materialists who backed the indistinction of 
perception and imagination. He compared percepts, which he called 
“impressions,” to images in that they “did not differ in kind, only in their degree 
of [vivacity]” (Thomas, 2014). Non-materialists like Renee Descartes, Jean-Paul 
Sartre, and Thomas Reid, on the other hand, made a clear distinction between 
stimulus-driven perception and imagined experience. Descartes tended to 
embrace the distinction between the two, believing that mental images began as 
material in the brain but were passed onto mind, which was of a different, non-
material quality (Descartes’ Optics, 1637; Thomas, 2014).  
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Figure 5. Descartes' depiction of human visual perception. 
Descartes believed that the pineal gland (left) was the part of the brain that 
bridged perception from the senses to images of the soul. (from Traite de l’homme, 
Descartes, 1648) 

Through its discussion in the philosophy of mind, mental imagery became 
of great interest in the budding field of psychology in the late 19th century. 
Because of the field’s beginnings, which relied heavily on introspective analysis, 
the veracity of mental imagery was implicit among early psychologists. Most of 
us, after all, are quite familiar with our own mental imagery. This implication 
was, however, deeply shaken upon the results from a 1901 experiment at the 
Wurzburg School in Germany. There, researchers found evidence for what they 
called “Bewusstseinslage,” imageless thought (summarized by Humphrey, 1951). 
Though the original study methods would be considered deeply flawed by 
contemporary standards due to the fact that the experimenters themselves were 
participants, a series of follow-up studies confirming the existence of imageless 
thoughts began to pop up (Buhler, 1907-08, from Humphrey, 1951; Marbe, 1901). 
With these experimental results, the study of mental imagery that seemed so 
certain became less credible. The rise of behaviorist psychology - - the theory that 
psychology can be understood from the observation of a subjects behaviors 
(think Pavlov’s dog) --  in the early 20th century, marked the final turning-away 
of most researchers from mental imagery studies. In fact, behaviorist dogmatists 
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considered it completely foolish to look within one’s psyche and try to develop 
theories based on their subjective reports. 

It was not until the rise of cognitivist theory in the 1960s and 1970s that 
mental imagery slowly became of interest again. Researchers like Paivio, Piaget, 
and Holt re-emboldened into psychology the importance of cognition, the 
internal mental processing that defines psychological phenomena. And with this 
rebirth rose another debate, this time about the very nature of mental images, 
rather than their difference from stimulus-driven perception. At the forefront of 
this debate -- known in relevant circles as “the imagery debate” -- were Kosslyn 
and Pylyshyn. Kosslyn favored the “pictorial” side of the debate, which held the 
idea that mental images were depictive in nature (Tye, 1991). By depiction, this 
stance did not argue that imagery takes the form of exact photos, rather it is 
represented in a similar way to how external pictures have visuo-spatial features 
(Thomas, 2014). Because of its similarity to actual pictures, but being mental in 
nature rather than external, Kosslyn called this theory a quasi-pictorial theory. 
Pylyshyn, on the other hand, leaned toward the “descriptive” side of the debate. 
This side held that mental images were propositional in nature, in that they were 
represented by a system that used syntax, structure, and semantics, much like 
language. This was similar to Fodor’s theory of “mentalese,” the inner, unspoken 
language of conceptual representation of the mind (Thomas, 2014). Of course, 
some theorists preferred a more holistic approach that included aspects from 
both sides of this debate. Kosslyn and Pylyshyn’s Imagery Debate is, though, a 
paramount example of the debates that have driven forward the study of mental 
imagery. 

So, we’ve now seen that the definition of mental imagery has experienced 
a multitude of formulations, many a cause for debate. Though most of these 
theories focus on visual mental imagery, primarily because vision plays such a 
central role for humans, some are generalizable to images of all sensory 
modalities. Beyond introspection and subjective reporting, the advent of 
neurotechnology has given rise to numerous neuroscientific studies that have 
paired brain activity with a number of mental imaging paradigms. Thus, these 
studies have been used as evidence to elucidate the physical mechanisms and 
subsequent subjective effects of mental imagery. 
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Mental Imagery and the Brain 

    Given the window into the brain that neurotechnology has provided, 
researchers have explored a number of sensory modalities and their neural 
correlates. In general, it has been found that mental imagery in a given sensory 
modality activates the same brain regions related to the actual perception of that 
modality (Moulton & Kosslyn, 2008). Visual mental imagery, for example, has 
been found to elicit activity in V1, the primary visual cortex, even to the point of 
modulating the activity as a function of how vivid the image is (Nanay, 2018). 
This overlap between brain activity related to imagery and that of perception has 
been used as evidence for the pictorial side of the imagery debate. According to 
Kosslyn, this connection suggests that mental images are depictive in nature; 
seeing that we perceive the world in a depictive manner, activating the same 
brain region in imagery is evidence for the depictive nature of mental images 
(Kosslyn, 2005).  
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Figure 6: fMRI data across 40 different studies showing brain regions most 
frequently activated during mental imagery. 
A) and B) show the intraparietal area 1 (IP1), intraparietal sulcus 1 (IPS1), and 
dorsal and ventral lateral intraparietal (LIP) areas; C) shows the greater activity 
in the left hemisphere than the right. There is also bilateral visual cortex activity 
(in the ‘back’ of the brain) because all studies tested visual mental imagery (from 
Winlove et al., 2018) 

 
Other than V1, parts of the parietal lobe and occipitotemporal cortex have 

been found to be correlated with mental imagery in humans. A recent meta-
analysis of forty different neuroimaging studies observing visual mental imagery 
of scenes or objects found consistent activation in the superior parietal lobe -- 
specifically in the left hemisphere -- across all studies (Winlove et al., 2018). 
Interestingly, the same meta-analysis found some studies with activation of 
rostral area 6 and the inferior frontal sulcus, which have been found to be related 
to the semantic processing of language and decision-making. This could suggest 
mental imagery is semantic in nature as well, providing support for the 
descriptive side of the imagery debate. However, as the authors of the meta-
analysis note, to attribute a single anatomical area of the brain to a single 
function is a challenge due to the human brain’s complexity. Thus some studies 
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have employed more network-oriented approaches to neurophysiology, 
studying interconnected circuitry of activation that is correlated with mental 
imagery, rather than just isolated regions. One such study used ECoG to observe 
connected activity in both the frontal and temporoparietoocciptal in relation to 
the decision process in rotating mental images of 3D shapes (Nikolaev, 1995). 
Though it is prevalent in most discussions of imagery, visual mental imagery is 
not the only sensory modality that has been studied in experimental paradigms. 
Parietal regions of the brain have also been found to be activated for both spatial, 
motor, and tactile imagery (Sack et al., 2008; Jeannerod, 2001; Schmidt, Ostwald, 
& Blankenburg, 2014).  

In general, the parietal cortex is considered to be part of a network for 
mental imagery representation that includes the prefrontal cortex at the higher 
level, and the relevant sensory region at the lower level (Jeannerod, 2001). 
Oftentimes, regions of the occipitotemporal cortex are found to be active in this 
network as well. A study in spatial imagery, for example, found that motor-
related information from sensory brain areas send signals to the parietal cortex, 
which are routed to the prefrontal cortex (Sack, 2008). Similarly, there is evidence 
of a “construction network” that involves activation in the primary and 
secondary somatosensory cortices (responsible for tactile sensation) followed by 
the lateral occipital visual-tactile area (Schmidt, Ostwald, & Blankenburg, 2014). 
Imagery of different sensory modalities, of course, likely do not use the exact 
same circuitry. But the locality of regions activated across modalities points to a 
common network for mental imagery, which bears striking similarities to the 
network for actual sensory perception. Beyond just their spatial similarities, even 
the temporal qualities of actual movement and imagined movement are nearly 
identical (Jeannerod, 2001). The reason for the experiential difference of mental 
imagery despite near identicality to actual perception is still relatively uncertain. 
A discussion of mental imagery by French neuroscientist Marc Jeannerod points 
to a couple of theories for this difference in the context of motor activity. For one, 
it could be that neural activations due to mental imagery are not strong enough 
to elicit actual muscle activity. On the other hand, there could be an inhibitory 
mechanism at play during mental imagery (Jeannerod, 2001). Jeannerod also 
proposes a synthesis of the two, offering that, perhaps, there could be 
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“subthreshold preparation to move” paired with a “parallel suppression of overt 
movement by inhibitory influences.” This discussion, though specific to motor 
studies and corticospinal activity, can also be generalized to other sensory 
modalities. This could explain why mental imagery both facilitates later 
perception in the same modality, and suppresses perception if an individual 
attempts to exercise both at the same time (Chang & Pearson, 2018; Zvyagintsev 
et al., 2013). 

Though the neural substrates of mental imagery are continuing to be 
studied, the general activation of the relevant sensory brain region during mental 
imagery is a well-established finding in the field. The extensive research done on 
mental imagery has not only aided the development of underlying theories, but 
they have also had a tremendous impact on BCI research, due to the use of 
mental imagery as a primary input method for BCI applications.



 

 

BCIs for Mental Imagery Classification 

Now we know that imagery is a type of mental representation that plays 
an important role in our thought processes via emulation of actual perception. 
Despite the debate, it is generally accepted that 1) images refer to something out 
in the world, and 2) are produced at the voluntary will of a mind (with some 
exceptions, like intrusive or instinctive imagery). Thus, in a way, mental imagery 
is a mapping from our internal world of expectation, representation, and 
intentionality, to the external world of actions and outputs. This viewpoint 
highlights why imagery is so useful to BCI research: the neural activity that 
roughly encodes our internal world is a window into that world, or at least how 
it is represented. This is how we use tools beyond BCIs, afforded by their 
functions and constrained by their limitations. Using pencils, we are able to map 
our intentions through the function of making markings on a surface. Using a 
guitar, we map our intentions through the strings and strumming patterns to 
create the desired output. Now what makes BCI so unique is the fluidity of this 
mapping. Because of its prevalence in human cognitive processes, mental 
imagery can be further explored as a heuristic for mapping intentionality at an 
even more complex level in BCI systems. Although imagery-based paradigms 
are notoriously less salient than others (due to the lack of an actual stimulus), 
especially in non-invasive brain recording, researchers have still been successful 
in using imagery as a reliable input. 
 

Motor Imagery 

The overwhelming majority of imagery-based BCI have to do with motor 
imagery. In fact, searching Pubmed, a world leading database for published 
clinical studies, for the terms “BCI” AND “Imagery” yields 995 results, while a 
search for the terms “BCI” AND “Imagery” AND “Motor” yields 953 results, 
which roughly exemplifies the sheer presence of motor imagery as a use for BCI 
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research. There are a few reasons for this, one of which being a primary reason 
for clinical BCI research in the first place: to restore or replace motor activity. It is 
a more natural effort for an individual to map the movement of a robotic arm to 
imagined muscle movement of their own arm than to, say, their emotional state. 
Thus, BCI applications like cursor and arm movement studies have benefited 
most from motor imagery paradigms.   

In general, motor imagery BCI systems utilize the power of two frequency 
bands -- mu, or the sensorimotor rhythm (8-12 Hz), and beta (18-30 Hz) -- for 
input. As we already know from the previous section, motor imagery yields the 
most activity over the sensorimotor cortex. BCI applications using motor 
imagery have a long history, some of which have been discussed in earlier 
sections. The late 1980s and 1990s studies of Wolpaw and McFarland utilized 
motor imagery as for EEG-controlled cursor movement (Krusienski, McFarland, 
Wolpaw, 2006; Wolpaw, McFarland, Neat, Forneris, 1991). The high accuracy 
rates of their participants only further solidified motor imagery as a gold 
standard in BCI. Since then, motor imagery has been used in increasingly 
complex cursor movement studies, as well as wheelchair and prosthetic limb 
applications (Yu et al., 2018; Gannouni et al., 2020). Recently, BCIs have even 
been used for the control of quadcopter drones, further exemplifying the 
diversity of possibilities for applications (Xie et al., 2016; He et al., 2013). Usually, 
binary classification (left or right hand/foot motor imagery) is used for 
commands, but a growing number of systems are achieving more complex levels 
of classification. In the case of one wheelchair application, for example, 
researchers were able to classify four motor imagery tasks at 94.2% accuracy to 
accelerate, decelerate, turn, and stop the wheelchair (Yu et al., 2018). As 
computation and technology become more powerful, even more complex actions 
are foreseen to be possible with the use of BCIs. 

The use of motor imagery (and imagery in general, for that matter) for 
BCIs is, however, not without its limitations. The most common of these 
limitations arises from the fact that the strength of mental imagery can be weak 
to nonexistent for some individuals. For those without any mental imagery, 
possessing a neurological condition known as aphantasia, tasks that require it 
can be, understandably, very difficult to follow. Thus, for this group, mental 
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imagery may not be the easiest form of mapping intention to external action. 
Interestingly, the vividness of a mental image may not be correlated with BCI-
illiteracy, a condition describing the estimated 10-30% of BCI users who are 
unable to achieve accuracy levels necessary for adequate control (Vasilyev et al., 
2017). Multiple studies have, instead, found that the resting state amplitude of 
the sensorimotor (mu) rhythm, an individual’s ability to suppress this rhythm, 
and attentional and spatial abilities are better predictors of BCI-illiteracy 
(Vasilyev et al., 2017; Blankertz et al., 2010; Jeunet, Kaoua, & Lotte, 2016). In other 
words, the strength of a person’s experience of motor imagery is different from 
the classifiability of the resulting EEG activity, pointing to another limitation of 
mental imagery for BCIs: brain activity is an approximation of an actual mental 
state; it is not an exact mapping, but a rough representation with the goal of 
accurate output. This is not to say that vividness of a mental image is not 
important. The strength of one’s mental image plays a key role in their feeling of 
control, which is vital in any interface. Finally, mental fatigue, a limitation of any 
paradigm, is often seen in motor imagery studies. It has been found that, with 
increased fatigue, the power of lower frequency bands is affected, thus 
dampening the system’s ability to classify with accuracy (Talukdar, Hazarika, 
Gan, 2018). 

Other Forms of Imagery 

    Though the most prevalent, motor imagery is not the only form of 
imagery that has been used as an input for BCIs. Mental object rotation has also 
been used in a few BCI studies (Friedrich, Scherer, & Neuper, 2012; Abibullaev, 
An, & Moon, 2011; Hwang, Lim, & Im, 2014) with significant classification 
accuracy. A few studies have also used BCIs to detect mental arithmetic, where 
participants are tasked with simple math to do in their heads (Im, Shin, & Kwon, 
2018). Another group of studies have classified mental singing, either alone or in 
combination with mental arithmetic, in participants using BCIs (Power, Kushki, 
& Chau, 2012). In many cases, in fact, these BCIs were tested on multiple forms of 
imagery (motor vs. mental arithmetic vs. mental singing, for example), with the 
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non-motor imagery trials sometimes being more consistently classifiable than the 
motor ones. This classification difference could actually provide an 
individualized solution to BCI-illiteracy; individuals who struggle to produce 
satisfactory output using motor imagery could find more success in other forms 
of imagery.  

Non-motor forms of imagery as input for BCI open up the field to an array 
of potential forms of interaction that exist beyond physical activity. They can 
give individuals with communication disorders an avenue for expressing their 
more complex, inner thoughts. They can provide concept-specific classification 
(i.e. is this person wanting food, or assistance with their chair?) that allows for a 
more direct mapping of intentions to output than a selection screen can. Much 
like language allows us to approximate our internal concepts via lingual outputs, 
BCI, especially by use of the imagery that we use to represent these internal 
concepts, can offer an approximate mapping via brain activity classification.  

Shape Imagery 

The use of BCIs in design software has increased as its potential grows 
with emerging research (Folgieri et al., 2016). One form of imagery classification 
with particularly notable implications for design-related applications is shape 
mental imagery classification. A most relevant application for shape imagery 
classification, especially for three-dimensional shapes, is computer-aided design 
(CAD) software, which has, in its development over the past couple decades, 
provided engineers, designers, and artists with a powerful modality for object 
and structural modeling. Many studies have observed the intuitive use and 
multipurpose capabilities of BCI in CAD software, opening up possibilities for 
more complex and in-depth implementations (Bhat et al., 2013, Rahul et al., 2013, 
Lang, 2012). 
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Figure 7: An example of CAD software. 
Courtesy of BobCAD-CAM, Inc. 

 

These studies have used, in general, two principal approaches to explore 
applications of BCI in CAD software: 1) replacing typically mouse-controlled 
spatial functions (e.g. lateral translation, rotation) with brain-activity-controlled 
implementations, and 2) classification of geonic structures from mental imagery 
with the goal of shape generation in the virtual space. What these two 
approaches, in essence, aim to do is decode the mental state of the user and 
provide output into the world, or, in this case, the software. In the first approach, 
BCI researchers typically use activity in the sensorimotor or temporal cortices 
(imagined hand movements) or visual activity (SSVEP, eye movement) as the 
general paradigm for mapping brain-activity to existing software controls. On 
the other hand, classification of shape mental imagery, is an approach that 
attempts to classify the imagination to a congruent output. In other words, the 
user imagines a shape, and the computer outputs that shape.  

As stated before, what this potential modality for BCI use in CAD 
software can add is a more direct mapping of user’s intent and the actions 
required to realize that intent in the world; a relationship that is called the gulf of 
execution in human-computer interaction (Kirkpatrick, 2002; Norman, 1988). In a 
traditional interface, a user must map their intent to a series of cursor movements 
and buttons (e.g. Insert -> Shapes -> Cube -> Isometric) to produce an output in 
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the program. This paradigm is known as WIMP -- Windows, Icons, Menus, 
Pointers (Hinckley, 1996). While this method of input requires precise physical 
movements that are memorized over time with the occasional erroneous action, a 
BCI interface replaces that physical cursor control with brain activity, erasing the 
need for such gestures and allowing individuals with neurodegenerative 
disorders to interact more easily with such design software. What previous 
research using this approach has lacked, however, is the ability to generate entire 
shapes (rather than just gestures) using only BCI. The addition of shape mental 
imagery classification, the second of the two approaches to BCI in CAD software, 
can grant this ability. This approach allows the user to intend a specific object, 
which is then efficiently recognized by the machine and outputted onto the 
screen. Although the present study focuses on this approach, we believe that a 
holistic implementation that combines the two is ideal. 

Shape mental imagery has a history of study, but hardly any in BCI 
research. Though its use in the field is relatively new and unexplored, the 
exploration of shape mental imagery can be a pivotal addition to both BCI 
development in general, and the intuitive use of such technology. Design and 
simulation in CAD software is a practice in which fluidity of control is key. The 
implementation of BCI in CAD software is a key step toward the ability to 
spatially translate, rotate, and generate, and morph virtual objects in an intuitive 
manner that is accessible to all. We hope to contribute to the work that reaches 
that point and beyond.



 

 

 

A Novel BCI System for 3D Shape Imagery 
Classification 

To date, there have only been two shape imagery classification studies: 
Esfahani & Sundararajan (2012) and Korik et al. (2018). Esfahani & Sundarajan 
created an EEG-based BCI that was able to classify five primitive shapes (cube, 
sphere, pyramid, cone, cylinder) from the brain activity of participants (Esfahani 
& Sundararajan, 2012). The goal of the research was to explore possible 
computer-aided design software implementations of BCIs, with the hope that the 
technology could eventually utilize shape mental imagery classification to 
inform object generation in a CAD interface. The present study seeks to replicate 
the shape imagery classification accuracy results of Esfahani & Sundararajan 
(chosen over Korik et al. due to higher classification accuracy), particularly 
Experiment 1.2, in which researchers were able to classify the five shapes with a 
44.6% average accuracy across all participants (n = 10). We performed an 
extension to this study that employs the similar preprocessing, feature extraction, 
and classification methods, but using a wet EEG system with 64 electrodes, as 
compared to the dry 14-electrode system used in the original study. Although 
wet electrode systems are less portable and take more time to apply, the 
conductive gel used in wet systems has been found to significantly decrease 
electrode impedance, and analyze a wider frequency range (Mathewson, 
Harrison, & Kizuk, 2017; Waldert, 2016). Furthermore, the sheer increase of 
electrodes from 14 to 64 is also likely increase accuracy, as it has been found that 
higher density electrode systems have increased capability for accurate source 
localization (Song et al., 2015). At the same time, there is growing evidence of the 
reliability of the dry systems, even compared to wet systems (Kam et al., 2019). 
Still, wet systems remain a golden standard in the field of neuroimaging. Our 
goal was to test this gold standard, for which we hypothesized that the addition 
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of a wet electrode system with an increased number of electrodes would 
significantly increase classification accuracy of the five shapes. 

Methods 

Experimental Design 

The design of the present study follows that of the original paper, with the 
five shapes from the original study (cube, sphere, cone, pyramid, and cylinder) 
used as the primary visual imagery targets. The first two sessions included 
examples of the isometric shapes that participants would be asked to imagine. 
These examples, however, were later omitted in later sessions due to the fact that 
participants could be attempting to remember them exactly throughout the 
experiment, thus making the task more relevant to memory than imagery. 
Participants were also asked to imagine the shapes at the same color, position, 
and orientation during each mental imagery portion of the trials. 

Each trial displayed a word cue for 2s (ex. “Cube”, “Cone”), denoting the 
shape that the participant would be asked to imagine, after which there was a 5s 
blank screen (with a constant fixation cross in the center) during which the 
participant was to imagine the shape as if it were on the screen. Then, for a 
random interval between 2s and 5s, a ready screen asking the participant to 
prepare for the next cue was shown, and the next trial began. Every shape was 
randomly cued (without replacement) once in each block. Halfway through the 
session, each participant was allowed to take a quick break to rest. During this 
time all participants  remained seated, and moved minimally. After the break, 
the user was prompted to press the spacebar to begin the next half.  

In total, this study had two main experiments, differing in number of 
blocks. In Experiment 1 (n = 6), there were 10 blocks where each shape was 
presented once, creating a total of 50 trials. After some consideration about the 
potential effect that the number of trials may have on the classification accuracy, 
Experiment 2 (n = 1) was designed to observe if any changes in accuracy 
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correlated with an increased number of trials. This experiment had 20 blocks 
with the same each shape presented once per block, creating a total of 100 trials.  

Finally, all participants were compensated monetarily for the 2-hour 
session. After signing a consent form, participants were fitted with the EEG 
device in a low-light, soundproof recording room. All experimental sessions 
were run after the study design received International Review Board (IRB) 
approval. 
 

EEG System & Signal Acquisition 

The experiment utilized a custom 64-electrode EEG cap to acquire 
electrical activity, applied to the scalp with Ag-AgCl gel to keep impedance 
below 10kΩ. The signal acquired by the cap was amplified by two 32-channel 
amplifiers (Brain Amp Standard; Brain Products), which were then digitized by a 
recording computer. The system sampled the data at 500Hz with an online filter 
that employed .1Hz low and 150Hz high cutoffs. 

 

Figure 8: EEG Cap Electrode Layout and Channel Numbers 
(From EASYCAP GmbH) 
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Preprocessing & Feature Extraction 

A custom MATLAB script using MATLAB's Signal Processing Toolbox 
and the package EEGLAB was used to perform the necessary preprocessing and 
feature extraction after experimental sessions (Delorme & Makeig, 2004). First, 
the signal was re-referenced to the same two electrodes, 26 and 29 in Figure 8, 
corresponding to the two reference electrodes used in the original study. This left 
61 channels of signal for processing (64 electrodes minus the ground electrode 
and the two reference electrodes). The raw signal was then downsampled to 
128Hz, lowpass filtered at 83Hz, and notch filters were applied at 50Hz and 
60Hz. The resulting data was separated into the baseline data (2 to 5 seconds of 
passive brain activity between trials) and trial data (5 seconds of continuous 
brain activity starting with the word cue). The first 10% of the signal from each 
trial was cut in order to eliminate residual activity from the baseline period, 
leaving 4500ms of signal (shown in Figure 9).  
 

 

Figure 9: Raw EEG signals and how they were cut for preprocessing and 
analysis. 
(From Esfahani & Sundararajan, 2012) 

 
For artifact rejection, signal deconvolution via an INFOMAX Independent 

Component Analysis (ICA) was applied to the data in order to find the strongest 
components in the signal (Makeig et al., 2000). The resulting artifactual 
components were rejected visually, using the topographical maps of spectral 
density for each component (Figure 10 below shows some examples of artifactual 
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components). Once the artifacts were rejected, ICA was applied again to the 
pruned data, and the resulting component activations were used to calculate 
features. The features were generated using the power spectral density of the 
component activations in the beta and gamma frequency bands, as these were 
the most informative frequency bands in the previous study. The resulting 
features were normalized with respect to power spectra calculated from the 
baseline signal for each trial. With this feature generation, 122 features were 
generated per trial (61 independent component activations x 2 frequency bands). 
The top features for each shape in a given participant’s data were selected using 
a chi-squared statistical test to determine the most informative features. The 
number of features -- 10-13 for most participants -- was decided by overall 
participant performance. 

 

 

Figure 10: Examples of artifacts related to eye blinks (left) and bad channels 
(right). 

 

Classification 

With a custom Python script using the library Scikit-learn, a classifier was 
trained on the shape data using Linear Discriminant Analysis (LDA). Each trial 
(50 for Experiment 1, 100 for Experiment 2) was given a label, which was one of 
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the five shapes depending on which was cued in that trial. The classifier was 
trained using a random 80% of the trial data, and tested on the remaining 20%. 
For further validation, another classifier was trained using k-fold cross-
validation, a technique that shuffles the data into k groups, selecting one of these 
groups for testing and training on the other k-1. This process is then done until 
all each of the k groups have been used as test sets, to evaluate the general 
robustness of the model for more than just one kind of test set. The average 
classification accuracy across all k groups was used as a metric to estimate its 
cross-validation performance. All code used in this pipeline is available online in 
the Github repository provided in the abstract. 

Results 

Experiment 1 

Analysis of Spatial Activity 

The original 2012 study found more activity in the right hemisphere 
during shape trials, a finding that was consistent with another mental imagery 
study (Mellet et al., 1996). In order to verify that the shape mental imagery-
elicited brain activity was, in fact, in accordance with these findings, the scalp 
topographies across all shapes for five frequency bands (alpha, beta, gamma, 
delta, theta) were generated. 
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Figure 11: Experiment 1 scalp topographies per shape (row) and frequency band 
(column), averaged across all six participants. 
Darker red denotes higher bandpower, or more activity in that frequency band. 

 
In general, the activity in Figure 11 is either bilateral (most clearly in the 

Cylinder trials, and somewhat in the Sphere and Cube trials), quite sparse (Cone 
trials and most of the gamma band column), or central and noisy (Pyramid 
trials). Regarding the bilateral activity, those topographies are more in line with 
earlier findings from Winlove et al. (2018), shown in figure 6, rather than those 
from Esfahani & Sundararajan (2012), who found a right hemisphere-dominant 
pattern. In their meta-analysis of visual mental imagery studies, Winlove et al. 
found most consistent activity bilaterally in parietal areas, which closely match 
the beta, alpha, and theta maps of the Cylinder trials, as well as some of the Cube 
and Sphere trials.  

The noisier aspects of the plots are likely some residue of other artifacts 
(there is some evidence of blink artifacts, even after performing the artifact 
rejection step). It could be that the visual heuristic for rejecting ICA components 
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was not sufficient for reducing the presence of artifacts. As mentioned before, 
ICA is a standard but imperfect artifact rejection method, and can be improved 
with modifications or using a hybrid technique (Leichter, 2013).  

The sparse overall activity found for most of the Cone class could be 
shape-specific, a possibility that is supported by the results in the next subsection 
on classification. At the same time, however, because activity can have some 
variation between participants for the same task, it is also likely that the 
averaging process actually erased some of the clearer signals within individuals, 
which (See: Appendix A). This also explains the disappearance of gamma 
activity in Figure 11, which is more present in the individual plots. 
 

Classification Results 

In total, the average classification accuracy across participants was 43.3% 
(compared to the 44.6% found in Esfahani & Sundararajan), ranging between a 
maximum of 70% and a minimum 30%. Table 1 shows the average accuracy of 
the classifier's prediction versus the true class across all participants. Most of the 
hit rates for each class were well above chance (20%), peaking at 53.8% for Cube. 
The hit rate for Cone, however, was around chance level. Similar to Esfahani & 
Sundararajan’s findings, the classifier more often confused Cone for Pyramid 
than correctly guessing Cone. This confusion could be explained by the 
perceptual similarity between cones and pyramids. This low accuracy is also in 
line with the sparse band power activity within the row for Cone trials (Figure 
11). Interestingly, the classifier did not once guess Pyramid for Cylinder, 
Cylinder for Sphere, nor Cone for Cube. In the original study, there were no zero 
rates in the confusion matrix, so this could simply be unique to the analysis used 
for this experiment. 

     
 

Classification Result (%) 

 
 

Cube Pyramid Cylinder Sphere Cone 
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True 
Class 

Cube 53.8 23.1 7.7 15.4 0.0 

Pyramid 20.0 50.0 10.0 10.0 10.0 

Cylinder 11.1 0.0 44.4 11.1 33.3 

Sphere 14.3 14.3 0.0 50.0 21.4 

Cone 14.3 35.7 21.4 7.1 21.4 

Table 1: Confusion matrix of classification results, averaged across participants.  
Because of the randomization of the training-test sets, there are different 
numbers of observations of each true class in each test set. Hence, the columns do 
not add up to 100%, but the rows do. The bolded percentages are hit rates 
(correct guesses). 

 
Contrary to the initial classification results, the k-fold cross-validation 

(k=5) yielded an average classification accuracy of about 24.3%, a near-chance 
level. This discrepancy very possibly occurred because of the randomness that 
the first classifier training method performed to split the data 80:20. When 
randomizing training and testing data, it is entirely possible that a single class 
appeared once in the test set (especially given that each test set has only 10 trials), 
thus making a single correct prediction yield 100% accuracy entirely for that 
shape. K-fold validation is there to make sure that all test set combinations are 
accounted for. Thus, the classifier performed well on randomized trials, but not 
as well for validation. Moving forward, a solution to this would be to simply 
have more trials, in which case the randomization would be less likely to falsely 
represent the model's actual fit, which is what was done for Experiment 2. 

Lastly, in order to check for any outliers between shapes, another LDA-
based classification was performed in a one-vs-all fashion (each class vs. the rest 
as a single group). The average one-vs-all classification accuracy across 
participants is presented in Table 2 below, which does not show a particular 
shape with a significantly lower classification accuracy than the others. 
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Shape One-vs-All Classification Accuracy 

Sphere 71.7 

Pyramid 76.7 

Cube 73.3 

Cone 76.7 

Cylinder 83.3 

Table 2: One-vs-all classification results for all shapes, averaged across 
participants. 

 

Experiment 2 

Classification Results 

In the second experiment with an increased number of trials, the classifier 
reached an accuracy of 25%, barely above chance, and slightly below the lowest 
accuracy from the first experiment, 30%. Table 3 shows a clear drop in hit rates 
compared to Experiment 1, with the exception of the Cone class, which remained 
around chance level. Interestingly, k-fold cross-validation did not yield a 
different classification accuracy, most likely because of the increased number of 
trials. The more trials, the less likely a random selection is to create a false 
representation of the model. 

 
 
 

 
Classification Result (%) 

 
 
 

True 
Class 

 
Cube Pyramid Cylinder Sphere Cone 

Cube 33.3 33.3 16.7 0.0 16.7 

Pyramid 33.3 33.3 0.0 33.3 0.0 
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Cylinder 0.0 50.0 0.0 0.0 50.0 

Sphere 0.0 20.0 20.0 20.0 40.0 

Cone 0.0 50.0 0.0 25.0 25.0 

Table 3: Confusion matrix of classification results in Experiment 2 

 
The one-vs-all classification performed on this participant’s data shows no 

shape that stood out significantly from the others to cause the extreme drop in 
accuracy, leaving factors outside of shape-specificity to be potential causes. 

 
Shape One-vs-All Classification Accuracy (%) 

Sphere 65.0 

Pyramid 70.0 

Cube 70.0 

Cone 70.0 

Cylinder 80.0 

Table 4: One-vs-all classification results for all shapes in Experiment 2 

 
One of these potential causes was fatigue. It is known that increased 

fatigue during BCI use can negatively affect classification accuracy (Talukdar, 
Hazarika, Gan, 2018). In order to check for potential effects of fatigue, the 
classifier was subsequently trained and tested on only the first 50 trials. This 
yielded a classification accuracy of 30%, showing little but not particularly 
significant evidence for the effect of fatigue. Though this accuracy was slightly 
higher, Table 5 shows that most of the classes were at-chance-to-zero in their hit 
rates (with the exception of Pyramid and Cone). 

 

 
 

Classification Result (%) 
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True 
Class 

 
Cube Pyramid Cylinder Sphere Cone 

Cube 25.0 25.0 50.0 0.0 0.0 

Pyramid 0.0 50.0 0.0 0.0 50.0 

Cylinder 0.0 100.0 0.0 0.0 0.0 

Sphere 0.0 0.0 0.0 0.0 100.0 

Cone 0.0 0.0 0.0 50.0 50.0 

Table 5 Confusion matrix of classification results of first 50 trials in Experiment 2 

 
 
To check, again, for the potential effect of a single outlier class, one-vs-all 

classification was run on the first 50 trials of Experiment 2, shown in Table 6. this 
analysis, like the earlier one-vs-all classifiers, shows no particular outlier shape to 
cause the drop in accuracy. 

 
 
 
 

 

Shape One-vs-All Classification Accuracy (%) 

Sphere 60.0 

Pyramid 70.0 

Cube 60.0 

Cone 60.0 

Cylinder 80.0 

Table 6: One-vs-all classification results for all shapes in the first 50 trials of Experiment 2 
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With little evidence for fatigue being a significant cause of such poor 
classification accuracy, the scalp topography was also checked for anomalies. 

 

Figure 12: Scalp topographies per shape (row) and frequency band (column) for 
Experiment 2. 

 
    These show that there is a considerable amount of frontal and posterior 

activity (around the perimeter of each plot), as well as sometimes blink-related 
activity as opposed to the bilateral activity in individual participant data. The 
posterior activity could be visual cortex-related activity from the occipital lobe, 
which was found in the visual imagery studies from Winlove et al., but this is 
unlikely due to the lack of such activity in the other participants' data. Instead, 
this could be a result of recording error, or something participant-specific. 
Unfortunately, there is not enough other data to tell. In future versions of this 
experiment, it will be vital to have multiple participants in order to compare 
anomalous data to a larger pool. In summary, the cause of such poor 
classification in Experiment 2 is uncertain, but could be explained by some small 
degree of fatigue, artifacts, and possible recording failure.





 

 

Discussion 

Classification 

In general, the findings did not support the original hypothesis of 
increased accuracy given a greater number of electrodes and enhanced 
conductivity, having found a comparable accuracy (43.3% to the original study's 
44.6%) in a randomized training/test setup, while also finding considerably 
lower accuracy (24.3%) when tested with k-fold cross-validation. The study's 
findings still, however, add to the conversation about BCI usability in wet and 
dry electrode systems. It is no surprising fact that dry electrode systems are more 
portable and comfortable for a user to wear compared to wet electrode systems. 
The research, however, regarding dry electrode systems being equal in reliability 
and, therefore, signal classifiability, is mixed, with sources posing arguments for 
either side (Kam et al., 2019; Mathewson, Harrison, & Kizuk, 2017). Even in this 
debate, wet systems are still considered a more trusted gold standard of the two 
in EEG research. This preference could also have to do with marketing, as dry 
electrode EEG systems are often marketed to more commercialized circles, and 
so are less trusted in having research-grade sensitivity. Now having continued 
evidence that a BCI using a dry electrode EEG system is able to reach a 
classification accuracy equal to or better than that of a wet electrode system is 
exciting. This suggests that these more portable options do not necessarily 
sacrifice accuracy for their convenience. 

On this note, it is important to mention that our 4.5-fold increase of 
electrodes still yielded about the same classification accuracy as well. Not only is 
there evidence that more electrodes suggest better overall spatial resolution, but 
the large number of features that result from such an increase (from 70 to 305, 
reduced to 122 to narrow down to the beta and gamma frequency bands) also 
implies better classification accuracy (Esfahani & Sundararajan, 2011). One 
simulation study that increased electrode count did find that a higher density 
EEG system actually might not have increased spatial resolution (Ollikainen et 
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al., 2000). However, this particular finding is not heavily supported by the 
literature. One reason for this lack of effect could be that the sources recorded by 
a lower density system with 14 electrodes is sufficient for adequate control, with 
diminishing returns as electrode count increases, thus making the smaller system 
comparable to the larger one. Another explanation is that the spatial resolution 
advantages of a higher density system are not used fully in this paradigm.  
Because the classifier is trained on frequency band power data of independent 
components obtained from ICA, which linearly transforms the original electrode 
space into a different vector space (known as the component space), the feature 
extraction process could have tempered out more sensitive spatial information. 
Perhaps a classifier trained specifically on spatial activity would fare better, but 
this is purely speculative. Nonetheless, although there are some causes left to 
question, these findings further support the viability of more portable BCI. 

 

Spatial Activity 

Looking at the topographical plots tells a story that is common in 
neuroimaging, one that is especially impactful when attempting to decode brain 
activity: variability between individuals makes it difficult to generalize anything, 
plots and classifiers alike. This is evident in the visibly variable activity between 
individuals in Appendix A. Of course, there are commonalities in brain activity 
given a similar task, but, especially in such a small group, averaging across 
participants can be a lossy process. Another story told in the individual spatial 
activity data provides support for bilateral parietal activity found in Winlove et 
al. rather than the right hemisphere specific activity observed in Esfahani & 
Sundararajan's data. Winlove et al. also found left hemisphere specificity in 
mental imagery studies, which is also represented in some of the participant data 
as well. This is not to say that Esfahani & Sundararajan's topographical findings 
are inaccurate; they are well supported by findings from Mellet et al. (1995). This, 
instead, points to the fact that, as mentioned in the section on mental imagery 
and the brain, it is difficult to nail down a single anatomical area of the brain to a 
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single function due to the human brain’s complexity and variability. It is better to 
see data from these studies as part of a larger trend. 
 

Mental Imagery 

Might these findings add to the imagery debate mentioned earlier? They 
do, somewhat. The bilateral parietal activity adds to the data that certain parietal 
areas are involved in mental imagery, possibly supporting the representation 
argument as parts of the parietal cortex (See: Figure 6) are known to be involved 
higher cognitive functions. The lack of occipital lobe data, however, fails to 
support the imagery-as-picture argument. This does beg the question, however, 
of whether this was at all the same task for all participants. David Kirsh, a mental 
imagery researcher at the University of California, San Diego makes the 
distinction between imagination and projection (Kirsh, 2013). Projection, according 
to Kirsh, is the "is a mental process akin to attaching a mental image to a physical 
strucure." Imagination, on the other hand, "has no physical anchor, and imagined 
images need have no specific size or location." Although the instructions asked 
participants to imagine the object on the screen, it is entirely possible that some 
projected the image onto the screen's background, anchoring it to the fixation 
cross, for example, while others imagined the shape as an unattached object that 
just happened to be near the screen. It is, then, also possible that these two 
different processes have slightly different neural substrates or activation 
strengths of occipital vs. parietal lobe activity, thus leading to even more 
variability between participants for the task. Moving forward, it would be useful 
to use a standard test for keeping track of participants' tactics while completing 
the task in order to ascertain which type of imaging that was used, or if they 
used a mix of the two. 

Conclusion 

 To conclude, the results of this study show that there is great potential for 
portable, dry-electrode EEG systems to be used in BCIs with an accuracy on par 
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with that of higher density wet EEG systems. In order to further confirm these 
findings, future developments will benefit from the addition of more 
participants, both to train a more robust classifier that can maintain high 
accuracy against cross-validation, and for the averaging of topographical data to 
be a more informative and less noisy result. With more participants for a 
paradigm like Experiment 2, a more distinct mechanism behind the effect of an 
increased number of trials might also be observed. Additionally, more sensitive 
artifact rejection methods could be used in order to weed out potential artifact 
left over or possibly even created by ICA decomposition (Leichter, 2013). 

"The dry revolution," or the introduction of dry electrode headsets as the 
gold standard in research, may be closer than we think (Di Flumeri et al., 2019). 
With improvements to these results using novel recording, feature extraction, 
and classification techniques, the list of applications for these portable devices is 
sure to grow exponentially. 

Future Directions 

 The realm of BCI applications using shape mental imagery is currently 
small, but has great potential. Looking forward, the same general idea used in 
this study and ones like it could be used to reliably generate not only common 
3D shapes like pyramids and spheres, but also to create more complex shapes. 
These systems could even generate objects made up of multiple shapes. With 
better hardware, computational power, and a deeper understanding of the 
neuroscience of imagery, these things are possible. 

CAD software is a natural platform for such an interface, as it is a drawing 
board in a 3D space already equipped with the tools for building and 
manipulating complex objects. Being simulative in nature, it is easy to prototype 
builds with ease without the use of materials. Thus, a primary goal for future 
versions of this study would be to create actual output in a virtual environment. 
Many CAD programs, at the same time, are used for the eventual 3D printing or 
manual building of the virtual objects. Using a BCI interface, it could be possible 
to create out in the world a physical sculpture of a mental representation within 
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minutes. In the future, it could be possible to derive a person's mental images 
from scratch, after, of course, some training (though there are labs that develop 
'neural cryptography' methods for decoding activity without training data, see: 
Dyer et al., 2016). Not only would this be a game changing form of 
communication and physical interaction for individuals with locked-in 
syndrome and movement disorders, but this would be a potentially new tool to 
study imagery and the brain. By approximating mental representations as 
physical structures using a BCI, and then tuning that output to make those 
approximations more precise to their intended form, it is possible to create 
objects at an unprecedented level of fluidity beyond what we can even do with 
our hands. The possibilities, then, for what can be made using mental imagery 
are limited by one's imagination and the accuracy of what a computer can detect 
and generate. 

But why stop at consciously intended sculpting? BCIs provide an interface 
with a part of the human body that often reflects processes both conscious and 
unconscious. It's entirely possible create a window into human unconsciousness 
via sculpting, to put a visual imagery-based BCI "on autopilot" and observe what 
kind of formations are made from unconscious mental states, much like how one 
plays mindlessly with clay. Perhaps these unconscious or subconscious 
structures would appear as consciously generated ones do. Perhaps they would 
appear differently. It is possible that we use the amorphous structures as 
representations of mental states, which may represent those states better than 
even words can. This is the beauty of BCIs. They revolutionize human tool usage. 
There are, of course, many years of research to be done before reaching the level 
of complexity that fantasy can take us. Though at the rate that technology is 
developing and with the growing interest in BCIs, who knows what can be 
accomplished in the next few years?





 

 

Appendix A: Individual Topographies 

Looking at the individual scalp distributions shows a somewhat clearer 
activity, and it is likely that the averaging process did, in fact, conceal the more 
uniquely individual activity. The individual data in Experiment 2 (Figure 12), 
however, appears somewhat anomalous in comparison to these topographies, 
further suggesting a separate issue possibly related to recording, or something 
specific to the participant. One more fact worth mentioning is that the participant 
with the strongest left hemisphere activity, Participant 6, also had the highest 
classification accuracy (70%). Though we did not explore this, there could be a 
correlation between the strength of activity on this side and classification 
accuracy. 
 

Participant 1: Avg. Accuracy = 30% 
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Participant 2: Avg. Accuracy = 50% 
 

Participant 3: Avg. Accuracy = 40% 
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Participant 4: Avg. Accuracy = 30% 
 

Participant 5: Avg. Accuracy = 40% 
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Participant 6: Avg. Accuracy = 70%
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