

Spatial attention control mechanism modulated by subliminal stimuli:

An Electroencephalography Study Abigail Liu^{1, 2}, Michael Pitts¹

¹Department of Psychology, Reed College, ²Department of Psychology, Northwestern University

attending to right target

Introduction Tsushima et al. (2006) found that task-irrelevant visual stimuli, when not consciously perceived, led to a stronger disturbance in task performance compared to consciously seen stimuli. This finding has become a foundational piece of evidence for a series of emerging perceptual learning models and attention control theories (e.g., Attention Schema Theory).

Metacontrast Masking

A type of backward masking where a stimulus is followed by a mask in which the contour of the mask fits neatly around the stimulus (Koster et al., 2020).

Manipulations of stimulus-mask intervals (SOA) yields a U-shaped curve:

- Intermediate SOAs (~40-100ms) yield the lowest visibility.
- Very short (<30ms) or very long (>150ms) SOAs yield the highest visibility.

Neural Markers of Spatial Attention Modulation (Jongen et al., 2007; Meyberg et al., 2017)

Anterior Directing Attention Negativity (ADAN): 300-500ms after cue onset, reflects the initiation of spatial attention control mechanisms. Contralateral Late Directing Attention Positivity (LDAP): 500ms-700ms after cue onset, reflects a selective preparatory biasing of neural activity in visual sensory areas in anticipation of the target. Objective: What is the effect of subliminal primes on visual-spatial attention control? Method **Behavioral Reuslts SOA Distribution** Quest Algorithm: To determine invisibility threshold of individual's prime-cue SOA Prime is a square or All Subjects (n=25) prime **Distribution of prime-cue SOAs that resulted in** threshold detection of the prime (50% Y/N reports) Prime-Cue SOA Awareness of Prime Aware Correct answer Incorrect answer Unaware More difficult - decrease SOA Easier - increase SOA Congruent Incongruent Masked Prime Spatial Cueing Task (Palmer & Mattler, 2013) **Prime-Cue Congruency** Incongruent Congruent Prime -cue SOA 50% invisible 32-108ms unaware cue-target SOA 50% visible Also served as a 144ms aware target mask to the prime 805ms Covert attention task

report the tilting

direction of the

attended Gabor patch

Summary

- In all conditions, we observed the ADAN and LDAP components consistent with previous research (McDonald & Green, 2008).
- ADAN amplitude was modulated by congruency and awareness of the prime.
- These results suggest that a subliminal task-irrelevant prime can disrupt attentional control mechanisms, possibly due to a failure to establish inhibitory control over the influence of the unseen prime.
- An exploratory analysis of early time-windows (200-400ms post-cue) in the incongruent condition suggested that attention may have initially followed the unseen prime before inhibitory mechanisms were able to control attention based on the seen cue.

Reference

gen, E. M. M., Smulders, F. T. Y., & Van der Heiden, J. S. H. (2007). Lateralized ERP components related to spatial orienting: Discriminating the direction of attention from processing sensory aspects of the cue. Psychophysiology, 44(6), 968–986.

oster, N., Mattler, U., & Albrecht, T. (2020). Visual experience forms a multidimensional pattern that is not reducible to a single measure: Evidence from metacontrast masking. Journal of Vision, 20(3), 2. McDonald, J. J., & Green, J. J. (2008). Isolating event-related potential components associated with voluntary control of visuo-spatial attention.

eyberg, S., Sommer, W., & Dimigen, O. (2017). How microsaccades relate to lateralized ERP components of spatial attention: A co-registration study.

Palmer, S., & Mattler, U. (2013). Masked stimuli modulate endogenous shifts of spatial attention. Consciousness and Cognition, 22(2), 486–503. Tsushima, Y., Sasaki, Y., & Watanabe, T. (2006). Greater Disruption Due to Failure of Inhibitory Control on an Ambiguous Distractor. Science, 314(5806),1786–1788.