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CHAPTER 22

OPERANT VARIABILITY

Allen Neuringer and Greg Jensen

During almost the entirety of a documentary film
featuring Pablo Picasso (Clouzot, 1956), the camera
is focused on the rear of a large glass screen that
serves as a canvas. As viewers watch, each paint
stroke appears and a theme emerges, only to be
transformed in surprising ways. In many of the
paintings, what started out as the subject is modi-
fied, sometimes many times. Erasures; new colors;
alterations of size; and, indeed, the very subject of
the painting flow into one another. Each painting
can readily be identified as a Picasso, but the process
seems to be filled with unplanned and unpredictable
turns. Uncertainty and surprise characterize other
arts as well. A fugue may be instantly recognizable
as a composition by J. S. Bach, and yet the transi-
tions within the fugue may astound the listener,
even after many hearings. Leonard Bernstein wrote
of the importance of establishing expectancies in
musical compositions and then surprising the lis-
tener. Fiction writers describe their desires to com-
plete novels to find out what the characters will do
because the authors can be as uncertain about their
creations as are their readers.

Everyday behaviors may similarly be described in
terms of generativity and unpredictability. Listen
carefully to the meanderings of a conversation.
Watch as an individual walks back and forth in his
or her office, the tilt of the head, the slight changes
in pace or direction. Monitor the seemingly unpre-
dictable transitions in one’s daydreams or images.
Science is generally thought to be a search for pre-
dictable relationship—if A then B—but throughout
history, some have argued that to understand the
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world, including mind and behavior, scientists must

appreciate the reality of unpredictability. From Epi-
curus in the 3rd century BC, who hypothesized ran-
dom swerves of atoms, to contemporary quantum
physicists, some have posited that nature-contains
within it unpredictable aspects that cannot be
explained by if-A-then-B causal relationships, no
matter how complex those relationships might be.

In this chapter, we discuss the unpredictability
of behavior and focus on one aspect.of it. When
reinforcers are contingent on variability, or more
precisely on a level of operant-response variability
(with levels ranging from easily predictable
responding to randomlike), the specified level will
be generated and maintained. Stated differently,
response unpredictability can be reinforced. Stated
yet another way, variability is an operant dimen-
sion of behavior. Operant dimension implies a bidi-
rectional relationship between béhavior and
reinforcer. Responses influence (or cause) the rein-
forcers, and reinforcers influence (or cause) reoc-
currence of the responses. The same bidirectional
relationship is sometimes true of response dimen-
sions as well. For example, when food pellets are
contingent on rats’ lever presses, a minimum force
must be exerted in a particular direction at a par-
ticular location. Force, direction, and location are
response dimensions that are involved in the con-
trol of reinforcers and come to be controlled by the
reinforcers. Variability is related to reinforcement
in the same way. We refer to this capacity as the
operant nature of variability or by the shorthand
operant variability.
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The very idea of operant variability is surprising
to many and, at first blush, seems counterintuitive.
Does variability not indicate noise? How can noise
be reinforced? In fact, does reinforcement not con-
strain and organize responses—by definition—and
is that definition not confirmed by observation? As
we show, the answers are sometimes yes, but not
always. Operant variability provides an important
exception, one that may be a factor in the emission
of voluntary operant responses generally.

The chapter is organized broadly as follows. We
discuss

m Experimental evidence showing that reinforcers
and discriminative stimuli control behavioral
variability;

m Relationships between reinforcement of variabil-
ity and other influences;

m Explanations: When variability is reinforced,
what in fact is being reinforced?

m How operant variability applies in such areas as
creativity, problem solving, and psychopathol-
ogy; and ‘

m How reinforced variability helps to explain the
voluntary nature of operant behavior generally.

REINFORCEMENT OF VARIABILITY

As a way to describe the phenomenon, we begin
with descriptions of some of the methods that have
been successfully used to reinforce variability.

Recency-Based Methods

Imagine that a response earns a reinforcer only if it
has not been emitted recently. Page and Neuringer
(1985) applied this recency method, based on
Schwartz (1980, 1988), to pigeons’ response
sequences across two illuminated keys, left (L) and
right (R). Each trial consisted of eight responses,
yielding 256 (or 28) different possible patterns of

L and R, for example, LLRLRRRR. In the initial
variability-reinforcing (or VAR) phase of the experi-
ment, a pattern was reinforced only if it had not
occurred for some number of trials, referred to as
the lag. A trial terminated with food only if the

Throughout this chapter, we use stochastic and random interchangeably.

514

sequence of eight L and R responses in that trial dif-
fered from those in each of the previous 50 trials (as
evaluated across a moving window). This contin-
gency was referred to as lag 50. If the current
sequence repeated any one (or more) of the previous
50, then a brief time out (darkening of all lights)
resulted, and food was withheld. After food or time
out, the keylights were again illuminated, and
another trial initiated. Sequences during the first 50
trials of a session were checked against the trials at
the end of the previous session, that is, performance
was evaluated continuously across sessions. Approx-
imately 25 sessions were provided under these VAR
contingencies.

Let us consider some possible outcomes. One
would be that the birds stopped responding—
responding extinguished—because the lag 50
requirement was too demanding. At the other end of
the possibility spectrum, the birds cycled across at
least 51 patterns and by so doing were reinforced
100% of the time, with each sequence being differ-
ent from every one of the previous 50. Although
unlikely for pigeons, one way to solve lag contingen-
cies is to count in binary, withL = 0and R = 1,
then LLLLLLLL followed by LLLLLLLR, followed by
LLLLLLRL, then LLLILLRR, and so on. Lag proce-
dures have also been used with human participants,
and therefore such sophisticated counting behavior
must be considered. A third possible result would be
alternations between a few preferred sequences
(these would not be reinforced because of their high
frequencies but would fill the lag window) and an
occasional “do something else” (leading to rein-
forcement). The fourth possibility would be that L
and R responses were generated in randomlike fash-
ion, or stochastically,! as if the birds were flipping a
coin. '

This last alternative best describes the results.
One piece of evidence was that reinforcement
occurred on approximately 70% of the trials (with
the other 30% leading to time-outs; Page & Neu-
ringer, 1985). The pigeons’ performances were com-
pared with the results of a simulated model in which
a computer-based random-number generator pro-
duced L and R responses under exactly the same



reinforcement contingencies experienced by the
pigeons. The simulation showed that the model was
reinforced on 80% of trials because, by chance,
response sequences were repeated within the win-
dow of the lag 50 approximately 20% of the time.
Thus, the pigeons’ performances were similar to,
although not quite as good as, that of a random
response model.

A second source of support for approximations
to random generation was provided by statistical
analyses of the sequences, namely by the U statistic
(Page & Neuringer, 1985). That statistic is a mea-
sure of uncertainty or entropy and is calculated from
the relative frequencies of a set of items using the
equation

v=-3

" log(n) '

1

RE, + log(RF,) W

Here, RF; refers to the relative frequency of element
i, out of n total elements. As a convention, every
RF; = 0.0 is considered to contribute a value of 0.0
to the sum, without an attempt to resolve log(RF,).
When all elements occur with-equal frequency, Uis
maximal with a value of 1.0; if any single element
has a frequency of 1.0 (and all others are 0.0), then
U is minimal with a value of 0.0.

In the Page and Neuringer (1985) study, three
levels of U value were analyzed at the end of each
session. U value was calculated for the relative fre-
quencies of L and R; for relative frequencies of dyads
(namely LL, LR, RR, and RL); and for triads (e.g.,
LLL,ILR,LRL...). The birds’ U values were com-
pared with those from the random model. As
expected, the random model produced U values
close to 1.0 at each level of analysis, and the pigeons’
U values also approached 1.0, although not quite as
closely as the random model. Thus, in this case, the
results can best be described as randomlike but dis-
criminably different from a true random source.
Rather than responding equiprobably, the birds
demonstrated biases, for example, favoring one key
over another or favoring repetition over switching.
We return later to a more detailed discussion of
whether operant responses can be generated sto-
chastically when the reinforcement contingencies
are more demanding.

Operant Variability

If Page and Neuringer’s (1985) experiment had
stopped at this point, there would be uncertainty as
to why responses varied. The issue is tricky because
it involves more than whether the lag procedure
resulted in response variability (which it clearly
did). Rather, was variability directly reinforced, or
could the results be explained differently? Variabil-
ity could have resulted from extrinsic sources (noise
in the environment) or intrinsic sources (within the
organismy), or it could have been caused by experi-
mental error, an insufficient flow of reinforcers, or
any number of other things. To show that variability
depended on the “if vary, then reinforce” contin-
gency, a control procedure provided reinforcers after
some eight-response trials and time outs after others,
just as in the VAR condition, but these reinforcers
were now unrelated to the pigeon’s sequence varia-
tions. Under this control, reinforcers and time outs
were yoked to those delivered during the VAR phase.
In other words, the yoke condition was identical to
the VAR condition (eight responses per trial, and trials
were followed by food or time out at exactly the same
rates as during VAR), except that the pigeon received
food and time outs whether or not the variability con-
tingency had been met. Fach pigeon’s terminal six ses-
sions under the lag 50 VAR contingencies provided
the trial-by-trial schedule for its reinforcements and
time outs under the yoke condition.

The yoke procedure produced large and consis-
tent effects. Levels of variability fell rapidly and
remained low under the yoke condition. U values
that had approached the 1.0 of a random model in
the VAR condition dropped to values closer to 0.50,
indicating substantially more sequence repetition.
Other statistics confirmed the increased repetitive-
ness and predictability of responding. These effects
were replicated with an A-B-A-B design (VAR-yoke-
VAR-yoke), yielding a conclusion that direct rein-
forcement of variability was responsible for the high

- variability (see Figure 22.1).

Lag contingencies have been used with other
species, including humans, monkeys, rats, budgeri-
gars, and fish (see Neuringer, 2002, for a review).
With rats, four-response trials across L and R levers
are often used, in which case 16 (or 2¢) different
sequences are possible. Here, too, high sequence
variability is observed. In an example of a human
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FIGURE 22.1. Three levels of the U statistic, an

index of behavioral variability (U1 based on number
of left [L] and right [R] responses; U2 on LL, LR, RR,
and RL dyads; and U3 based on triads), during the

lag 50 reinforcement-of-variability phases and yoke
d-VR phases. VR = variable ratio; F = first session in
each phase; L = last session in each phase. Adapted
from “Variability Is an Operant,” by S. Page and A.
Neuringer, 1985, Journal of Experimental Psychology:
Animal Behavior Processes, 11, p. 445. Copyright 1985
by the American Psychological Association.

procedure, Stokes and Harrison (2002) presented on
a computer screen a triangle consisting of one loca-
tion at the top, two locations in the next row down,
three in the third, and so on until the sixth row,
which contained six locations. A trial involyed mov-
ing from the top row to the bottom, thereby requir-
ing five responses, with 32 possible patterns. These
five-response sequences were reinforced under lag
/contingencies, and high levels of variability often
resulted. In this procedure, however, as well as oth-
ers with humans, some (albeit rarely observed) par-
ticipants use a different strategy of cycling through a
subset of sequences, such as a binary counting strat-
egy. Another problem with lag procedures is that
they never reinforce repetitions, and a random gen-
erator sometimes repeats (e.g., if 16 sequences are
possible, then for a random generator, the probabil-
ity of two identical back-to-back sequences is .0625).
An alternative method that bases reinforcement on

2As such, this contingency is called a least frequent contingency.
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response frequencies (rather than recency) provides
a partial solution, and we describe it next.

Frequency-Based Methods

In these procedures, reinforcement is contingent on
low overall relative frequencies. As one example,
rats’ responses were reinforced on the basis of four-
response trials (across L and R levers), with, as we
indicated, 16 different possible sequences (LLLL,
LLLR, LLRL, LLRR, etc.; Denney & Neuringer,
1998). Frequencies of these sequences were updated
throughout each session in 16 separate counters, or
bins, and a sequence was reinforced only if its rela-
tive frequency—the number of times that it was
emitted divided by the total number of sequences—
was less than some designated threshold value.
Reinforcement of low relative frequency sequences
has the advantage of permitting occasional rein-
forcement of repetitions. This procedure has several
technical aspects. For example, after each trial, all
bins are multiplied by an exponent, for example,
0.95, which results in recent sequences having more
weight than those emitted in the past, a kind of
memory decay (see Denney & Neuringer, 1998, for
details). The important point is that, as with lag,
highly variable responding was generated. The pro-
cedure has been used in many experiments with
yoke serving as the control (Neuringer, 2002).

In an interesting variant of the procedure, Don-
ald Blough (1966) reinforced variable interresponse
times (IRTs). Blough'’s goal was a difficult one,
namely, to see whether pigeons could learn to
behave like an emitter of atomic particles, the most
random of physical phenomena (or, put another
way, to respond as would a Geiger counter). For a
random-in-time responder, the likelihood of a
response is independent of whether a previous
response had occurred recently. To accomplish this,
Blough created a series of IRT bins, such that a ran-
dom responder would be expected to have an equal
number of IRTs in each bin. A moving window of
150 responses was analyzed in real time, with each
response allocated into one of 16 bins, depending on
its IRT. Blough then only reinforced an IRT falling
in the bin with the lowest current relative frequency,
that is, he reinforced only for the least frequent? IRT



in a given window. The procedure resulted in the
pigeons learning to approximate the IRT distribu-
tions of a truly random generator, that is, to distrib-
ute pecks (with some minor exceptions resulting
from double pecks) much as a Geiger counter would
respond.

Statistical Feedback Methods

If the goal is to test whether animals and people can
respond truly randomly, then both recency and fre-
quency methods have a potential weakness. As indi-
cated earlier, systematic strategies, such as binary
counting, can provide higher frequencies of reinforce-
ment than responding stochastically. Although some-
times present in animals, this type of strategy is most
commonly observed in human participants. Note that
exploiting weaknesses in the variability-reinforcing
contingencies—by responding in a systematic way
that maximizes reinforcement—is not a sign of insen-
sitivity to the schedule requirements. If anything, it is
precisely the opposite. An additional problem is that
all statistical tests of randomness (and therefore rein-
forcement contingencies based on randomlike
responding) have certain blind spots that result in
false positives. Therefore, researchers sought an alter-
native procedure, one that was better at detecting,
and therefore not reinforcing, strategic or patterned
responding. It seemed reasonable to hypothesize that
if a reinforcement contingency was based on a multi-
plicity of different measures of variability, it might be
less likely to reward exploitative strategies and poten-
tially lead more reliably to approximations to random
outputs, especially in human participants.

Before we describe the relevant experiment, note
that the attempt to reinforce randomness flies in the
face of more than 50 years of research in which peo-
ple were asked to generate random sequences (e.g.,
“Pretend you are flipping a coin”). The consistent
conclusion from this large body of studies was that
people do not fespond randomly when so requested
(Brugger, 1997), and indeed, some researchers con-
cluded that people cannot respond randomly. (The
literature on human randomness rarely references
nonhuman animal studies.) This conclusion is fun-
damentally important because randomness implies
absence of identifiable causes and independence
from determination. Most psychologists assume that

. Operant Variability

all behaviors are strictly determined—by inheri-
tance, experiences, stimuli, responses, and the
like—and therefore that random behavior is not
possible, certainly not when voluntarily attempted.

However, none of the earlier studies tried to rein-
force randomlike behavior directly. This approach
was accomplished with a procedure that required
students to enter tens of thousands of responses at a
computer terminal (Neuringer, 1986). A trial con-
sisted of 100 responses across two keys (which we
refer to as 1 and 2) with feedback, based on com-
mon statistical tests of randomness, presented at the
end of each trial. At first, satisfying one statistical
test was reinforced, then two tests had to be satis-
fied, and then three, and so on—with graphical
feedback showing each statistic relative to that
expected from a true random source—until partici-
pants were passing 10 evaluations of random
sequences.

The challenge confronting the participants was
even greater than just described. Participants were
required to generate a distribution of statistical val-
ues that would be expected from a random source
(Neuringer, 1986). To take a simple example, across
many trials of 100 responses each, random genera- 'l
tion of 1s and 2s shows a distribution of proportions i
of 1s and 2s. The most likely outcome would be
approximately equal numbers of 1s and 2s, or 50%
each, but some trials would occur in which, for
example, there were 40% 1s and 60% 2s, or vice |
versa, and fewer trials of, say, 30% 1s (or 2s). The
participants’ task, therefore, was not simply to
match the average of a random distribution but
more precisely to approximate the randomly gener-
ated distributions. This task required many weeks of
training, but all participants learned to approximate
the random model according to 10 simultaneously
applied statistics, and some participants (but not all)
were able to pass additional tests as well.

How should this research be interpreted?
Because so much training was necessary, it would
seem that the ability to respond unpredictably is
unnatural, but that would be a misinterpretation. If
you, the reader, were to call out 100 instances of
heads and tails and try to do so unpredictably, it is
unlikely that an observer of your behaviors, even
with access to sophisticated statistical analyses,
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could predict your responses with a high degree of
accuracy. You can, without training, respond quite
unpredictably. The requirement to pass 10 statistical
tests, however, demands equivalence, over the long
run, of instances, dyads, triads, and the like and
absence of all biases. To use a rat’s operant response
as an analogy, it is quite easy to train a rat to press a
lever for food pellets. Indeed, that can often be
accomplished in an hour-long session. To train a rat
to respond precisely at some given force, or with
precise interresponse intervals, may take weeks or
months of training. In similar fashion, approximat-
ing true randomness is difficult to attain, but
responding variably, and to large extent unpredict-
ably, is readily achieved. In rats, for example, highly
variable operant responding is obtained within a few
sessions (McElroy & Neuringer, 1990).

Novelty-Based Methods

To evaluate variability, each of the methods dis-
cussed to this point requires that a set of possibili-
ties be explicitly defined—responses, sequences,
paths, or times. Mathematical definitions of random-
ness, statistical analyses, and reinforcement contin-
gencies depend on such specification. However, in
many outside-of-lab situations, the set may not be
known, and an alternative method allocates rein-
forcers for novel, or not previously emitted (e.g.,
within a session or ever) responses. Reinforcement
of novel responses was first used by Pryor, Haag,
and O'Reilly (1969) in research with porpoises. At
the beginning of each session, Pryor et al. waited
until they observed some behavior not previously
emitted by the porpoise and then selected the new
behavior for consistent reinforcement during the
session. This procedure resulted in the porpoise

emitting an unprecedented range of
behaviors, including aerial flips, gliding
with the tail out of the water, and “skid-
ding” on the tank floor, some of which
were as complex as responses normally
produced by shaping techniques, and
many of which were quite unlike anything
seenin . .. any other porpoise. (p. 653)

One problem with long-term use of this procedure,
however, is that, over time, it becomes increasingly
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difficult for the subject to produce never-before-seen
behaviors and increasingly difficult for the observer

- to discriminate among the various behaviors being

emitted. At least over the short run, however, rein-
forcing novel responses led to an exceedingly high
level of unpredictable behaviors.

The Pryor et al. (1969) study was followed by an
analogous one with preschool children (Goetz &
Baer, 1973). The children were rewarded for block
constructions that differed from any that had previ-
ously been observed during the session. As training
proceeded, the children built increasingly varied
forms, including ones never before made by the
child. Similar results were obtained with the draw-
ing of color pictures as the target behavior (Holman,
Goetz, & Baer, 1977).

The evidence from many methods has therefore
shown control over response variability by directly
contingent reinforcers (see also Hachiga & Saka-
gami, 2010; Machado, 1989, 1992, 1997). Variabil-
ity is highest when reinforcers follow high
variability. In the next section, we show that rein-
forcers exert even more precise control than that:
Levels of variability. can be specified, levels that span
the range from response repetitions (or stereotypy)
to response unpredictability. As such, variability
parallels other operant dimensions in which rein-
forcers influence exactly how fast to respond or
when, with what force, or at which location.

Levels of Variability

Other experiments in the Page and Neuringer
(1985) article described earlier applied different lag
values in different phases, from lag 1 (the current
sequence of eight responses had to differ from the
single previous sequence) to lag 50 (the current
sequence had to differ from each of the previous 50
sequences). As the lag increased, requiring that
sequences be withheld for an increasing number of
trials, responses generally became increasingly
unpredictable (as assessed by U values, number of
different sequences per session, and other statistics;
see also Machado, 1989). Frequency-based methods
show similar control over levels. For example,
Grunow and Neuringer (2002) used a different
threshold reinforcement criterion with each of four
groups of rats: one that required rats to distribute



three-response sequences (across three different
operanda) in a way that paralleled a random genera-
tor (high variability), another that required
medium-high variability, another that required
medium-low variability, and the last that permitted
frequent repetitions. Levels of variability were again
controlled by these specific requirements, as shown
by the leftmost points in Figure 22.2 (the other
points in the figure are discussed later). Several
additional studies have demonstrated reinforcement
control over precise levels of variability in pigeons
(Neuringer, 1992) and people (G. Jensen, Miller, &
Neuringer, 2006).

Precisely controlled levels of behavioral
(un)predictability can be observed in many natural
situations. Variable behaviors are used to attract
attention, as when male songbirds increase the vari-
ability of their songs in the presence of a receptive
female (Catchpole & Slater, 1995). During play
and games, animals and people modulate levels of

. Operant Variability

variability as a function of the reactions of their play-
mates. When entertaining a child, the actions of an
adult sometimes include surprises, such as tickling,
as well as repetitions, such as repeatedly bouncing a
child on one’s lap, and the child’s reactions influence
the action’s (un)predictability. Similarly, in conver-
sations, the speaker is (often) sensitive to the reac-
tion of the listener with variations in topic as well as
in prosody, loudness, and speed. Unpredictability is
particularly important in competitive situations.
Consider the example of table tennis: When a skilled
player (S) plays with a beginner (B), S will often
return the ball in a way that B can easily predict, but
as B becomes increasingly capable, S will vary ball
placement and speed until a high level of unpredict-
ability is (sometimes) manifest. Precise control of
levels of unpredictability plays a substantial role in
game theory, under the rubric of mixed strategies
(see Glimcher, 2003; Smith, 1982). These eXamples
are only a few of the commonplace variations in

1 -
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o | ~0-0.074 Med-low var
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‘ FIGURE 22.2. U value as a function of reinforcement frequencies. Each line rep-

resents a different group: .037 = very high variability (var) required for reinforce-
ment; .37 = very low variability required; .055 and .074 = intermediate levels
required. CRF = continuous reinforcement, or reinforcement every time variability
contingencies were met; VI 1 = variable-interval reinforcement for meeting vari-
ability contingencies no more than once per minute, on average; VI 5 = variable-
interval reinforcement no more than once every 5 minutes. From “Learning to Vary
and Varying to Learn,” by A. Grunow and A. Neuringer, 2002, Psychonomic Bulletin
and Review, 9, p. 252. Copyright 2002 by the Psychonomic Society, Inc. Adapted
with permission.
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levels of response (un)predictability that character-
ize many real-world operant behaviors, variations
that are controlled by consequences. We discuss
additional real-world applications later.

Orthogonal Dimensions
As indicated in the introduction, reinforcement

often depends on a combination of many aspects of .

a response. For example, a child may receive a rein-
forcer for saying “thank you” but only when the
child (a) speaks slowly and (b) makes eye contact.
Because responses can vary across many dimensions
independently from one another, one can readily
imagine circumstances in which it might be func-
tional to vary some dimensions of behavior while
keeping others highly predictable.

A demonstration of the independent reinforce-
ment of variability and predictability along indepen-
dent dimensions was provided by Ross and
Neuringer (2002). They instructed college students
to earn points in a video game involving drawing
rectangles on a computer screen. Three dimensions
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0.85 -
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Dimension Reinforced For Repetition

of the rectangles were evaluated: area (the number
of pixels enclosed by the rectangle), location (the
position of its center point), and shape (its height-
to-width ratio). To be reinforced, the rectangles had
to vary along two of these dimensions while repeat-
ing along the third. The participants were told noth-
ing about these criteria, and the only instructions
were to gain points by drawing rectangles. Partici-
pants were randomly assigned to one of three
groups, with rewards delivered in one group when
the areas of the drawn rectangles were approxi-
mately the same, trial after trial, but locations and
shapes varied. The other two groups had analogous
contingencies, but for one, locations had to repeat,
and for the other, shapes had to repeat. All partici-
pants learned to meet their respective three-part
contingencies, varying and repeating as required
(Figure 22.3). Thus, binary feedback—reinforcement
or not—influenced variability and repetitions along
three orthogonal dimensions and did so indepen-
dently, thereby highlighting the precise, multifac-
eted way in which reinforcers control variability.

O AREA
B SHAPE
M LOCATION

Location

FIGURE 22.3. U values for each of three dimensions of rectangles drawn by
participants in three separate groups. One group was required to repeat the
areas of their rectangles while varying shapes and locations (left set of bars), a
second group was required to repeat shape while varying areas and locations
(middle set of bars), and a third group was required to repeat location while
varying areas and shapes (right set of bars). Error bars indicate standard errors.
From “Reinforcement of Variations and Repetitions Along Three Independent
Response Dimensions,” by C. Ross and A. Neuringer, 2002, Behavioural
Processes, 57, p. 206. Copyright 2002 by Elsevier B.V. Adapted with permission.
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As we show in the next section, reinforcers exert
other simultaneous influences: They select the set or
class of responses from which instances emerge and,
simultaneously, the required level of variation.

Response Sets and Variations

Whenever variability is reinforced, a set of appropri-
ate responses is also strengthened. Reinforcers select
the set from which variations emerge. Mook and
Neuringer (1994) provided experimental evidence
for this point. In the first phase, rats’ variable four-
response sequences across L and R levers (lag sched-
ule) were reinforced. In the second phase, only
sequences that began with two right responses, RR,
were reinforced. Thus, now only RRLL, RRLR,
RRRL, and RRRR patterns were effective. In the first
phase, all 16 possible sequences were emitted,
whereas in the second phase, most sequences began
with two right responses, RR. Thus, the reinforce-
ment contingency generated behaviors that satisfied
the appropriate set definition while simultaneously
producing a required level of variability within that
set. In another experimental example (Neuringer,
Kornell, & Olufs, 2001), rats responded in cham-
bers containing five operanda: left lever, right lever,
left key, center key, and right key. In one phase,
reinforcers were contingent on variations across
only three of the operanda (left and right levers and
center key), and the rats learned to respond variably
across only those three. A binary event—reinforce
or not—can function simultaneously to define a
response class and levels of (un)predictability along
multiple dimensions of the within-class instances.
This result shows an extraordinary diversity of con-
trol by simple reinforcement operations.

Discriminative Stimuli

Operant responses are generally influenced by dis-
criminative stimuli, that is, cues that indicate rein-
forcer availability. If pigeon pecks are intermittently
reinforced when the keylight is red but not when it is
green, the birds learn to peck almost exclusively
when the keylight is red. Discriminative stimuli con-
trol levels of variability as well. For example, Page
and Neuringer (1985, Experiment 6) reinforced rep-
etitions of a single sequence of key pecks, LRRLL, in
the presence of blue keylights, whereas variable
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sequences were reinforced in the presence of red
keylights (lag schedule). Blue and red alternated
after every 10 reinforcers under what is referred to as
a multiple schedule (two different reinforcement con-
tingencies presented successively, each correlated
with a distinct stimulus). The birds learned to repeat
in the presence of blue and to vary in the presence of
red, and when the stimulus relationships were
reversed, the birds varied in the presence of blue
while repeating in the presence of red. In another
experiment, rats learned to emit variable four-
response sequences across L and R levers in the pres-

ence of one set of lights and tones and repeated a

single pattern, LLRR, in the presence of different
stimuli (Cohen, Neuringer, & Rhodes, 1990). In an
even more stringent test by Denney and Neuringer
(1998), rats’ variable sequences were reinforced in
one stimulus, whereas in a yoke stimulus, reinforcers
were delivered at exactly the same rate and distribu-
tion but independent of variability. The cues came to
exert strong differential control, and when variability
was required, the animals varied; when variability
was not required but permitted in yoke, response
sequences became more repetitive and predictable.
These results indicate that an individual may behave
in a habitual and predictable manner in one context,
whereas in a different context, perhaps occurring
only a few moments later, the same individual will
respond unpredictably or in novel ways. The results
further indicate (along with other VAR—yoke com-
parisons described earlier) that to engender highly
variable behaviors, it may be necessary to reinforce
variability explicitly rather than, as in laissez-faire
environments, simply permit individuals the free-
dom to vary. To the extent that individual freedom
depends on the possibility of variation, reinforce-
ment plays an important role (a topic to which we
return in the final sections of this chapter).

Endogenous Stimulus Control

The discriminative stimuli described in the previous
section were external to the organism and publicly
observable. Another form of discriminative control
depends on the interactions of an organism with a
reinforcement schedule. An example of such endog-
enous stimulus control is seen in the pauses that
follow reinforcers under fixed-interval schedules.
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The reinforcers serve as indicators that for some
period of time, reinforcement is not possible. Hopson,
Burt, and Neuringer (2002) showed that response—
reinforcer relationships exert discriminative control
over levels of variability as well (see also Neuringer,
2002). Rats’ responses were reinforced under a
schedule in which two periods alternated, VAR and
repetition (REP), but these periods were not cued by
external stimuli (technically, a mixed schedule). In
the VAR period, four-response sequences of L and R
lever presses were reinforced if they met a threshold
variability contingency; in the REP period, only rep-
etitions of LLLL were reinforced. (Probabilities of
reinforcement were equalized in the two periods by
intermittent reinforcement of LLLL in REP.) After
the schedule transitioned into the VAR component,
responding began to vary within a few trials, and
variations continued until the schedule transitioned
into REP, with responding soon reverting to LLLL.
These results indicate that the variability produced
when reinforcement is withheld for short periods, as
when a new response is being shaped, may partly be
discriminatively controlled despite absence of exter-
nal cues; that is, animals and people may learn when
it is functional to vary, and some of the cues may
come from response—outcome relationships.

NONCONTINGENT EFFECTS

Until this point, we have focused on contingencies
that directly relate reinforcers to variability. All
operant responses are also influenced by events that
are not directly contingent on the responses, some-
times referred to as eliciting or inducing influences,
respondents, or establishing operations. For exam-
ple, levels of deprivation, injections of drugs, and
ambient room temperature can all influence learning
and maintenance of operant responses. Even non-
contingent aspects of the reinforcement operation
itself may have important effects, for example, attri-
butes such as the quality and quantity of food (refer-
ring here to when these do not change as a function
of behavior). Thus, to understand operant respond-
ing, including operant variability, these other influ-
ences must be considered. We turn to a discussion
of effects of noncontingent events on operant vari-
ability. As we describe at the end of this section,
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noncontingent influences often interact in important
ways with variability-contingent reinforcers.

Random Events

Many behavioral trajectories are initiated by the
accidental confluence of the organism with one or
more environmental happenings. Hurricanes, earth-
quakes, and wars change behaviors in ways that can-
not readily be anticipated. Winning a lottery is a
happier example. Another might be happening to sit
next to a particular individual on a cross-country
flight, which leads to a long-term romantic relation-
ship (see Bandura, 1982; Taleb, 2007). These events,
although randomly related to the individual’s behav-
ior, have important long-term influences.

Random events have been purposively used
throughout history to guide behaviors, for example,
throws of dice, randomly selected sticks, cards,
bones, or organs. Today, a referee flips a coin at the
beginning of a football game to decide which team
can choose whether to kick the ball; a computer’s
random-number generator assists scientists with
avoiding biases in assigning-subjects to experimental
groups; and alleotoric events are used in modern art,
music, and literature. The Dice Man by Rhinehart
(1998) provides a fictional example of intentional
use of random artifacts. The protagonist, bored with
life, writes a number of possible actions on slips of
paper and then periodically selects one blindly and
behaves accordingly. These examples show that ran-
dom events that are independent of an individual’s
actions may be used to avoid biases, engender
unlikely responses, and break out of behavioral ruts.

Evolved Responses

Modes of unpredictable behavior have evolved that
permit organisms to escape from or avoid predators
or aggressors. These behaviors have been referred to
as protean behaviors that are “sufficiently unsystem-
atic in appearance to prevent a reactor predicting in
detail the position or actions of the actor” (Driver &
Humphries, 1988, p. 36). Examples include the ran-
dom zigzags of butterflies, stickleback fish, rabbits,
and antelopes when being attacked. One conse-
quence of evolved protean behavior is that it inter-
feres with a predator species’ evolving a response to
a specific escape or avoidance pattern. In brief,



protean behaviors demonstrate evolved randomlike
responses to eliciting stimuli.

Schedules of Reinforcement and
Expectancy

Both in the laboratory and in the real world, it is
common for responses to be intermittently (or occa-
sionally) reinforced. Much operant conditioning
research is devoted to documenting the effects of
such schedules. To take one example, under a fixed-
ratio schedule of reinforcement, a fixed number of
responses (say, 30) is required to gain access to a
pellet of food. After receipt of each pellet, it is
impossible to obtain another immediately, because
30 additional responses are required. As was the
case for the fixed-interval schedules mentioned ear-
lier, pauses are generally observed after reinforce-
ment, or lower rates of responding, as compared
with later in the ratio, when access to reinforcement
is possible.

In addition to these effects on response rate,
response variability is also found to change under
similar reinforcement schedules. In the cases dis-
cussed here, variability plays no role in the contin-
gency, that is, reinforcers do not depend on
response variations. However, responding tends to
become increasingly repetitive and predictable as an
anticipated reinforcer is approached in time or num-
ber. This tendency was shown for variability across
two levers when a fixed sequence of responses was
the operant (Cherot, Jones, & Neuringer, 1996), for
variability of lever-press durations also under ratio
schedules (Gharib, Gade, & Roberts, 2004), and for
variability of movements across a chamber space
when access to a potential sexual reinforcer is
approached (Atkins, Domjan, & Gutierrez, 1994).
In each of these cases, variability is relatively high
when reinforcers are distant with respect to effort,
time, or space, and responding becomes more pre-
dictable as reinforcers are neared (see also Craig,
1918). These changes in response predictability are
said to be induced by the schedule of reinforcement.

Another variable shown to induce differences in
response variability is reinforcement frequency. In
general, response variability is high when reinforc-
ers are infrequent and low under high-density rein-
forcement (Lee, Sturmey, & Fields, 2007). One
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interpretation of these effects is that low expectation
(or anticipation) of reinforcers induces variability
(Gharib et al., 2004). Whatever the explanation, it is
important to be able to identify whether variability
is selected by reinforcers or pushed by states of the
body (endogenous inducers) or environmental
events, including noncontingent effects of reinforc-
ers. Discriminating between selection and induction
will facilitate the modification of variability when
that is desirable.

Experience :

Thorndike (1911) and Guthrie and Horton (1946)
described the responses of cats that had been con-
fined in a puzzle box and who received food contin-
gent on escape. Response topographies were highly
variable at first but, over trials and rewards, became
increasingly predictable and stereotyped. Antonitis
(1951) studied nose pokes by rats along a long hori-
zontal slit. When pokes produced access to food,
location variability decreased across trials. Notter-
man and Mintz (1965) measured the force exerted
by rats on a response lever and found that across
training, force decreased, approaching the minimum
level necessary to operate the lever, with force vari-
ability decreasing as well. Brener and Mitchell
(1989) extended these results to the total energy
expended by a rat in an operant conditioning cham-
ber. A last example comes from Vogel and Annau
(1973), who reinforced pecking three times on a left
key and three times on a right key, in any order.
Across sessions, a marked increase occurred in the
predictability (stereotypy) of the pigeons’ patterns of
response. A general consensus has therefore
emerged: Variability of operant behavior decreases
with experience. This conclusion, however, may
apply mainly to situations in which every response
or sequence leads to a reinforcing consequence and
to situations in which high variability is not differ-
entially reinforced.

Extinction
After long-term experience in which responses pro-

duce reinforcers, suddenly withholding reinforcers—

referred to as extinction of responding—increases
variability. In the experiment by Antonitis (1951)
noted earlier, after the rats were accustomed to
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producing food reinforcers by poking their noses
anywhere along a horizontal opening, food was
withheld, which caused an increase in location
variability. Extinction-induced variability has been
seen along many other response dimensions: loca-
tion (Eckerman & Lanson, 1969), force (Notterman
& Mintz, 1965), topography (Stokes, 1995), and
number (Mechner, 1958). One contrary result is
often cited, namely a study by Herrnstein (1961) in
which variability of the location of pigeon pecks
along a continuous strip was repotted to decrease
during a period of extinction. However, the extinc-
tion in that study followed a phase in which every
response was reinforced (continuous reinforce-

ment) in an A-B design (first a reinforcement phase, -

then extinction, without return to the first phase).
Experience may therefore have confounded the
results. In general, extinction causes variability to
increase.

The variations induced by extinction generally
emerge from the class of responses established dur-
ing original learning. For example, if lever pressing
produced food pellets, a rat may vary the ways in
which it presses when food is withheld, but much of
the behavior will be directed toward the lever (e.g.,
Stokes, 1995). Neuringer et al. (2001) quantified the
bounded nature of extinction-induced variability
that was observed after rats had been rewarded for
repeating a single sequence across two levers and a
key: left lever, key, right lever (LKR), in that order.
The top panel of Figure 22.4 shows the distribution
of the relative frequencies of each of the possible
sequences (proportions of occurrences) during the
conditioning, or reinforcement, phases (filled cir-

cles) and during extinction (open circles). The LKR .

sequence was, of course, most frequent during the
reinforcement phase, with other, somewhat similar
sequences falling off in terms of their frequencies.
The LKR sequence was also most frequent through-
out the extinction phase—during which time
response rates fell to low levels—with the two
curves being quite similar. (Note that these curves
show relative frequencies. Absolute rates of response
were much lower during extinction than during the
reinforcement phase.) Also shown at the bottom of
the figure are the ratios of response proportions dur-
ing the reinforcement and extinction phases (i.e.,

524

O.SOJT
0.40
2
| 0.30 1
m
<
8
S 0.20 4
[+
0.10 4
0.00 “yrrrrrrrrT
Z
53]
&
5
54}

FIGURE 22.4. The top graph shows the propor-
tion (or probability) of occurrences of the three-
response patterns shown along the x-axis during

a period when a single sequence (left lever, key,
right lever) was being reinforced (filled circles)
and during a period of extinction, when reinforc-
ers were withheld completely (open circles). The
bottom graph shows the ratio of responding during
extinction (EXT) to responding during reinforce-
ment (REIN; i.e., the ratio of the two curves in the
upper graph). Together, the graphs show that pat-
terns of responding during extinction were similar
to those during reinforcement, but high-frequency
sequences decreased and low-frequency sequences
increased during the extinction phase. Adapted
from “Stability and Variability in Extinction,” by
A. Neuringer, N. Kornell, and M. Olufs, 2001,
Journal of Experimental Psychology: Animal Behavior
Processes, 27, p. 89. Copyright 2001 by the
American Psychological Association.

the ratio of the two curves in the upper graph). The
take-home message is that the basic form of the
behavior was maintained during extinction, and
variability increased because of the generation of
unusual or highly unlikely sequences (for related



findings, see Bouton, 1994). Extinction was there-
fore characterized as resulting in a “combination of
generally doing what worked before but occasion-
ally doing something very different. . . . [This] may
maximize the possibility of reinforcement from a
previously bountiful source while providing neces-
sary variations for new learning” (Neuringer et al.,
2001, p. 79). Knowledge of these effects can be
applied to one’s own behavior as well as to others.
When in a rut, or unproductive or dissatisfied,
avoiding those reinforcers that had been produced
by habitual behaviors may help.

Interactions

Noncontingent inducers often interact with
variability-contingent reinforcers to control levels of
response variability. Additional phases in the
Grunow and Neuringer (2002) experiment described
in the Levels of Variability section provide one exam-
ple. In the first phase of that experiment, recall that
high, medium-high, medium-low, and low levels of
response-sequence variability were reinforced across
groups of rats, resulting in different levels of
response variability across the four groups. Two
additional phases followed-in which, although the
four different variability criteria were unchanged,
overall frequencies of reinforcement were systemati-
cally lowered by providing reinforcement only inter-
mittently. In particular, a variable-interval (V)
schedule of reinforcement was superimposed on the
variability contingency: first a VI 1 minute (such that
food pellets were limited to an average of once per
minute, with unpredictable gaps of time between
food deliveries) and then VI 5 minute (limiting food
pellets to no more than once, on average, every 5
minutes). Under the VI schedules, after an interval
elapsed, the first trial to meet the variability contin-
gency ended with a reinforcer. All other trials ended
with a brief time out (whether or not the variability
requirement had been satisfied).

As reinforcement frequencies were lowered,
response rates fell in all four groups and did so
equally, that is, all groups responded much more
slowly when varying sequences were reinforced on
average once every 5 minutes than when they were
reinforced each time that they met the contingen-
cies. However, different results were obtained for

Operant Variability

variability, indicated by the U values in Figure 22.2.
The individual curves represent the four variability
thresholds, and the x-axis represents frequencies of
reinforcement. The four thresholds exerted primary
control, that is, the groups differed in variability
throughout the experiment. Effects of reinforcement
frequency were more subtle and depended on the
threshold requirements, an interaction effect. When
the contingencies were lenient and low levels of
variability sufficed for reinforcement, variability
increased as reinforcement rates fell (from continu-
ous reinforcement to VI 1 to VI 5). When the con-
tingencies were demanding and high levels of
variability were reinforced, the opposite occurred,
that is, variability decreased with decreasing rein-
forcements. The intermediate groups showed inter-
mediate effects. A similar interaction was obtained
when delays were introduced between the end of a
varying sequence and reinforcement (Wagner &
Neuringer, 2006). Thus, when reinforcers are con-
tingent on variability, the contingency exerts a
strong—and often primary—effect, but that effect is
modified by noncontingent influences, including
reinforcement rates and delays. Levels of response
variability depend on both contingent and noncon-
tingent influences.

Interactions between variability-contingent and
variability-noncontingent reinforcement may help to
explain effects seen outside of the lab. Repetitive
behaviors are required for many workers (e. g., factory
workers, mail carriers, fare collectors), but for others,
variable (and unpredictable) behaviors are the norm
(e.g., inventors, fashion designers, artists). Lowering
pay or withholding positive feedback may affect
behaviors differently in these two cases. Thus, to pre-
dict effects on behavioral variability, one must know
both contingent and rioncontingent relationships.

Cherot et al. (1996) described a different interac-
tion that may also help to illuminate real-world
effects. In that experiment, repeated response
sequences across two levers were reinforced in one
group of rats (REP) and sequence variability was
reinforced in another group (VAR). Not every
sequence that met the VAR or REP contingency
gained reinforcement, however; rather, a superordi-
nate fixed-ratio 4 also had to be satisfied. That is, the
REP group had to successfully repeat a sequence
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four times to get a single reinforcer, and the VAR
group had to successfully vary a sequence the same
number of times. For example, in the REP group,
one animal may have emitted LLLR in the first trial
after a reinforcer, but that correct sequence caused
only a signal indicating correct. No food was given.
If the next trial also contained LLLR, the correct sig-
nal was again provided. If the following trial was
LLLL, then a brief time out was given. This process
continued until the fourth correct LLLR sequence
produced the signal plus a food pellet. Exactly the
same procedure was in place for the VAR animals,
except they were correct only when they met a lag
variability contingency.

As shown in Figure 22.5 (bottom), the main
result was that the VAR animals responded much
more variably overall than did the REP animals,
again indicating primary control by the variability
and repetition contingencies. However, as reinforce-
ment was approached (i.e., as the last of the four
successful sequences was neared), levels of variabil-
ity decreased for both VAR and REP groups. Recall
the expectancy-of-reinforcement effects described in
the section Schedules of Reinforcement and Expec-
tancy earlier in this chapter. In this case as well,

variability decreased as reinforcers were approached,

thereby facilitating correct responding in the REP
group but interfering with it in the VAR group (Fig-
ure 22.5, top panel). Let us pause for a moment to

- consider this surprising finding. Despite the fact
that variability was being reinforced in the VAR
group, as the reinforcer was neared, the likelihood
of varying decreased. It is important to note again
that reinforcement of variability generated much

higher levels of variation overall than did reinforce- .

ment of repetitions, a variability-contingent effect,
but superimposed was an expectancy-inducing
decrease in variability. Similar interactions may help
to explain effects of reinforcers on other types of
behavior, including creative behaviors, a topic that
we discuss in the Applications section.

MEMORIAL AND STOCHASTIC
EXPLANATIONS

We have described types of events that result in vari-
able behaviors. Now, we examine two commonly

526

90
85
F5 80-
&
& 75-
(@]
O 70
l.._
Z 65~
O
& 60
o
55
50 T T T T
1 2 3 4
1
T T+ T -|- '
0.8 .—‘\'\I
wl
2
< 06-
=
-
0.4 (i)
e o SUN
0.2 1 1 I
T T : T —
1 2 3 4
FR SEGMENT

FIGURE 22.5. The top graph shows per-
centages of sequences that met variability
(VAR) or repetition (REP) contingencies

as a function of location within a fixed-
ratio 4 (FR 4) schedule. The lines connect
means for groups of rats, and the error bars
indicate standard deviations. The lower
graph shows U values, an index of sequence
variability, for the two groups across the
FR schedule. Adapted from “Reinforced
Variability Decreases With Approach to
Reinforcers,” by C. Cherot, A. Jones, and
A. Neuringer, 1996, Journal of Experimental
Psychology: Animal Behavior Processes, 22,
p- 500. Copyright 1996 by the American
Psychological Association.

discussed explanations of operant variability, namely
memorial and stochastic processes. According to the
memorial explanation, each response can be related
to or predicted from prior stimuli or responses.
According to the stochastic-generator hypothesis,



individual responses are unpredictable because of
the nature of a random process. That is, individual
responses do not have identifiable individual causes,
a hypothesis that many consider problematic. We
consider each of these explanations and argue that
the evidence for both of these hypotheses is good
and therefore that behaving (more or less) unpre-
dictably derives from multiple sources.

Memory-Based Variability

Memory is a shorthand way to refer to the influence
of past events that are separated in time from a cur-
rent response. The term is not intended to connote
conscious awareness (although that might be
involved) but rather potentially identifiable influ-
ences (or causes). To the extent that memorial pro-
cesses are responsible for variability generation,
prediction of individual responses is possible, even
when the overall output is variable; thus, each mem-
ber of a variable sequence could be said to be deter-
mined by prior events.

At the outset of this chapter, we indicated that
under lag 50 schedules, in which the current
response sequence must differ from each of the pre-
vious 50 sequences, responding was highly variable
and, indeed, approached that expected of a stochas-
tic generator. However, behaviors are often quite
different under lag 1 or 2 schedules. In these cases,
the current sequence must differ from only the pre-
vious one or two, and memory-based response strat-
egies frequently emerge: Animals and people
sometimes cycle repeatedly through two or three
sequences, apparently basing a current response
sequence on the just-emitted sequences. The cycling
strategy produces reinforcement for every sequence,
which is a better rate of return than responding in a
stochastic-like manner.3 The advantage is, however,
only conferred when the memory demands are
within the subject’s capacity.

In a demonstration of the latter point, Machado
(1993) studied pigeons pecking L and R keys under
a frequency-dependent variability contingency.
Under this schedule, if the sequence is composed
of just one response, then pecking the key that
had been pecked least frequently in the past will be
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reinforced. By alternating, LRLRLR . . ., every
response is reinforced, and birds developed just
such an alternation strategy. When the sequence
consisted of two responses, the birds again devel-
oped memory-based sequences, for example, repeat-
ing RRLLRRLL. However, when the sequence was
increased to three responses, such that reinforce-
ment was given for responses in the least frequent
three-response bin, the birds apparently could not
develop the optimal fixed pattern of RRRLRLLL . . .
but instead reverted to randomlike behavior (Mach-
ado, 1993, p. 103). Thus, a memory-based strategy

“was used when that was possible, but when the

memory demands became too high, stochastic
responding emerged. A similar pattern was seen
with songs generated by a songbird, a budgerigar,
under lag contingencies of reinforcement (Manabe,
Staddon, & Cleaveland, 1997). Under lag 1, the
birds tended to alternate between two songs; under
lag 2, they cycled among three songs. When the lag
was increased to 3, however, song diversity and vari-
ability increased appreciably. Thus, under recency-
and frequency-based methods of variability
reinforcement, variable responses are generated via
memorial processes when possible, but reversion to
stochastic-like emission is seen when memory
requirements exceed the organism’s capacity.

Chaotic Responding

Memory-based strategies can be used in other ways
as well. For example, chaotic processes generate out-
puts that are so noisy that it is exceedingly difficult
to distinguish them from stochastically generated
ones. “Chaos [is] a technical term . . . refer[ring] to
the irregular, unpredictable behavior of determinis-
tic, nonlinear systems” (R. V. Jensen, 1987, p- 168).
Chaotic behavior issboth highly variable and pre-
cisely controlled by prior events (Hoyert, 1992;
Mosekilde, Larsen, & Sterman, 1991; Townsend,
1992). A study by Neuringer and Voss (1993) asked
whether people could learn to generate chaotic-like
responses. They used one example of a chaotic func-
tion, the logistic difference function:

R,=teR _ *(1-R ). 2

*For example, stochastic responding on two alternatives under a lag 1 contingency earns 50% reinforcement, whereas alternating earns 100%.
)
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Here, R, refers to the nth iteration in a series, each R
is a value between 0.0 and 1.0, and t is a constant
between 1.0 and 4.0. The current value of the logis-
tic difference function (R,) is based on the previ-
ously generated value (R, ;). The process begins
with an arbitrary seed value for the R, between 0 and
1, which is used to calculate R;. Apart from the initial
seed value, the function is completely self-generated,
with each value determined by the just-prior value,
together with the constant parameters.

Chaotic outputs have two identifying characteris-
tics. First, given a constant value for ¢ that approaches
4, for example, 3.98, the generated sequence approxi-
mates a random one, that is, it passes many tests for
randomness. Outputs are noisy and apparently
unpredictable. However, second, if the current value
of R, is plotted as a function of the just prior value,
Ry~ 1, a predictive structure can be identified. In the
particular case of the logistic difference function, the
form of this autocorrelated relationship is a parabola
(different chaotic functions show different types of
internal structures). Thus—and this is the identifying
attribute of chaotic processes—a deterministic math-
ematical function can generate randomlike outputs
with prediction of each value of the function possible
given precise knowledge of parameters and prior val-
ues. The outputs are extremely noisy and, at the same
time, identifiably determined.

In the Neuringer and Voss (1993) study, college
students were shown, after each response, the differ-

* ence between their responses and that of the iterated

logistic difference model. With training, the students
became increasingly adept at responding in chaotic-
like fashion—the students’ responses matched
closely the iterations of the logistic function—and
their autocorrelations increasingly approximated a
parabola (Figure 22.6). Because each iteration in the
logistic difference sequence is based on the prior
output, Neuringer and Voss hypothesized that the
human subjects also remembered prior responses.
Put simply, the subjects may have learned (or mem-
orized) a long series of “if the previous response was
value A, then the current response must be value B”
pairs, a suggestion made by Metzger (1994) and by
Ward and West (1994).

To test this memory hypothesis, Neuringer and
Voss (2002) interposed pauses (IRTs) between each
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FIGURE 22.6. Responses in trial n as a function of
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of the experiment (left column) and final 120 responses
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from a single participant. The drawn lines show the
best-fitting parabolas. From “Approximating Chaotic
Behavior,” by A. Neuringer and C. Voss, 1993,
Psychological Science, 4, p. 115. Copyright 1993 by the
Association for Psychological Science. Adapted with
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response, that is, they slowed responding (see also
Neuringer, 2002). As IRT durations increased, the dif-
ference between the subjects’ sequences and the mod-
el’s chaotic output increased, and the underlying
parabolic structure was disrupted, providing evidence
that the highly variable responding was memory based.

Stochastic Generation

Stochastic generation has been hypothesized at
numerous points in the chapter. Here we discuss in
more detail what the stochastic hypothesis involves
and possible ways to test it. The issue is complex,
difficult, and important. If variable operant
responses are generated stochastically, then it may
not be possible to predict individual responses at
greater than chance levels. Stochastic generation
may also be relevant to operant responses generally
and to explanations of their voluntary nature, as we
discuss later. A researcher confronts many prob-
lems, however, in attempting to decide whether a
particular response stream is random or not and
confronts additional difficulties when trying to
determine whether it has been generated by a ran-
dom process (see Nickerson, 2002).

To get an intuitive sense of what random implies,
imagine an urn filled with 1,000 colored balls. The
urn is well shaken, and one ball is blindly selected.
After selection, the ball’s color is noted, the ball is
returned to the urn, and the selection process is
repeated. If the urn contains an equal number of
blue and red balls, then prediction of each ball’s
color will be no better than chance; that is, the prob-
ability of a correct prediction would be .50. The
repeated selections represent a random process*
with the resulting output being a random sequence.
Note that predictions can be better than 50% for
random processes, as shown by the following: If the
urn was filled with an uneven number of different
colored balls, prediction could become increasingly
accurate. For example, if the urn contained 900 red
balls and 100 blue balls, then prediction accuracy
would rise to .90 (if one always predicted red).
However, the process and output are still referred to
as stochastic. Thus, stochastic outputs are more or
less predictable depending on the relative frequencies

. Operant Variability

of the items (the two colors, in our example). It is
also true that the greater the number of different
item classes, for example, different colors, the less
predictable any given instance will be. If the urn
contained equal numbers of 20 different colors, for
example, then the chance level of prediction would
be .05 (rather than .50 in the two-color case). Dis-
cussion of these concepts in historical context can
be found in Gigerenzer et al. (1989).

When trying to ascertain whether a finite
sequence of outputs was randomly generated, the
best one can do is to estimate the probability that a

- random process is involved. For example, if 100

selected balls were all blue, it would be unlikely but
not impossible that the balls were selected randomly
from an urn containing an equal number of red and
blue balls. Given a random generating process, any
subsequence of any length is possible, and every par-
ticular sequence of outcomes of a given length is
exactly as likely as any other (see Lopes, 1982).
These considerations indicate the impossibility of -
proving that a particular finite sequence deviates
from random: The observed sequence may have been
selected from an infinite random series (see Chaitin,
1975). However, the probability of 100 blue balls is
extremely low in our example, and the probability is
much higher for sequences that contain approxi-
mately 50% red and 50% blue. Thus, one can evalu-
ate the probability that a given output was generated .
by a stochastic process having particular parameters.
A second problem is that as demonstrated by
chaos theory, seemingly random outputs may be
generated by nonrandom processes. Another exam- ‘
ple is given by iteration of the digits of pi. Someone
could memorize the first 100 digits of pi and use
those to generate a randomlike sequence. Thus,
behavioral outputs,can be highly variable but (given w
sufficient knowledge by an observer) predictable.
How, then, can one test whether highly variable
operant responses derive from a stochastic process?
The test must involve a comparison—which of two
hypotheses is most likely to account for the data?—
and the most likely alternative is the one already
discussed, namely, memory-based processes
under which each response can be predicted from

“Specifically, this process is “random with replacement” on account of the act of returning the ball to the urn. All discussions of randomness in this

chapter refer to this type of randomness.

bl
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knowledge of prior stimuli or responses. A powerful
tool for making this comparison is memory interfer-
ence, that is, the degrading of control by prior events.
Availability of memory-interfering procedures leads
to the following reasoning: When approximation
to a stochastic output is reinforced, if a memory-
interfering event degrades performance, it provides
evidence against a stochastic generation process.
Absence of memory-interfering effects provides evi-
dence consistent with stochastic generation. We
have already seen evidence for stochastic-like
responding when demands on memory were high
(Machado, 1993; Manabe et al., 1997) and turn next
to additional tests of the stochastic hypothesis.
Neuringer (1991) compared the effects of mem-
ory interference on responding by two groups of
rats. One group obtained reinforcers by repeating a
single pattern, LLRR. Once that pattern was well
learned, blackouts were introduced between each
response, the durations ranging from 0.1 second to
20 seconds across different phases of the experi-
ment. Responses were ineffective during the black-
out periods. As blackout durations increased, errors
increased and reinforcement rates fell. Neuringer
hypothesized that the interposed blackouts degraded
performance because each response in the LLRR

séquence depended in part on memory for the just-
prior response.

Effects of the same blackouts were assessed in a
second group of rats that obtained reinforcers for
varying four-response sequences under lag contin-
gencies. Neuringer (1991) reasoned that if variable
responses were generated by a memory-based pro-
cess, then performances would be degraded as black-
out durations increased, as was the case for the
LLRR group. In fact, performances by the variability
group actually improved with increasing blackout
durations, resulting in higher rates of reinforcement.
Some have suggested that absence of memory for
prior events is necessary for random responding
(Weiss, 1965), implying that memory interferes with
random generation. In any event, the results were
clearly inconsistent with the memory hypothesis.

In a related study, alcohol was administered to a
single group of rats that had learned to respond vari-
ably when one stimulus was present and repeat
LLRR sequences given a second stimulus (Cohen et
al., 1990). The two stimuli alternated throughout
each session under a multiple schedule. As alcohol
doses increased, performance of the LLRR sequence
was seriously impaired, whereas varying under the
lag contingency was unaffected (Figure 22.7; see
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FIGURE 22.7. Percentages of reinforced, or correct, sequences as a function of etha-
nol dosage for each of five rats. Varying sequences were reinforced under one stimu-
lus condition (left graph), and repetitive LLRR sequences were reinforced under
another stimulus (right graph). The lines connect averages of the five subjects (BG,
BR, RG, B, and P). From “Effects of Ethanol on Reinforced Variations and Repetitions
by Rats Under a Multiple Schedule,” by L. Cohen, A. Neuringer, and D. Rhodes,
1990, Journal of the Experimental Analysis of Behavior, 54, p. 5. Copyright 1990 by
Society for the Experimental Analysis of Behavior, Inc. Adapted with permission.
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also Doughty & Lattal, 2001). Thus, within a single
session, the drunk rats failed to repeat accurately
but were highly proficient when required to vary.
Both interposed time delays and alcohol, two ways
to affect memory for prior responses; degraded per-
formances of fixed-pattern sequences; and either
improved operant variability or left it unaffected.
Additional evidence for the difference between
memory-based and stochastic responding was pro-
vided by Neuringer and Voss (2002; see also Neu-
ringer, 2002). College students learned to generate
chaotic-like sequences (according to the logistic differ-
ence chaos function described in Equation 2) as well
as to generate stochastic-like sequences (given feed-

back from eight statistical tests, as in Neuringer,
. 1]

Operant Variability

and the underlying processes. Results from these
laboratory experiments may help to explain unpre-
dictable operant behaviors in many nonlaboratory
cases in which variability contingencies occur
naturally. In this section, we continue to describe
laboratory-based studies but ones with direct rele-
vance to real-world conditions.

Training New Responses

Skinner (1981) hypothesized a parallel between evo-

lutionary processes and selection by reinforcers of

operant responses from a substrate of varying behav-
“iors (see also Baum, 1994; Hull, Langman, & Glenn,

2001; Staddon & Simmelhag, 1971). As described in

the Reinforcement of Variability section earlier in
L .
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RLLRL was reiriforced whenever itioccurred. Thus,
if the rats learned to-emit the target, reinforcement
quent than if they otily variéd.
The question was whether concurrent reinforcemer
of variations would facilitate acquisition of the targe

sequence; and the answer was obtained througha-

A procedure

\ response sequences were reinforced at a rate yoked
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2 RLLRL.
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FIGURE 22.8. Rates of emission of a
difficult-to-learn target sequence (RLLRL
on top and LLRRL on bottom) for three
groups of rats as a function of blocks of
sessions (each session block shows the
average of five sessions). In all groups,
the target sequence was reinforced
whenever it occurred. For one group,

* reinforcement was additionally arranged
for varying sequences (VAR); for a sec-
ond group, the additional reinforcers
occurred at the same rate as in VAR but
independent of variability (ANY); a third
group did not receive additional rein-
forcement for any sequence other than
the target sequences (CON). Adapted
from “Reinforced Variability and Operant
Learning,” by A. Neuringer, C. Deiss, and
G. Olson, 2000, Journal of Experimental
Psychology: Animal Behavior Processes,
.26, p. 107. Copyright 2000 by the
American Psychological Association.

did not depend on variations. These animals contin-
ued to respond throughout (the yoke reinforcers

maintained high response strength) but as shown by
the independent-of-variability (ANY) data in the top
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panel of Figure 22.8, these rats too did not learn the
target. Only the experimental animals who concur-
rently received reinforcers for variable responding
(VAR) learned to emit the RLLRL sequence at high
rates. Thus, it appeared that concurrent reinforce-
ment of variations facilitated acquisition of a
difficult-to-learn sequence, a potentially important
finding. The experiment was replicated with a sec-
ond difficult sequence with the same results (bottom
panel of Figure 22.8) and in a separate study with
rats as well (Neuringer, 1993). '

However, attempts in two laboratories to repli-
cate these effects with human participants failed
(Bizo & Doolan, 2008; Maes & van der Goot, 2006).
In both cases, the target-only group (with no addi-
tional reinforcers presented) learned most rapidly.
Several possible explanations have been suggested,
including differences in relative frequencies of rein-
forcements for target responses versus variations,
differences in levels of motivation in the animal ver-
sus human studies, and the “figure out what’s going
on” type of instructions provided to the human par-
ticipants, but why or when concurrent reinforce-
ment of variations facilitates versus interferes with
learning of new responses is not yet clear (see
Neuringer, 2009).

Problem Solving

Arnesen (2000; see also Neuringer, 2004) studied
whether a history of explicit reinforcement of varia-
tions would facilitate later problem solving. Using a
rat model, she provided food pellets to rats in an
experimental group for varying their responses to
arbitrarily selected objects. For example, a soup can
was placed in the chamber, and responding to it in a
variety of ways was reinforced. Each session pro-
vided a different object, with response variability
being reinforced throughout. Members of a yoked
control group experienced the same objects but
received food pellets independent of their interac-
tions. A second control group was simply handled
for a period each day. After training, each rat was
placed alone in a problem space, a room approxi-
mately 6 feet by 8 feet, on the floor of which were
30 objects—for example, a toy truck, metal plumb-
ing pipes, a hair brush, a doll's chest of drawers—
arbitrarily chosen but different from those used



during the training phase. Hidden in each object
was a small piece of food, and the hungry rats were
permitted to explore freely for 20 minutes. The
question was how many food pellets would be dis-
covered and consumed. The experimental animals
found significantly more pellets than either of the
control groups, which did not differ from one
another. Furthermore, the experimental rats explored
more—they seemed bolder—and interacted more
with the objects than did the control rats, many of
whom showed signs of fear. Thus, prior reinforce-
ment of response variations transferred to a novel
environment and facilitated exploration of novel
objects and discovery of reinforcers. The advantages
incurred by variations are discussed in the human
literature (e.g., brainstorming), but tests of direct
reinforcement-of-variability procedures for problem
solving more generally have been few.

Creativity

Although creative production requires more than
variation, Donald Campbell (1960) argued that vari-
ations, and indeed random variations, are necessary.
If so, then operant variability may make important
contributions to creativity. Support comes from
studies in which creativity was directly reinforced
(e.g., Eisenberger & Armeli, 1997; Holman et al.,
1977; Pryor et al., 1969; see also Stokes, 2001).
Other studies, however, have indicated that rein-
forcement interferes with, or degrades, creative out-
put (e.g., Amabile, 1983). This literature is deeply
controversial and has been reviewed in several arti-
cles (e.g., Cameron & Pierce, 1994; Deci, Koestner,
& Ryan, 1999; Lepper & Henderlong, 2000), but the
research listed earlier may contribute to a resolution.
As shown by Cherot et al. (1996) and others (Wag-
ner & Neuringer, 2006), reinforcement of variations
has two effects. As a reinforcer is approached, vari-
ability declines. Thus, situations that potentiate the
anticipation of consequences on the basis of comple-
tion may interfere with creative activities. The con-
tingencies may at the same time, however, maintain
high overall levels of creativity. Consideration of
both induced effects (anticipation of reinforcement)
and contingency effects (reinforced variability and
creativity) may help explain reinforcement’s contri-
bution to creativity (see Neuringer, 2003).

. Operant Variability

Psychopathology

Behavioral and psychological disabilities are some-
times associated with reduced control of variability.
In autism and depression, for example, behaviors
tend to be repetitive or stereotyped even when varia-
tions are desirable. In attention-deficit/hyperactivity
disorder (ADHD), the opposite is true, with abnor-
mally high variability observed when focused and
repetitive responses are adaptive. All three of these
disorders share a common characteristic, however:
an apparent inability to move from one end or the
other of the variability continuum. One question is

- whether reinforcement contingencies can modify

abnormal levels of variability. The answer to this
question may differ with respect to depression and
autism, on the one hand, and ADHD, on the other.

Depression. Hopkinson and Neuringer (2003)
asked whether the low behavioral variability asso-
ciated with depression (Channon & Baker, 1996;
Horne, Evans, & Orne, 1982; Lapp, Marinier, &
Pihl, 1982) could be increased by direct reinforce-
ment. College students were separated into mildly
depressed and not depressed on the basis of Center
for Epidemiological Studies Depression Scale scores
(Radloff, 1991). Each participant played a computer
game in which sequences of responses were first
reinforced independently of variability or proba-
bilistically (PROB), as in the yoke procedures we
have described, after which variable sequences were
directly reinforced (VAR). Figure 22.9 shows that
under PROB, the depressed students’ variability

(U values) was significantly lower than that of the
nondepressed students. When variability was explic-
itly reinforced, however, levels of variability increased
in both groups and to the same high levels. This
result, if general, is important because it indicates
that variability can'be explicitly reinforced in people
manifesting mild depression (see also Beck, 1976).

Autism. In an experiment conducted by Miller
and Neuringer (2000), five individuals diagnosed
with autism and nine control subjects received rein-
forcers independent of variability in a baseline phase
(PROB), followed by a phase in which sequence
variations were directly reinforced. Subjects with
autism behaved less variably than the control sub-
jects in both phases; however, variability increased
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FIGURE 22.9. Levels of variability
(indicated by U values) for depressed
and nondepressed college students
when reinforcers were provided inde-
pendent of response variability (PROB
phase) versus when variations were
required (VAR phase). Standard errors
are shown by the error bars. From
“Modifying Behavioral Variability in
Moderately Depressed Students,” by
J. Hopkinson and A. Neuringer, 2003,
Behavior Modification, 27, p. 260.
Copyright 2003 by Sage Publications,
Inc. Adapted with permission.

significantly in both groups when it was reinforced.
Thus, individuals with autism, although relatively
repetitive in their responding, acquired high levels
of operant varying. Ronald Lee and coworkers (Lee,
McComas, & Jawor, 2002; Lee & Sturmey, 2006)
extended this work. Under a lag schedule, indi-
viduals with autism received reinforcers for vary-
ing verbal responses to questions, and two of three
participants in each of two experiments learned to
respond appropriately and nonrepetitively. Thus,
the experimental evidence, although not extensive,
has indicated that the behavior of individuals with
autism can benefit from reinforcers contingent on
variability. Stated differently, the abnormally low
levels of variability characteristic of individuals with
autism may at least in part be under the influence of
operant contingencies.

Attention-deficit/hyperactivity disorder. Things
may differ for individuals diagnosed with ADHD.
Here, the abnormal levels of variability are at the
opposite end of the continuum, with high variability
a defining characteristic (Castellanos et al., 2005;
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Rubia, Smith, Brammer, & Taylor, 2007). A sec-
ond common identifier is lack of inhibitory control
(Nigg, 2001). Can such behavior be influenced by
direct reinforcement? The evidence has indicated
that unlike the case for autism, variability may result
mainly from noncontingent (i.e., inducing) influ-
ences. One example is provided by the beneficial
effects of drugs such as methylphenidate (Ritalin).
Another is the fact that variability in individuals
with ADHD is higher than in control subjects when
reinforcement is infrequent, but not when it is fre-
quent (Aase & Sagvolden, 2006). Methylphenidate
reduces variability. Low reinforcement frequencies
induce high variability, and the effects on those with
ADHD may be independent of direct reinforcement-
of-variability contingencies. Similarly, when rein-
forcement is delayed, the responses of subjects with
ADHD weaken more than those of control subjects,
possibly because of induced increases in variability
(Wagner & Neuringer, 2006). Thus, variability may
be induced in individuals diagnosed with ADHD

by different attributes of reinforcement, but to date
little evidence has indicated sensitivity to variability-
reinforcing contingencies.

OPERANT VARIABILITY AND THE
EMITTED OPERANT

Reinforced variability may help to explain some
unique attributes of operant behavior. Operants are
often compared with Pavlovian reflexes, and the two
can readily be distinguished at the level of the proce-
dures used to establish them. In Pavlovian condi-
tioning, a conditional relationship exists between a
previously neutral stimulus, such as a bell, and an
unconditioned stimulus, such as food. The result is
that the neutral stimulus becomes a conditioned
stimulus that elicits a conditioned response. One
view is that operant responses differ in that they
depend on a conditional relationship between

- response and reinforcer. Thus in one case, a condi-

tional relationship exists between two stimuli (if
conditioned stimulus, then unconditioned stimu-
lus), whereas in the other, the relationship is
between response and reinforcer.

However, according to Thorndike, Guthrie, and
others, when a response is made in the presence of a



particular stimulus and the response is reinforced,
then over trials, the stimulus takes on the power of
an elicitor (Bower & Hilgard, 1981). This finding
led some researchers to conclude that both operant
and Pavlovian responses were elicited by prior stim-
uli. That is, in both cases stimulus—response rela-
tionships were critical to predicting and explaining
the observed behaviors.

Skinner (1935/1959) offered a radically different
view of the operant. Skinner’s position is difficult to
grasp, partly because at times he assumed the point
of view of an environmental determinist, whereas at
other times he proposed probabilistic (and possibly
indeterministic) outcomes. According to Skinner,
eliciting stimuli could not be identified for the oper-
ant. Although discriminative stimuli signaled the
opportunity for reinforcement, no discrete environ-
mental event could be identified to predict the exact
time, topography, or occurrence of the response.
Skinner described operants as emitted to distinguish
them from elicited Pavlovian reflexes.

But how is one to understand emission? The
term is ambiguous, derived from the Latin emittere,
meaning “to send out.” To be sent out might imply
being caused to leave, but there is a sense of emer-
gence, rather than one-to-one causation, as in the
emission of radioactive particles. More important,
the term captures, for Skinner and others, the mani-
fest variability of all operant behaviors. Skinner
interpreted that variability as follows.

An individual operant response is a member of a
class C of instances, a generic class, made up of
functionally similar (although not necessarily physi-
cally similar) actions (Skinner, 1935/1959). An
example may help to explain this point. Jackie, a
young child, desires a toy from a shelf that is too
high for her to reach. Jackie might ask her mom to
get the toy, jump to try to reach it, push a chair next
to the shelf to climb up to the toy, take a broom
from the closet and try to pull the toy from the shelf,
or cry. Each of these acts, although differing in
physical details, is a member of the same operant
class because each potentially serves the same func-
tional relationship between the discriminative stim-
ulus (out-of-reach toy) and the goal (toy in hand).
Some responses may be more functional than other
members of the class, and cues may indicate which

. Operant Van’ability

of these responses is most likely to be reinforced.
For example, if Jackie’s mother is nearby, the “Mom-
mie, get my toy” response might be most likely.
Alternatively, if the toy is just beyond reach, the
child might be most likely to jump to get it. In many
cases, however, the behavior appears to be selected
with equal probabilities, and prediction of the
instance becomes difficult.

As just suggested, members of a particular class
of behaviors may be divided into subclasses, and
even here variability may characterize aspects of the
response. For example, if “ask for the toy” is the
activated subclass, the exact moment of a verbal
request, the particular words used, or the thythm or
loudness may all be difficult to predict. Similarly,
when a rat is pressing a lever to gain food pellets,
the characteristics of the press (one paw vs. both,
with short or long latency, with high or low force,
etc.) are sometimes predictable, but often are not.
Thus, according to a Skinnerian model, functionally
equivalent instances emerge unpredictably from
within a class or subclass, as though generated by a
stochastic process (Skinner, 1938; see also Moxley,
1997). To state this differently, there is variance
within the operant, manifested as the emission of
instances from a set made up of functionally related
but often physically dissimilar behaviors.

Behavioral variability occurs for many reasons, as
we have discussed. It decreases with training and
experience. It is low when reinforcers are frequent
and higher under intermittent schedules of rein-
forcement. It decreases with expectancy of and
proximity to reinforcement. However, consequence-
controlled variability may play a special role in
explaining the emitted nature of the operant. To see
why, we next turn to experiments on volition. The
operant is often referred to as the voluntary operant,
in contrast to the Pavlovian reflex. The question is
what about the operant indicates (and helps to
explain) volition.

OPERANT VARIABILITY AND
VOLUNTARY BEHAVIOR

Attempts to explain volition have been ongoing for
more than 2,000 years, and heated debates continue
to this day in philosophy (Kane, 2002), psychology
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(Maasen, Prinz, & Roth, 2003; Sebanz & Prinz,
2006; Wegner, 2002), and physiology (Glimcher,
2005; Libet, Freeman, & Sutherland, 1999). These
debates often concern the reality of volitional behav-
ior or lack thereof and, if real, how to characterize
it. Research on operant variability has suggested
that the descriptive term voluntary can be usefully
applied; that is, voluntary behaviors can be distin-
guished from accidental reactions, such as stumbles;
from elicited responses, such as reflexes, both
unconditioned and Pavlovian; fronl induced ones,
such as those caused by drinking alcohol or antici-
pating a reinforcer; and many other cases. The
research has also indicated important ways in which
voluntary actions differ from these others.

In large part, the difficulty surrounding attempts
to explain voluntary behavior comes from an appar-
ent incompatibility between two often-noted charac-
teristics. On the one hand, voluntary acts are said to
be intentional, purposeful, goal directed, rational, or
adaptive. These characteristics indicate the function-
ality of voluntary behaviors, and we use that term as
a summarizing descriptor. On the other hand, vol-
untary actions are described as internally motivated
and autonomously controlled. Unpredictability,
demonstrated or potential, is offered as empirical
evidence for such hypothesized autonomous con-
trol. Thus, unpredictability is thought to separate
voluntary acts from other functional behaviors (e.g.,
reflexes) and to separate their explanation from
Newtonian causes and effects. Proposed explana-
tions of the unpredictability run the gamut from a
soul or a mind that can function apart from physical
causes to quantum-mechanical random events, but
they are all ultimately motivated by the presumed
inability of a knowledgeable (perhaps even
supremely knowledgeable) observer to anticipate
the particulars of a voluntary act.

How can unpredictability (perhaps even unpre-
dictability in principle) be combined with function-
ality? That is the critical question facing those of us
who would argue that voluntary is a useful classifica-
tion. The problem derives from the (erroneous)
assumption that functionality necessarily implies
potential predictability. That assumption goes some-
thing like this: If an observer knows what an indi-
vidual is striving for, or attempting to accomplish,
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then together with knowledge of the individual’s
past experiences and current circumstances, at least
somewhat accurate predictions can be made about
the individual’s future goal-directed actions. Thus,
because functionality is thought to require an
orderly relationship to environmental variables, pre-
dictions must be (at least theoretically) possible.
Again, though, voluntary acts are often character-
ized by their unpredictability, with this serving as a
sign of autonomous control. ,

An added complication is that unpredictability
alone does not characterize voluntary actions.
Researchers do not attribute volition to random
events, such as the throw of dice or emission of
atomic particles (Dennett, 2003; Popper & Eccles,
1977), and truly random responding would often be
maladaptive. Yet another problem is that voluntary
behaviors are not always unpredictable—they are
quite predictable some of the time and, indeed, exist
across the range of predictability. For example,
when the traffic light turns red, a driver is likely to
step on the brake. When you are asked for your
name, you generally answer veridically, and so on.
But even in cases of predictable behaviors, if volun-
tary, these responses can be—and sometimes are—
emitted in more or less unpredictable fashion. The
red light can cause speeding up, slowing down, or
cursing. The name offered might be made up so as
to fool the questioner, for example, during a game.
In brief, voluntary responses have the potential to
move along a variability continuum from highly pre-
dictable to unpredictable. A characteristic of all vol-
untary behaviors is real or potential variations in
levels of variability.

Operant variability helps to explain volition by
combining functionality with variations in levels of
variability. Operant responses are goal directed and
functional, and the same holds for voluntary behav-
iors. (In some cases, researchers say that the volun-
tary response—and the operant—is intended to be
functional because it is governed by previous experi-
ences and because in a variable or uncertain environ-
ment, what was once functional may no longer be so.)
Operant responses are more or less variable, depend-
ing on discriminative stimuli and reinforcement con-
tingencies, and the same is true for voluntary
behaviors. Thus, for both operant and voluntary



behaviors, the ability of a knowledgeable observer to
predict future occurrences will depend on the circum-
stances. Voluntary behavior is behavior that is func-
tional (or intended to be s0) and sometimes highly
predictable, other times uppredictable, with predict-
ability governed by the same functionality require-
ment as other attributes of operant behavior. We have
just summarized a theory of volition referred to as the

operant variability and voluntary action (OVVA) theory

(Neuringer & Jensen, 2010). In the following sec-
tions, we provide experimental evidence consistent
with OVVA theory. We begin with a discussion of
choices under conditions of uncertainty, partly
because choices are generally thought to be voluntary
and partly because concurrent schedules of reinforce-
ment, a method used to study choice, provided the
means to test OVVA theory.

Choice Under Uncertainty

In some choice situations, one (and only one) of
many options provides reinforcement (e.g., the third
key from the left in a row of eight keys), and both
people and other animals learn to choose correctly
and to do so repeatedly. In other cases, a particular
pattern of choices is required (e.g., LLRR in a two-
lever chamber), and that pattern is learned and
repeated. Individual choices in these situations are
readily predicted. In many situations, though, fixed
choices and patterns are not reinforced, and rein-
forcer availability is uncertain, both in time and
place. As we discuss, these conditions often result in
stochastic responding.

Choices under conditions of reinforcement
uncertainty have commonly been studied in behav-
ioral laboratories with concurrent schedules of
reinforcement. Reinforcers are independently pro-
grammed for two (or sometimes more) options, and
subjects choose freely among them. Consider the
example of concurrent VI schedules. In a VI 1 minute—
VI3 minute procedure, each schedule is applied to
one of two response alternatives, left and right.
Under this procedure, a reinforcer becomes available
(or “sets up”) on average once per minute for
responses on the left and independently on average
every 3 minutes for choices of the option on the
right. Once a reinforcer has set up, it is delivered on
the next response to that alternative. Because time to

. Operant Variability

reinforcement is unpredictable, and the two alterna-
tives are independent of one another, every response
has the possibility of producing a reinforcer. How-
ever, in general, the left alternative is three times
more likely to have reinforcement waiting than the
right alternative.

The VI values (or average times between rein-
forcer setups) generally differ across phases of an
experiment. For example, a 1:3 ratio of setup time
left to right in one phase might be followed by a 3:1
ratio in another, and a third might use a 2:2 ratio.
When the ratios across these alternatives are system-

-atically manipulated, an often observed finding is

that the overall ratios of left-to-right choices are
functionally related to ratios of left-to-right obtained
reinforcers, a relationship commonly described as a
power function and referred to as the generalized
matching law (Baum, 1974):

C k R

X | X o =X . I (3)
C, ky R,
In Equation 3, Cy refers to observed choices of alter-
native X, and Ry corresponds to delivered reinforcers
(Cyand Ry correspond to alternative Y, accordingly).
The parameter ky refers to bias for X, with biases—

‘because of side preferences, differences in the oper-

anda, or any number of variables—not thought to be
influenced by the reinforcer ratios. The s parameter
refers to the sensitivity of choice ratios to reinforce-
ment ratios. When s = 1.0, choice ratios exactly
match (or equal) reinforcement ratios. With s
parameter values less than 1.0, choice ratios are not
as extreme as the ratio of reinforcers, with the oppo-
site for s more than 1.0 (see the Psychophysical Test
section later in this chapter). To the extent that the
generalized matching law provides an accurate
description (and there is much support for it), it
permits predictions of the molar distribution of
choice allocation; that is, overall ratios of choices
can accurately be described as a function of obtained
reinforcer ratios (Davison & McCarthy, 1988).
Another observation from studies of concurrent
VI schedules, however, is that individual choices are
difficult to predict. Even when they conform to
Equation 3, they often appear to be emitted stochas-
tically (Glimcher, 2003, 2005; G. Jensen & Neuringer,
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2008; Nevin, 1969; see also Silberberg, Hamilton,
Ziriax, & Casey, 1978, for an alternative view). In
the VI 1 minute-VI 3 minute example given earlier,
an observer might accurately predict that the left
option will be chosen three times more frequently
than the right but be unable to accurately predict
any given choice. A recent example of such stochas-
ticity was observed when pigeons’ choices were allo-
cated across three concurrently available sources

of reinforcement (G. Jensen & Neuringer, 2008).
Figure 22.10 shows that run lengths—defined as the
average number of choices on one key before
switching to a different key—approximated those
expected from a stochastic process.” Thus, at the
same time that overall choice proportions can read-
ily be predicted, individual choices cannot. This
combination of functionally related choice propor-
tions and stochastic emission provided the means

to assess the relationship between operant variabil-
ity and volition. In particular, we asked whether
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FIGURE 22.10. Mean run lengths by pigeons on each
of three response keys as a function of the propor-

tion of responses to that key. The drawn line is the
expected function if responses were emitted stochasti-
cally. Adapted from “Choice as a Function of Reinforcer
‘Hold’: From Probability Learning to Concurrent
Reinforcement,” by G. Jensen and A. Neuringer, 2008,
Journal of Experimental Psychology: Animal Behavior
Processes, 34, p. 44. Copyright 2008 by the American
Psychological Association.
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functionally varying behaviors yielded a perception
of voluntary action.

Psychophysical Test

OVVA theory predicts that responses will appear to
be voluntary when levels of (un)predictability vary
functionally (purposefully, adaptively). Choices
under concurrent schedules of reinforcement pro-
vided a way to test this claim. Neuringer, Jensen,
and Piff (2007) had human participants observe six
different virtual actors (hereinafter called agents) as
each agent made thousands of choices. The agents
differed in how they went about choosing among
the available options (the strategies are described in
a subsequent paragraph). Each agent’s choices were
shown separately on an individual computer, with
six computers located close to one another on small
desks in a laboratory. The participants were free to
walk among the computers to compare the agents’
choice strategies.

To minimize extraneous cues, such as whether
the agent resembled a human figure, choices were
represented in a simple manner, namely as dots
moving around the screens. Participants were
instructed that the agents were choosing among
three alternative gambles, similar to slot machine
gambles, with each gamble’s choice represented by
the dot’s movement in one of three directions.
Whenever a choice led to reinforcement—the agent
won that gamble—the dot’s color changed as a sign
of success. Thus, participants could observe how
choices were made in relationship to the reinforcers
received. Participants were asked to judge how well
the choices made by the agents represented volun-
tary choices made by a real human player.

Unknown to the participants, the agents’ choices
were controlled by iterating the generalized match-
ing power function (Equation 3) that was extended
to a three-alternative situation (G. Jensen & Neu-
ringer, 2008). Thus, the agents chose probabilisti-
cally among the three options on the basis of the
proportions of reinforcers that they had received
from the three alternatives. These calculations were
done in real time, with current choice probabilities
depending on previously obtained reinforcers.

5See Jensen and Neuringer (2008) for discussion of these findings, including the small divergence of data from the theoretical curve.
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Choices by the six agents differed only with respect
to the s exponent of the power functions governing
the choices: Some agents had high values for their
sensitivity parameters, and others had low values.
Participants were told only that the dot movements
represented choices of gambles and that their objec-
tive was to rate how closely those movements
resembled the voluntary choices of real human
players. Next, we describe how reinforcer availabil-
ity was programmed and the effects of s values on
the generated choices.

Reinforcers set up probabilistically (and remained
available until collected, as in concurrent VI sched-
ules) for each of the three gambles. There were six
different combinations of set-up rates, which partici-
pants were told constituted six different games.
Thus, in some games, the agent’s X choices were
most frequently reinforced; in other games, Y choices
were most frequently reinforced; in others, the rein-
forcers were more equally distributed; and so on.
Participants were free to observe each agent playing
each of the six games for as long as needed to make
their evaluation. After observing the choices in all
games, the participants judged the degree to which
each agent’s responses appeared to be those of a
human player who was voluntarily choosing among
the options. The key question was whether the
agents’ different choice strategies—caused by differ-
ences in the s exponents—generated systematic dif-
ferences in participants’ judgments of volition.

The s values, and their effects on the agents’
choice allocations, were as follows: For one agent, s
equaled 1.0, and choice proportions therefore
strictly matched proportions of received reinforcers.
Assume, for example, that this agent had gained a
total of 100 reinforcers at some point in the game:
50 reinforcers for option X, 30 for Option Y, and 20
for Option Z. The probability of the agent’s next X
choice would therefore equal 0.5 (50/100);a Y
choice, 0.3 (30/100); and a Z choice, 0.2 (20/100).
The s = 1.0 actor therefore distributed its choices
probabilistically in exact proportion to its received
reinforcers. o R ‘

Another agent was assigned an s value of 0.4, the
consequence of which was that it tended to choose

. Operant Variability

among the three options with more equal probabili-
ties than indicated by the reinforcement ratios
throughout the six games. In the preceding example,
this agent would choose X with probability of .399
(rather than .5 for the exact matcher), choose Y with
probability of .325 (rather than .3), and choose Z
with probability of .276 (rather than .2). In general,
algorithms with s values less than 1.0 are referred to
as undermatchers: They distribute choices more
equally—and therefore more unpredictably—across
the available options than the exact matcher. The
opposite was the case for agents with s values more

‘than 1.0, whose preferences were more extreme

than indicated by the reinforcer ratios and were
referred to as overmatchers. Over the course of sev-
eral experiments, a wide range of s values was pre-
sented, spanning a range from 0.0 (extreme
undermatcher) to 6.0 (extreme overmatcher) in one
experiment, a range from 0.1 to 2.0 in another, and
arange from 0.1 to 1.9 in a third.

Results were consistent and clear: The strict
matcher (s = 1.0) was judged to best represent voli-
tional choices. Figure 22.11 shows data from two of
the experiments. In one experiment, participants
were informed in advance that all of the agents’
choices were generated by computer algorithms, and
they were asked to rate the algorithms in terms of
volitional appearance. In the second, participants
were told that some agents’ choices were based on
computer algorithms, that others depicted voluntary
choices of real humans, and that their task was to
identify the humans.®

As s values approached 1.0, the agents were rated

. as providing increasingly good representations of

voluntary human choice, suggesting a continuum of
more or less apparent volition. From the perspective
of the participants,,the s = 1.0 strict matcher some-
times responded unpredictably (when réinforcers
were equally allocated across the three alternatives),
at other times highly predictably (when most rein-
forcers were obtained from one alternative), and at
yet other times at intermediate levels. In each case,
however, the agent's choices seemed to be governed
by the reinforcement distribution in a particular
game environment, an indicator of functional

$This task was inspired by the Turing test, considered by many to be the gold standard of artificial intelligence.

539



Neuringer and Jensen

r 0.7
80 | -8~ Ratings of Volition (Left)
— g O Prob. of Seeming Human (Right)

%0 &
-l [
£ =X
[ =
iy z
» o
ey o
g 3
E H
S 3
= 3
[}
-

40 T T T T 0.3

0 0.5 1 1.5 2
Sensitivity (s)

FIGURE 22.11. Judgments of how closely agents’ responses approximated
voluntary human choices (on left y-axis) and probabilities (prob.) of identifying
agents as a voluntarily choosing human player (on right y-axis) as functions of
the agents’ s-value exponents. From “Stochastic Matching and the Voluntary
Nature of Choice,” by A. Neuringer, G. Jensen, and P. Piff, 2007, Journal of the
Experimental Analysis of Behavior, 88, pp. 7, 13. Copyright 2007 by Society for

the Experimental Analysis of Behavior, Inc. Adapted with permission.

changes in behavior. The undermatchers tended to
respond less predictably throughout, as we indicated
earlier, and the overmatchers more predictably.
Thus, the undermatchers demonstrated that unpre-
dictability alone was not sufficient for apparent voli-
tion: It was necessary that agents display functional
variations in levels of (un)predictability to receive
the highest volitional ratings.

A series of control experiments evaluated alterna-
tive explanations. For example, rates of reinforce-
ment were overall slightly higher (across games) for
the s = 1.0 matcher than for any of the other agents,
and one control showed that differences in rein-
forcement rate were not responsible for the voli-
tional judgments. In the experiment, agents who
cheated (i.e., those who appeared to know where to
respond for reinforcers) were compared with the
strict—probabilistically choosing—matcher, and the
matcher was evaluated as substantially more voli-
tional in appearance, despite obtaining fewer rein-
forcers than the cheaters. An observer might
appreciate the individual who gains more reinforce-
ment than another, but that fact alone will not con-
vince the observer that the individual is choosing in
a voluntary manner.
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Another control experiment tested whether
matching alone implied volition (Neuringer et al.,
2007). The question was whether the more or less
(un)predictable responding contributed at all to the
judgments. Stated differently, did matching or pre-
dictability or both generate the volitional judg-
ments? Participants were therefore asked to
compare two agents, both of which exactly matched
choice proportions to reinforcer proportions; how-
ever, one agent matched by stochastically allocating
its choices (as was done in all of the experiments
described to this point), whereas the other agent
allocated its choices in an easily predictable fashion.
For example, if the stochastic matcher had received
reinforcers in a ratio of 5:3:2, it responded to the left
alternative with a .5 probability, to the center with a
.3 probability, and to the right with a .2 probability.
Because they were emitted stochastically, individual
choices could not be predicted above chance levels.
By contrast, the patterned matcher also matched
exactly but did so in a patterned and therefore read-
ily predictable way. In the example just given, it
would respond LLLLLCCCRR, again and again
cycling through the same 5:3:2 strings of respond-
ing until there was a change in obtained reinforcer



proportions, at which point it would adjust the
length of its strings accordingly. Because both
agents matched, both received identical rates of
reinforcement. The participants judged the stochas-
tic matcher to significantly better represent a volun-
tary human player than the patterned one, showing
that both functionality (matching, in this case) and
stochasticity were jointly necessary for the highest
ratings of volition.

The combination of choice distributions (match-
ing) and choice variability (more or less predictabil-
ity) provided evidence for voluntary behavior.
Choice distributions alone did not lead responses to
be evaluated as highly voluntary, nor did choice
unpredictability alone. Choices were most voluntary
In appearance when probabilities and distributions
of stochastic responses changed with distributions
of reinforcers. According to OVVA theory, function-
ally changing variable behaviors are voluntary
behaviors. Stated differently, voluntary behaviors
are members of a class characterized by ability to
vary levels of response (un)predictability in a func-
tional manner. The psychophysical evidence just
reviewed is consistent with OVVA theory.

To review, the facts of operant variability show
that levels, or degrees, of behavioral (un)predictabil-
ity are guided by environmental consequences. A
theory of volition, OVVA, proposes that exactly the
same is true for voluntary actions. Voluntary behav-
iors are sometimes readily predictable, sometimes
less predictable, and sometimes quite unpredictable.
In all cases, the reasons for the predictability can be
identified (given sufficient knowledge), but the pre-
cise behaviors may still remain unpredictable. For
example, under some circumstances, the response to
“How are you?” can readily be predicted for a given
acquaintance. Even when the situation warrants
unpredictable responses, as when responders wish
to conceal their feelings, some veridical predictions
can be made: that the response will be verbal, that it
will contain particular parts of speech, and so on.
The functionality of variability implies a degree of
predictability in the resulting behaviors that is
related to the activated class of possibilities from
which the response emerges. The class can often be
predicted on the basis of knowledge of the organism
and environmental conditions. However, the

Operant Variability

instance may be difficult or impossible to predict,
especially for large response classes.
Unpredictability, real or potential, is emphasized
in many discussions of volition. Indeed, the size of
the active set can be exceedingly large—and func-
tionally so—because if someone was attempting to
prove that he or she is a free agent, the set of possibil-
ities might consist of all responses in that person’s
repertoire (see Scriven, 1965). We return to the fact,

- though, that voluntary behaviors can be predictable

as well as not predictable. The most important char-

acteristic is functionality of variability, or ability to

change levels of predictability in response to environ-
mental demands. This is equally an identifying char-
acteristic of operant behavior in which responses are
functional and stochastically emitted. Thus, with
Skinner, we combine voluntary and operant in a sin-
gle phrase, but research has now shown why that is
appropriate. Operant responses are voluntary because
they combine functionality with (un)predictability.

CONCLUSION

Aristotle anticipated what many have referred to as
the most influential law in psychology (Murray,
1988). When two events co-occur, presentation of
one will cause recollection or generation of the
other. Although he and many others were wrong in
the details, laws of association have been the foun-
dation of theories of mind and behavior throughout
the history of Western thought, and the science of
psychology and behavior has been well served by
the search for them. From the British Association-
ists, to Pavlov, to Hebb and Rescorla, theoreticians
and researchers have documented laws of the form
“if A, then B” that help to explain thoughts and
behaviors. Evolutionary theory offered a distinctly
different type of behavioral law, involving selection
from variations, laws that were developed by Skinner
(1981) and others (Hull et al., 2001). In this chap-
ter, we provided evidence of how selection interacts
with variation: Parameters of variation are selected
(via reinforcement of variability), and selections
emerge from variations (via stochastic emission).
This interaction, of equal importance to that of asso-
ciation, must be deciphered if researchers are to
explain, at long last, voluntary behavior.
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