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Truly Random Operant Responding:
Results and Reasons

GREG JENSEN, CLAIRE MILLER, AND ALLEN NEURINGER

n his influential book on evolutionary game the-
ory, John Maynard Smith wrote, “I cannot see . . .
(why) ... animals do not have roulette wheels in

their heads. . . . If it were selectively advantageous, a
randomising device could surely evolve. . . .” (1982,
p. 76).

We submit that such a device has evolved. In sup-
port, this chapter discusses evidence for three related
claims: Response variability can be reinforced (i.e.,
it is an operant); reinforcers exert precise control
over what, where, when, and how much to vary;
and the resulting responses are at least sometimes
stochastic (or random) in nature (i.e., they are emit-
ted probabilistically and therefore unpredictably).

These are controversial claims, but their roots go
back to the early history of Western thought. Epicu-
rus suggested that random swerves of atoms help to
explain novelty, creativity, and the initiation of ac-
tion. He was objecting to Democritus’s deterministic
philosophy. Many philosophers and psychologists
since that time, including Gustav Fechner and
William James, have posited random-like behaviors
(see Neuringer, 2003, 2004). ‘But an operant “ran-
domizing device in the head” flies in the face of an
assumption dear to most psychologists: namely, that
psychological phenomena are determined by prior
events—and therefore ultimately predictable. Until
recently, there has been ‘little direct evidence con-
cerning the existence, characteristics, and functions
of an operant variability-generating process. We de-
scribe current evidence, including three previously

unreported experiments, but first provide some def-
initions.

DEFINITIONS

Variability Variability has many meanings. Some-
times, it implies ignorance of causal factors. Other
times it is used in a statistical sense to indicate the
spread of values, as in standard deviation and
confidence intervals. Sometimes the term implies
random-like outputs or a high degree of uncer-
tainty. The term also refers to a dimension or con-
tinuum, ranging from repetition (and therefore
high predictability) to random (and therefore max-
imal uncertainty). Context provides the appropri-
ate meaning.

Random 1In lay terms, random often connotes “do
anything” or “without reason.” That is not what
we intend. Rather, we use random and stochastic
interchangeably in their technical senses, to indi-
cate that members of a specified set occur indepen-
dently of prior events, and therefore that although
a knowledgeable observer can predict relative fre-
quencies (or probabilities, these terms also used
interchangeably), particular instances cannot be
predicted or explained at a more precise level than
that of the probability statements.

Because stochasticity is often misunderstood, an
example might help. Imagine a large, revolving
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barrel filled with 1,000 blue (B) and 1,000 green
(G) balls. A blindfolded individual picks balls one
at a time and an observer notes the color before the
ball is replaced in the barrel. The resulting se-
quence of Bs and Gs is stochastic, meaning that
knowledge of past selections enables an observer to
predict future relative frequencies—approximately
equal numbers of Bs and Gs—but not the next
color (or sequence of colors). The barrel could con-
tain unequal numbers, e.g., 900 Bs and 100 Gs,
and, under those conditions, B would be much
more likely than G, but the resulting sequence
would nevertheless be stochastic (probabilities of
0.9 and 0.1, respectively). This same analysis holds
no matter how many different colors were in the
barrel—two, four, eight, and so on—because blind
selection would in each case result in stochastic
outcomes.

Operant A rat pressing a lever for food pellets
provides an example of the relationship between
operant response and reinforcer. The lever press
produces food and the food influences the action of
pressing, both being necessary for the response to
be defined as an operant and for the consequence
to be defined as a reinforcer. Reinforcement shapes
and maintains operant responses. Reinforcement
also affects individual dimensions of responses,
such as response force and speed. For example, if
food depends on rapid responding, then high re-
sponse rates may result.

EVIDENCE FOR THE OPERANT
NATURE OF VARIABILITY

Reinforcement

Variability is influenced by reinforcers contingent
on it. For example, when porpoises were reinforced
for novel responses, they came eventually to emit
behaviors not previously observed in any porpoise
(Pryor, Haag, & O’Reilly, 1969). When pigeons
were reinforced if their interresponse times—the in-
tervals between consecutive pecks to a response
key—were distributed in random-like fashion, pecks
came to resemble the random emission of atomic
particles (Blough, 1966). In another experiment,
when pigeons were reinforced for infrequently oc-
curring sequences of pecks across two response
keys, the distribution of sequences came to match
that expected from a random source (Machado,
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1989). In yet another example, when high-school
students were reinforced for random-like genera-
tion of sets of 100 responses across two computer
keys, the students’ performances came to approxi-
mate the random model (Neuringer, 1986). In
many other experiments as well, animals and peo-
ple have successfully been reinforced for generating
highly variable behaviors (Barba & Hunziker,
2002; Machado, 1997; Neuringer, Deiss, & Olson,
2000; Neuringer & Huntley, 1992; Page & Neur-
inger, 1985). i

There are many possible sources of variability,
of course, including noise in the environment and
withholding or decreasing reinforcement, and con-
trol procedures are required before we can conclude
that variability is an operant. As one example, pi-
geons in an experimental condition were reinforced
whenever a sequence of eight responses across left
(L) and right (R) keys differed from each of the pre-
ceding 50 sequences, a contingency referred to as
lag 50 (Page & Neuringer, 1985). In a “yoked”
control condition, the same frequency and distribu-
tion of reinforcers were presented but now contin-
gent only on the pigeon responding eight times per
trial. Thus, in the experimental condition, trials ter-
minated with food only if sequences varied, but un-
der the yoked condition, the food did not depend
on variability—the pigeons could vary or not with-
out penalty. The important finding was that re-
sponse variability was significantly higher when
explicitly reinforced than not. This type of compar-
ison provides strong evidence for the operant na-
ture of response variability (see also Blough, 1966;
Machado, 1989; Neuringer, 1986).

Discriminative Cues

Another characteristic of an operant is influence by
discriminative cues. For example, if response-
contingent food is available only when a 1,000-Hz
tone sounds, rats learn to respond when the tone is
on and not in its absence. The same is true for re-
sponse variability: For example, when rats were re-
inforced for varying in the presence of one stimulus
and reinforced independently of variability in a dif-
ferent stimulus (the yoked control), levels of vari-
ability were significantly higher in the experimental
period than in the yoked period (Denney &
Neuringer, 1998). Other studies showed stimulus
control over varying versus response repetitions
(Cohen, Neuringer, & Rhodes, 1990; Page &
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Neuringer, 1985). In summary, variability—of re-
sponse topography, speed, and sequencing—is con-
trolled in ways that are characteristic of operant
responses.

Response Dimensions

As suggested earlier, reinforcers also control indi-
vidual dimensions of response, a phenomenon that
applies to variability as well. For example, human
participants were reinforced for drawing rectangles
on a computer screen, and three attributes of the
response were monitored—the area of the rectan-
gle, its location on the screen, and its shape (Ross
& Neuringer, 2002). Participants were reinforced
for varying along two of the dimensions (e.g.,
shape and size), while simultaneously keeping the
third constant (e.g., repeating the location of the
rectangle). Participants learned quickly to satisfy
the contingencies.

Response Sets

Reinforcement also establishes the set of responses
from which variations emerge. This fact is shown in-
directly by all experiments on operant variability:
Animals and people tend to limit their responses to
the potentially reinforced ones, although others are
certainly possible (see, for example, Neuringer, Kor-
nell, & Olufs, 2001). A more direct demonstration
was provided by Mook, Jeffrey, and Neuringer
(1993): Rats were reinforced for varying sets of four
responses across L and R levers, but, to be rein-
forced, sequences had to start with two L responses.
The rats learned to limit their sequences while, at
the same time, their responses varied among the po-
tentially reinforced options. Another example: when
variations among four-response sequences across L
and R levers were reinforced in rats, except that one
particular’ sequence, LLLL, was never reinforced,
the rats learned to vary among all of the sequence
other than LLLL (Neuringer, 1993). Thus, reinforce-
ment not only engenders variations, but it helps to
define the operative set.

Levels of Variability

Just as particular response rates can be reinforced,
or response forces, so, too, different minimum levels
of variability can be required for reinforcement.

For example, Page and Neuringer (1985) used a
lag schedule in which, across phases of the experi-
ment, the current sequence of eight responses by
pigeons had to differ from at least 1, 5, 10, 20, or
50 previous sequences (lag 1, 5, 10, 20, or 50);
variability generally increased with the demands.
Similar results were observed by Blough (1966),
Machado (1989), and Grunow and Neuringer
(2002). These studies leave unanswered, however,
whether responding is sensitive to requirements for
specific levels of variability (rather than the more
permissive minimum levels required in previous ex-
periments), and if so, whether variability can
change rapidly in response to reinforcement de-
mands. As described later, important theories of
behavior, including matching theory and game the-
ory, require such rapid sensitivity.

EXPERIMENT 1: REINFORCEMENT
OF STOCHASTIC DISTRIBUTIONS

Experiment 1 may best be introduced by returning
to the balls-in-barrel example used above. Our
question is whether behavioral allocations can
change rapidly in a way analogous to what happens
when the proportions of Gs and Bs change, such as
from equal numbers of Bs and Gs to 3 Bs for 1 G.
That is, does reinforcement exert precise and rapid
control over distributions of stochastic responses?
A positive finding would be consistent with two
influential theories of choice. Matching theory pre-
dicts that ratios of choices (analogous to Gs and
Bs) will be an orderly function—a power
function—of the ratios of reinforcements for those
choices (Herrnstein, 1997). Matching theory is
supported by much evidence (Davison & Mc-
Carthy, 1988), but the theory is silent with respect
to how responses are allocated—stochastically or
systematically. For example, if the rate of reinforce-
ment for left responses were three times higher
than for right, an animal would “match” responses
to reinforcers by responding systematically with a
3:1 ratio (e.g., LLLRLLLRLLLR ...) or, alterna-
tively, by responding stochastically with the same
3:1 ratio (e.g., LRLLLLRLRLLL...). Stochastic
generation is predicted by a second theory, how-
ever, namely game theory, developed to explain
choices when individuals compete with one an-
other for resources. In such situations, it would
be ineffective for one animal to permit an oppo-
nent to predict its choices—the opponent could
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take countermeasures—whereas stochastic re-
sponding is functional. The Nash equilibrium com-
bines matching and game theories in its prediction
that, in many competitive situations, reinforcement
will be optimized when relative frequencies of sto-
chastic responses match relative frequencies of ob-
tained reinforcers. The Nash equilibrium therefore
predicts both matching and stochastic allocation.
Glimcher (2003) found evidence for such stochastic
matching: monkey and human subjects allocated
choices in a way that was consistent with both
matching and game theory (i.e., stochastic choices
matched reinforcement proportions). This is an im-
portant result because it provides experimental sup-
port for applying the Nash formulation to operant
choices. Experiment 1 used a different procedure to
test whether reinforcement directly controls sto-
chastic allocation of choice responses and, if so, to
ascertain how rapidly that control is achieved.

Procedure

College students were divided into Experimental
(n=116) and Yoke control (n =30) groups, both
gaining points for responding on two keys of a
computer keyboard, to be referred to as L and R.
The experiment consisted of five phases, each ter-
minating after at least 150 responses and at least
25 points, with the different phases not cued and
seamlessly joined in a single session lasting approx-
imately 20 min. In most cases, 150 responses suf-
ficed to gain the required 25 points per phase.

Experimental Condition

Each of the five phases reinforced a different distri-
bution of stochastic responses across the L and R
keys: 0.25-0.75, 0.33-0.67, 0.40-0.60, 0.50-0.50,
and back to 0.25-0.75, respectively. Thus, in the
first phase, approximately 0.25 of responses were
required on one key and 0.75 on the other. In the
second phase, the required distribution was ap-
proximately 0.33 and 0.67, and so on, with Phase 5
repeating Phase 1. We say that responses had to
“approximate” a given distribution because there
was a delta window for each distribution such that
if the response frequency fell within that window,
the participant would be rewarded. Delta windows
were created by assessing the performance of a sto-
chastic model and using boundaries that resulted in
the model being “reinforced,” according to the con-
tingencies to be described later, on.80% of its trials.

Responses had to satisfy stochastic contingencies
simultaneously at three levels of analysis, as de-
scribed, based on separate response counters at each
level. Level 1 analysis was based on overall percent-
ages of L and R responses, their frequencies main-
tained in two associated counters. The particular
keys were not specified; some participants re-
sponded more on the left key than the right and oth-
ers did the opposite, but the response percentages
had to be within required delta windows. Thus, in
the first phase, for example, the relative frequencies
of L and R responses were required to be approxi-
mately 0.25 and 0.75 on L and R keys or vice versa.

Level 2 analysis was based on the percentages of
pairs of responses, with pair frequencies recorded in
four counters: LL, LR, RL, and RR. If LRRLRL-
LLR had just been emitted, then (in order of occur-
rence) one count would be added to the LR counter,
one to the RR counter, one to the RL counter, and
so on, with the most recent pair being indicated by
the rightmost LR in the example. For a response to
be reinforced, relative frequencies of the current
“possible pairs” were required to fall within the de-
fined delta windows. Referring back to the exam-
ple, the most recent responses were L followed by
R. Therefore, given the L response, LR and LL were
the current “possible pairs,” because (again, given
that an L response had occurred previously) only
those two pairs were possible. Level 2 proportions
were calculated by dividing the sum in one of the
possible-pair counters (the pair that had actually
been emitted) by the sum of the two possible-pair
counters—in the example given by dividing the LR
counter by the sum of LR + LL counters—and in all
other ways treating the data as described for level 1.

Similarly, level 3 consisted of eight counters,
LLL, LLR, ... RRR, with, in the just given exam-
ple, the terminal triplet being LLR. Level 3 analyses
similarly required concordance with the stochastic
model for response triplets and, in the example
given, the number of LLR sequences was divided by
the sum of LLR + LLL sequences—these being the
only possible triplets given that LL had been emit-
ted prior to the terminal response. In brief, in Phase
1 (where a 0.25-0.75 distribution was required),
the last response in our example was reinforced if
Ls and Rs had occurred with approximately the re-
quired 0.25-0.75 distribution; if LR and LL had
occurred with the same approximate percentages;
and similarly if approximately 0.25-0.75 distribu-
tions were obtained for LLR and LLL. Of course,
the particular “possible” pairs and triplets changed
with each response. Thus, for example, if following
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emission of LLR, another R were to be emitted,
then the current (i.e., prior to the last response)
possible pairs would be RL and RR, and the cur-
rent possible triplets, LRL and LRR. The beauty of
the procedure lies in the fact that although increas-
ingly demanding conditional probabilities are as-
sessed, the required relative frequencies—0.25 and
0.75 in our example—remain constant.

One additional detail: In order to differentially
weight current responses more heavily than those
emitted earlier in a phase, each of the “possible”
counters was multiplied by an amnesia coefficient
of 0.95 following every response. Returning to our
example, following the last R response, the level 1L
and R counters were each multiplied by 0.95 (be-
cause both L or R were possible), as well as the
level 2 LR and LL counters and the level 3 LLR and
LLL counters. Each phase began with all counters
preset with a value of 1, and the data and calcula-
tions in each phase were independent of all others
(see Miller, 2003, for additional procedural details).

Participants, naive to the nature of the task, re-
ceived feedback that indicated how closely response
percentages approximated the stochastic model at
each of the three levels of analysis. This feedback
consisted of a horizontal line across the center of the
computer screen and three pairs of colored dots—
red, green, and blue—moving symmetrically around
the line. Response percentages at the three levels
were normalized so that they could be represented
by the single horizontal line and the distance of the
dots from the line represented the difference be-
tween the participant’s relative frequencies and the
stochastic model at each of the three levels. A point
was awarded when all dots were sufficiently close to
the line, that is, within the delta windows, with cu-
mulative points shown by a counter. The partici-
pant’s task was to keep the balls as close to the
horizontal line as possible. Rapid responding was
discouraged by a “slow down” message appearing
in the middle of the screen whenever response rates
exceeded 4/s. In brief, human participants were re-
warded for distributing responses in a way that
matched (within delta windows) a stochastic model,
with the model’s response probabilities differing
across the five phases.

Yoked Condition

All aspects of the procedure were the same as for
the Experimental participants, except that response
distributions and variability had no influence on the
displayed dots or the presentation of points. Rather,
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for each Yoked participant individually, these de-
pended on an arbitrarily paired Experimental
player’s responses and rewards; that is, feedback to
each Yoked participant was identical to that re-
ceived by the paired Experimental participant.
Thus, when Yoked participants responded, they
were reinforced at exactly the same rate and inter-
mittency as the Experimentals. Experimental and
Yoked participants were given minimal instructions
and told only to try to keep the colored dots close
to the horizontal line in order to maximize points.

Measures

A common measure used to assess the stochasticity
of responses is U value, which evaluates the distri-
bution of relative frequencies of responses (Evans &
Graham, 1980; Machado, 1989; Page & Neuringer,
1985; Stokes, 199S5). If eight unique responses are
possible, i = 1 to 8, then the U value is given by:

Ui 108 = — [RF,; " log,(RF,)}/log,(8)

where RF, = relative frequencies (or percentages) of
each of the eight responses. U values approach 1.0
when relative frequencies approximate one another,
as would be expected over the long run from sto-
chastic generation of equiprobable instances, and 0
when a single instance is repeated. U values can be
applied as well to sequences of responses. Given a
series of Ls and Rs, U values can be based on sets of
three responses, (e.g., LLR, LLL), constructed from
a moving window across the entire series. For ex-
ample, if the emitted sequence had been LLRLR-
RRLLRL.. ., then the sets of three would be LLR,
LRL, RLR, LRR, and so on. Note that there are
eight possible patterns of L and R taken three at a
time, and thus, as in the just-described example, the
U value would be based on eight possibilities. The U
value thus is an index of the overall equality of
members of a set of possible outcomes. Of course,
when contingencies reinforce unequal distributions
of responses (e.g., 0.25-0.75), U values are expected
to be lower than when equality is reinforced
(0.50-0.50). In the present study, participant-
generated U values were compared to those from a
stochastic model in each of the five phases.
Stochasticity can be evaluated in another way,
namely by comparing proportions of participant-
generated responses—L and R instances, pairs of
instances, triplets, and so forth—to that expected
from the stochastic model. In the balls-in-barrel
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example, assuming equal numbers of blue and
green balls, a stochastic process would yield not
only equal relative frequencies of Bs and Gs, but
also equal pairs, i.e., blue followed by blue (BB)
would approach 0.25, as would green followed by
green (GG), blue followed by green (BG), and
green followed by blue (GB). Similarly relative fre-
quencies of BBB, BBG, BGB, etc., would each ap-
proach 0.125. More precisely, a stochastic process
is indicated if the relative frequencies of pairs of in-
stances is the multiplicative value of the first-order
proportions (e.g., if B=0.50 and G =0.50, then
BB=0.50 * 0.50 =0.25), and the same is true for
GG, BG, and GB. Similarly, BBB=0.50 * 0.50 *
0.50=0.125, and so on. When baseline pro-
portions are unequal (e.g., if three Gs were selected
for each B), then if the process were stochastic, the
probability of BB would be 0.25*0.25 = 0.0625,
of GG, 0.75*0.75=0.5625, and BG and GB =
0.25*0.75=0.1875. The same holds for triplets.
Thus, when first-order relative frequencies are un-
equal, a test for stochasticity involves predicting
second order, third order, etc., proportions from
the observed first-order values. The main questions
asked in the present experiment were whether hu-
man participants would distribute their responses
across two keys in a way predicted from a stochas-
tic model, and whether they could learn to do so
rapidly.

Results

We first tested consistency with matching theory.
Figure 24.1 plots, on log-log coordinates, the ratio
of left to right responses (total Ls in a phase di-
vided by total Rs in the phase) as a function of the
ratio of left to right reinforcers, as commonly done
in testing for matching. Each data point represents
one participant under one phase, with all partici-
pants and all phases represented. Consistent with
matching theory, response ratios were related to
reinforcement ratios by a power function, with
the least-squares best fitting line accounting for
68.6% of the variance. As is.often the case in
choice experiments, “under-matching” was ob-
served (i.e., response distributions tended to be
closer to 0.50-0.50 than the proportions of rein-
forcements), this indicated by the 0.583 value of
the exponent. In the present case, undermatching
may partly be explained by the fact that relatively
few responses were collected in each phase (ap-
proximately 150), that all of these responses were
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Figure 24.1. Log ratios of left to right responses
(L/R) as a function of log ratios of obtained num-
bers of reinforcements (L/R) for all Experimental
participants (# = 116) in each of the five phases of
Experiment 1. The least-squares best-fitting power
function accounts for 68.6 percent of the variance.

included in the analyses, and that participants could,
within a given phase, switch preferences from one
key to the other. To a first order of approximation,
however, the distributions of choices were consistent
with predictions from matching theory.

Levels of variability were also influenced by the
contingencies, this shown by the U values in figure
24.2. U values were calculated for each subject in
each of the five phases based on proportions of re-
sponse triplets, with group averages represented in
figure 24.2. Experimental (filled circles) and Yoked
participants (open circles) differed significantly,
F(1, 144) = 96.119, and phase and interaction ef-
fects were also significant, F(4, 576) = 5.747 and
F(4, 576) = 37.278, respectively. Reinforcement con-
tingencies therefore clearly influenced levels of re-
sponse variability.

For comparison, figure 24.2 also shows perfor-
mance of the stochastic model (Xs), programmed
to generate L and R responses with the target prob-
abilities and for the same number of responses as
the human participants. Experimental participants’
U values approximated those of the stochastic
model, although the participants’ U values were
higher than the model’s in Phases 1 and § (i.e.,
human participants distributed their responses
more equally) and slightly lower in Phase 4.
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1.00 - Finer-grained analyses of pairs and triplets were
also consistent with stochastic generation. Because
we did not specify which key, L or R, had to be re-
sponded to more frequently and to facilitate the
comparison between people and stochastic model,
these analyses are based on Stays (Ss) and Changes
(Cs)—the predictions for these being independent
of whether L was preferred or R. A Stay was de-
fined as two consecutive responses on the same
key, LL or RR; a Change was defined as an alterna-
' tion, LR or RL. Stochasticity was tested by ascer-
0.75 1 ", o taining if S and C pairs (an S followed by another
S, an S followed by a C, and so on) and triplets
0.70 T T - — — . (SSS, SSC, and so on) could be predicted from the
4 5 level 1 proportions of Ss and Cs, this being done

for each participant individually and in exactly the

same manner as described above in the B and G
Figure 24.2. Filled circles show average U values for ~colored balls example. As described there, when re-
the Experimental participants, reinforced for re- sponse frequencies (or, in this case, Stay and
sponding with differing levels of stochastic alloca- Change frequencies) are unequal, stochasticity can
tions in the 5 phases of Experiment 1. Phase 1 be tested by calculating expected percentages of
required 0.75-0.25 distributions; Phase 2, 0.67-  pairs and triplets based on level 1 frequencies. For
0.33; Phase 3, 0.60-0.40; Phase 4, 0.50-0.50; and  example, if a participant emits relative frequencies
Phase § was a replication of Phase 1. Xs represent  of 0.90 Cs and 0.10 Ss, then if Cs and Ss were gen-
a random model, programmed to respond with the  erated by a stochastic process, CC would equal

five appropriate levels of stochastic allocation, and 0.81, CCC, 0.729, and so on. We therefore used
open circles represent Yoked control participants,

whose reinforcement was presented independently
of levels of variability.

0.95 1

0.90 4

0.85

U Value

0.80 1

Phase

each participant’s level 1 relative frequencies to
predict that subject’s pair (level 2) and triplet (level
3) proportions.

The results, shown in table 24.1, are based on
the average of all Experimental participants across

Table 24.1 Relative frequencies of Stays (S) and Changes (C) given in five phases of Experiment 1

Phase 1 Phase 2 Phase 3 Phase 4 Phase §

Type Observed Predicted Observed Predicted Observed Predicted Observed Predicted Observed Predicted

S 671 .750 641 .670 577 .600 553 .500 .660 750
C .329 250 .358 .330 424 400 447 .500 .340 .250
SS 485 451 424 412 .336 .333 .320 .306 464 436
SC .186 221 218 230 241 244 233 247 .196 224
CS .189 221 216 230 239 244 233 247 196 224
CC 141 .108 142 128 .184 179 214 .200 .144 116
SSS 372 .302 294 264 .204 192 191 .170 346 288
SSC 112 .148 .130 .148 131 141 .130 137 118 .148
SCS 118 .148 150 .148 .169 141 154 137 122 .148
SCC .072 .073 .067 .082 .072 .103 .079 110 .074 076
CSS 113 .148 128 .148 129 141 130 137 117 .148
CSC .07S§ .073 .089 .082 111 .103 .103 .110 .079 076
CCS .072 .073 .067 .082 .072 .103 .078 110 075 .076
CCC .069 .036 .075 .046 113 .076 136 .089 .069 .039
Note: The observed level-1 values (S and C) were used to generate the predicted level-2 (S, SC . . . ) and level-3 (SSS, SSC . . . ) values.

The reinforced response distributions in the five phases were .75-.25, .67-.33, .60-.40, .50-.50, and .75-.25, respectively.
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Figure 24.3. Percentages of Stays (S) and Change
(C) triplets (SSS, SSC, SCS...) as a function of
the predicted percentages based on a stochastic
model. Top, Experiment 1 performances in which
different distributions of stochastic responses were
required for human participants responding across
two keys. Middle, Data from Experiment 2a in
which pigeons were reinforced for stochastic re-
sponding across different number of response
operanda. Bottom, Human participants respond-
ing under the same conditions as Experiment 2a.
To the extent that the least squares best fitting
function has a slope of 1.0 and intercept of 0.0,
the performances were predicted by a stochastic
model. :

Pattern Learning

0.9

0.5

Relative Frequency of Stay
S/(S+C)

0.4 4

T 1
50 100 150
Response

o0

Figure 24.4. Relative frequencies of Stays (S/S + C)
across each of the 150 responses in each of five
phases, when Phase 1 (P1) required 0.75-0.25 dis-
tributions, P2 required 0.67-0.33, P3 required
0.60-0.40, P4 required 0.50-0.50, and PS5 was a
replication of P1. Each data point is an average
across a moving window of 20 responses and
across all Experimental participants.

the five phases, but these well represent individual
performances. The participants’ pairs and triplets
values closely approximate those predicted from a
stochastic model. A graphic representation of the
goodness of the triplets’ predictions is shown in
figure 24.3, top: Observed percentages of triplets is
plotted as a function of the values predicted by the
stochastic model. The slope of the least-squares
best-fitting line is close to 1, the intercept is close to
0, and the function accounts for 86% of the vari-
ance. Thus, the participants’ responses—and levels
of variability—were consistent with those generated
by a stochastic model (table 24.1 and figure 24.3).
Furthermore, variability changed rapidly when
the reinforcement contingencies were changed.
Figure 24.4 shows probabilities of Stays (S/S + C)
over a moving window of 20 responses in each of
the five phases. The leftmost points in each phase
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Figure 24.5. Relative frequen-
cies of Stays (S/S + C) in
Component 1 when the

required distribution was
0.75-0.25, for six Experi-
mental subjects. Each data
point is an average of a
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indicate the average number of Ss and Cs when the
second response in a phase had been emitted—two
responses being the minimum necessary to define
an S or C—the next point, the average over the first
three responses, the next, first four, and so on until
the 20th response, whereupon a constant 20-
response moving window was represented. The
distributions approximated asymptotic values gen-
erally within 75 responses. Again, these averages
well represent individual performances, as seen in
figure 24.5, which shows performances for six ar-
bitrarily selected Experimental participants under
Phase 1 conditions. These results are all consistent
with stochastic allocation of responses and high
sensitivity to reinforcement contingencies.
However, the “stochastic-generator hypothesis”
can be challenged on at least two grounds. First,
many studies have reported that people are unable
to respond randomly when requested to do so,
for example, to call out heads or tails randomly
(Brugger, 1997; Nickerson, 2002). Later we at-
tempt to explain why our results are consistent

! moving window of 20
150 responses.

with the stochastic hypothesis, whereas this large
body of literature is not. But, first we consider a
second objection: Namely, that an alternative hy-
pothesis, one consistent with deterministic assump-
tions, can account for our results, as well as those
from other experiments purporting to show
stochastic-like  responding  (Blough, 1966;
Machado, 1989; Neuringer, 1986). This alternative
is that memory-based or deterministic computa-
tional processes can generate variable responses,
including those that appear to match a stochastic
model. We consider memory-based theories as an
introduction to our second experiment.

MEMORY-BASED OPERANT
VARIABILITY

Memorial processes can produce highly variable
responses in a number of different ways. For exam-
ple, a person can memorize a long list of “random”
numbers and use these to generate responses.
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Alternatively, an algorithm (e.g., an equation) that
yields random-like sequences can be learned.
Chaotic algorithms are one such class and these
will be described below. Or one might attempt to
remember previous responses or sequences and not
repeat these, or remember frequencies of responses
or sequences and attempt to equalize these. Each of
these strategies relies on memory (explicit or im-
plicit) for past responses or sequences to generate
highly variable and, indeed, sometimes random-
like outputs.

We first show that animals and people sometimes
do manifest an “avoid repetition” or other memo-
rial strategy when satisfying operant variability con-
tingencies; and then we will turn to the question of
how memory and stochastic hypotheses might be
compared. Our claim is that there are multiple ways
in which functionally variable responses can be gen-
erated, including memory based, and that respond-
ing stochastically is one such strategy.

As described, Pryor et al. (1969) reinforced por-
poises for emitting “novel” responses, ones that
had not previously been emitted in the same situa-
tion. Similar contingencies with human children re-
sulted in novel drawings and block constructions
(Holman, Goetz, & Baer, 1977). Other examples
of memory-based “do not repeat” strategies in-
clude rats learning to avoid previously entered
arms of a radial maze (Cook, Brown, & Riley,
1985); and pigeons, rats, or monkeys learning to
choose a novel stimulus under a non-matching-to-
sample paradigm.

Also, as indicated earlier, iterations of nonlinear
dynamical or chaotic equations—one example is
the logistic-difference equation—yield random-like
outputs under some parameters. One important
characteristic of such chaotic algorithms is that
each instance is determined by prior instances and
that the overall sequence may be “noisy.” In one
experimental demonstration, human participants
received feedback showing how closely their
responses matched that expected from iterations
of the logistic-difference function. The logistic-
difference function can be represented as:

Yn= 4*yn—1*(1 - yn—l)

where y, represents the value of the current re-
sponse and y,_; represents the value of the just-
preceding response. The “4” in the equation is a
parameter value, namely the value that generates
the most chaotic, or “noisy” outcome, and the
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.process is initiated with some arbitrary value for y

that is less than 1. The interested reader can reiter-
ate the equation, always using the just-obtained
value to seed the next iteration, and see that a
highly variable series of outputs results. Neuringer
and Voss (1993) showed that human participants
could learn to generate responses that were in-
creasingly like iterations of the chaotic model.

Memory insufficiencies have been posited to ex-
plain why people often fail to respond randomly,
e.g., as found in the human random-generation lit-
erature (Brugger, 1997; Wagenaar, 1972). It is sug-
gested that participants are unable to recall the
number of responses in each category or the num-
bers of individual sequences and subsequences
that, according to these memory-based theories,
are necessary to satisfy randomness criteria (Wage-
naar, 1972; Weiss, 1964, 1965). One particularly
influential theory suggests that an executive moni-
tor assesses the output of an internal response gen-
erator and, depending on prior responses and the
individual’s criterion of random, inhibits those
potential responses that fail to meet the criterion
(Baddeley, 1966). As cognitive or memory loads
increase, the executive monitor is hypothesized in-
creasingly to fail.

Direct tests of the stochastic nature of operant
variability. It is difficult to assess whether a
memory-based or stochastic-based processes is
involved, because both can generate identical
sequences of responses. The iteration of pi is a case
in point (the sequence of digits in pi being indistin-
guishable from random according to most tests),
the iterated algorithms used by computer-based
random-number generators is another, and chaotic
algorithms a third. Each of these algorithms is
memory based, in the sense that each instance is
determined completely by the prior instance(s)
while yielding sequences that cannot easily be dis-
tinguished from that of a stochastic source. There
are, however, cases for which memory and stochas-
tic theories make different predictions and these
provide a way to test underlying processes. For ex-
ample, memory-based theories predict that re-
sponse interference—produced, for example, by
interposing long pauses—should degrade approxi-
mations to a random model (because they degrade
memory for prior responses), whereas a stochastic-
generator hypothesis predicts no such effect.

As an example, if one were using memory to
approximate a random sequence of B and G colored
balls, then long pauses between each response, or
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any other type of interference, would be expected to
degrade performance. But, random selection of Bs
and Gs from a large barrel would not be influenced
by increasing the time between selections. Thus, if
interresponse interference adversely affects the gen-
eration of variable responses, then memorial pro-
cesses are likely to be involved. An absence of such
effects would be consistent with an underlying sto-
chastic process.

To test these opposing predictions, Neuringer
(1991) reinforced two groups of rats: one for re-
peating a fixed, LLRR sequence of responses across
two levers and the other for varying (under a lag
contingency). The underlying assumption was that
successful repetitions of LLRR depended in part on
memorial processes, implicit or explicit, whereas
the variability contingencies could be met by
stochastic selection of Ls and Rs. Testing this possi-
bility was the goal of the experiment. Following ac-
quisition of the two types of behaviors to
approximately equal levels of proficiency, pauses
were interposed between consecutive responses,
with pause lengths systematically increased across
phases. The results were that LLRR performance
was severely degraded as pause lengths increased,
but performance under the variability contingen-
cies was not, results consistent with stochastic gen-
eration of the variable responses.

In a related study, McElroy and Neuringer
(1990) showed that administering alcohol caused
performance decrements for a group of rats that
was reinforced for repeating an LLRR sequence but
had no effect on a variability-reinforced group. In
another test, human participants were trained to
alternate between chaotic-like sequences—thought
to be memory based, as described earlier—and
stochastic-like sequences—those that met a number
of tests of randomness. When pauses or other inter-
fering events were interposed between responses,
only the chaotic-like sequences showed decrements
(Neuringer, 2002). The evidence therefore supports
a stochastic process being involved in at least some
cases of operant variability.

However, there is conflicting evidence. Under
human random-number-generation procedures (as
described earlier), increasing the “memory load” is
found to interfere with ability to vary. Memory
load has been manipulated by increasing the num-
ber of possible responses in the to-be-varied set.
For example, Rath (1966) compared random gen-
eration in human participants when the set of re-
sponses included the digits 0 through 9 versus

another case in which the responses were the letters
A through Z. Greater deviations from a stochastic
model were found with the latter task than the for-
mer, results interpreted as indicating that, as mem-
ory load increases (from 10 to 26), ability to vary
decreases. In a more direct test, Wagenaar (1972)
found that, as number of response alternatives in-
creased from two to eight, approximations to an
equiprobable model decreased (however, see also
Towse, 1998). Consistent with these findings,
when a competing task was concurrently presented
with a random-generation task, decrements in abil-
ity to vary were again observed (Towse & Valen-
tine, 1997). Also consistent with a memory
hypothesis, Towse (1998) showed that when avail-
able responses were presented visually (e.g., the
digits 1 through 10), better approximation to a sto-
chastic model was observed than when the partici-
pants had to keep these options in memory.

Might these opposing results—memory inter-
ference leaves variability generation unaffected in
some cases (e.g., Neuringer, 1991, 2002), whereas
it adversely affects it in others (e.g., Rath, 1966;
Wagenaar, 1972)—indicate that stochastic pro-
cesses are involved in the one and memorial pro-
cesses in the other? Almost all of the human
random-generation experiments (with the excep-
tion of Neuringer, 1986) required relatively few re-
sponses (generally 100 total) and feedback was not
provided: participants were simply asked to re-
spond randomly. In most operant cases, including
the Neuringer (1986) human random generation
experiment, tens of thousands of responses were
practiced with reinforcement contingent on high
variability. A reasonable interpretation is that me-
morial strategies are invoked given few responses
without feedback, whereas a stochastic-based
strategy is employed given the long-term demands
of reinforcement-of-variation contingencies.

To test the effects of memory load in an operant
situation, Page and Neuringer (1985) studied pi-
geons responding under a lag 3 contingency, in
which the current sequence had to differ from each
of those in the preceding three trials. Memory load
was varied by changing the required number of re-
sponses per trial: four, six, or eight responses per
trial across different phases of the experiment. It
was reasoned that if memory load had an effect,
performance would be degraded when the number
of responses increased (i.e., eight responses per
trial requires subjects to remember more than four
responses). The stochastic hypothesis predicts the
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opposite result, as demonstrated by the following
example. If responses were directed by the toss of a
coin, then if trials consisted of only two responses (a
small number used for the sake of this example), the
probability of one trial repeating the previous trial is
0.25. (There are four possible sequences in the first
trial—RR, RL, LR, and LL; thus, the second trial
has a 1 in 4 chance of matching the first.) If a trial
consisted of four responses, again directed by coin
tosses, then the probability of a repetition by chance
is 0.0625, or 1 in 16, and with eight responses per
trial, the probability of repetition is .0039, or 1 in
256. So, if subjects used a stochastic process to gen-
erate Ls and Rs, performances should be more likely
to satisfy a lag 3 contingency as responses per trial
increased, but if subjects were trying to remember
each of their sequences, then the opposite result
might emerge. Results were precisely those predicted
by the stochastic hypothesis and inconsistent with a
memory strategy: increasing numbers of responses
per trial, and therefore memory-load, resulted in an
increased probability of meeting the contingencies.
Stated differently, eight-response trials resulted in
more frequent reinforcement than four-response tri-
als, as would be expected if L and R responses were
stochastically generated. These findings are all the
more important because presumably the memory
and cognitive capacities of pigeons are smaller than
those of humans.

Two objections can be raised to the Page and
Neuringer interpretation, however. First, because
the number of possible sequences increased across
the phases—given four responses per trial, there
are a total of 16 unique sequences, but with eight
responses per trial, there are 256—any “noise” in
the generating system would more likely result in
reinforcement under the eight than under the
four phase (Peter Balsam & Pat Stokes, personal
communication). Second, responses were distrib-
uted across two keys rather than the many distinct
operanda or verbal responses used in the human
random generation literature.

Thus, there is disagreement. Memory-based theo-
ries predict that as numbers of alternative responses
increase, it should be more and more difficult to ap-
proximate random outputs, and data from the hu-
man random literature support that prediction. A
stochastic-generator hypothesis predicts that ap-
proximations to random should be at least as readily
obtained with many alternatives as with few (i.e.,
stochastic sequences are as likely when there are
eight different colors in the barrel as two), and one

Pattern Learning

study, involving different numbers of responses per
trial, reported data consistent with the stochastic
prediction (Page & Neuringer, 1985).

In an attempt to disambiguate these different
results, Experiment 2a varied the number of differ-
ent response operanda (two, four, and eight), as
is characteristically done in the human random-
generation literature, but within an operant-
conditioning context in which pigeons were given
long-term practice and were provided with feed-
back to indicate successful variations. Because the
data supported the stochastic hypothesis, a similar
experiment was performed with human partici-
pants in Experiment 2b.

EXPERIMENT 2A: PROCEDURE

Five mature male Racing Homer pigeons were
maintained at 85% of their normal body weights
and reinforced for pecking small response squares (1
cm) projected on the monitor (33-cm Apple color
monitor) of a touchscreen (Carroll Touch Smart-
frames) located in a Gerbrands operant conditioning
chamber. At a right angle to the touchscreen, a food
hopper provided access to food pellet reinforcement.
Additional details concerning this apparatus can be
found in Vickrey and Neuringer (2000).

The procedure is diagramed at the top of figure
24.6. Each “trial” began with a 1-cm black square
projected at the center of the screen—it will be re-
ferred to as the trial-initiating square—a response
to which resulted in projection of two, four, or
eight squares (depending on the condition), each of
these 1 cm in size—to be referred to as the choice
squares. Figure 24.6, bottom, shows how these
choice squares were oriented—in the two-, four-,
and eight-choice cases, respectively. (The numbers
next to the squares were not shown during the ex-
periment and are provided to facilitate description
of the procedure.) A single peck to one of the
choice squares resulted in a cue for reinforcement,
if the variability contingency had been satisfied;
otherwise, the trial-initiating square reappeared to
indicate a new trial. The reinforcement cue was a
green star, projected at the center of the screen, a
single peck to which resulted—with a 0.25
probability—in access to food for 1.2s, after
which the trial-initiating square reappeared. Those
pecks to the star that did not produce food (be-
cause of the-0.25 probability) led immediately to
the reappearance of the trial-initiating square.
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Figure 24.6. Top, Outline of the procedure in Experiment 2a. Bottom, Orientation of the response squares
during the 2-choice condition (left), 4-choice condition (middle) and 8-choice condition (right). The

squares are numbered for reference purposes.

Thus, a trial consisted of an initiating response to a
center square followed by a response to one of the
two-, four-, or eight-choice squares (depending on
the condition in effect), and (if the contingency had
been satisfied) a peck to a star that led to food
25% of the time and other times to initiation of the
next trial. Response variability was reinforced ac-
cording to the contingencies described later, and
the main question was whether levels of variability
would differ under the two-, four-, and eight-
choice conditions.

Sessions cycled through the two, four, and eight
conditions in that order, one session per condition,
repeated over and over (two, four, eight, two, four,
eight, etc.), with each session terminating after
2,000 responses. Approximately 75 sessions were
provided (25 per condition), during the early por-
tion of which parameters were modified to ensure
stable responding (e.g., variations were made in the
number of trials per session, amount of reinforce-
ment, and probability of food access when the vari-
ability contingency was met).

Variability Contingency

To be reinforced, a response had to complete a
sequence—to be defined shortly—that had oc-
curred infrequently, according to a variability con-
tingency related to those used by Blough (1966)
and by Denney and Neuringer (1998). For the con-
tingency to be equivalently demanding across the
two-, four-, and eight-choice conditions (and there-
fore avoid the objection to Page and Neuringer’s
interpretation), the number of possible sequences
was kept constant at 64 in the following way. In
the two-choice condition, each sequence was de-
fined by 6 consecutive responses, with 2¢ = 64 pos-
sible sequences. (It is important to note that
sequence length was a variable internal to the com-
puter and that no external stimulus indicated
length of trial.) As an example, assume that the re-
sponses were 1 and 0, and that the pigeon pecked
1010000101101, with the rightmost digit indicat-
ing the most recent response. The current sequence
was defined by the last six responses, or 101101,
which (translating from binary to decimal) was
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sequence number 45. The just-prior sequence was
defined by moving to the left by one, or
010110 =22, and the same procedure was used
throughout the two-choice condition, with each se-
quence defined by a moving window consisting of
6 responses. In the four-choice case, 43 = 64 (with
instances designated as zero, one, two, and three)
and therefore three responses were used to define a
“sequence.” The eight-choice case involved sets of
two responses, 82= 64 (with instances designated
as zero through seven). The response windows
were therefore of different lengths (i.e., lengths of
six in the two-choice condition, three in the four-
choice condition, and two in eight-choice), in order
to keep the amount of information constant (64, or
6 bits). Page and Neuringer held the window size
constant (lag 3), while permitting information
(number of possible sequences) to vary. It is not
possible to hold both constant simultaneously. As
will be seen, the consistency of results across these
two procedures supports the conclusion that re-
sponses were generated stochastically.

Additional details are as follows. Each possible
sequence was associated with a counter, for a total
of 64 counters per condition. At the beginning of
the experiment, all counters were initialized with a
value of 20 units. Each response increased the
value of its associated counter by 1 unit. In order
for all responses to contribute equally, whether
emitted early in a condition or later, a constant
sum was maintained across all counters by sub-
tracting Y3 from each of the other 63 counters. To
meet the variability contingency, the value of a se-
quence’s counter had to be less than 21.6. These
values, together with other parameters, were cho-
sen so that a stochastic model would be reinforced
on approximately 70% of trials. Each counter was
multiplied by an amnesia coefficient (.984) follow-
ing reinforcement for the same reasons as in Exper-
iment 1. Counter values were maintained across
sessions of a given condition (i.e., the values at the
beginning of one session were the same as at the
end of the previous session under the same condi-
tion) but were independent of the other conditions.
Additional procedural details are given in Jensen
(2003).

The final 18 sessions were used for all analyses,
with 6 sessions per condition, 2,000 responses
per session, and therefore 12,000 responses per
condition. U values were computed for each pi-
geon, based on the 64 possible sequences in each
condition.
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Figure 24.7. U values as a function of number of
choice alternatives in Experiment 2a (top and mid-
dle), where pigeons served as subjects, and Experi-
ment 2b (bottom), where human participants were
studied. Each subject is represented with the solid
line showing the average of all subjects.

Results

Figure 24.7, top, shows U values for each of the
pigeons as a function of number of choice alter-
natives. The line connects the group mean. Al-
though U values decreased somewhat across
conditions, the y-axis is highly magnified (begin-
ning at .93) and a repeated measures analysis of
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Table 24.2 Relative frequencies of Stays (S) and Changes (C) given two, four, or eight choice alternatives with pigeons

Type Observed (2) Predicted (2) Observed (4) Predicted (4) Observed (8)  Predicted (8)

S .529 .500 293 250 .170 125

C 477 .500 .707 .750 .830 .875

SS 291 .280 .095 .086 .033 .029

SC 238 252 .198 .207 137 141

CS 238 252 198 207 137 141

CC 233 228 509 .500 693 .689

SSS 171 .148 .034 .025 .007 .005

SSC 128 132 .061 .061 .026 .024

SCS 120 132 .056 .061 .022 .024

SCC 118 120 .140 147 116 117

CSS 128 132 .061 .061 .026 .024

CSC 114 120 136 .147 112 117

CCS 118 .120 142 147 112 117

CCC 120 .109 .366 .353 577 572
Note: The observed level-1 values (S and C) were used to generate the predicted level-2 (SS, SC . . . ) and level-3 (SSS, SSC. . . ) values.

variance (ANOVA) showed that effects were not
statistically significant, F(2, 5) = 2.30.

The stochastic nature of these responses is indi-
cated in table 24.2, which presents percentages of
Stays and Changes, as in Experiment 1, together
with the percentages of pairs and triplets, for each
of the three conditions. As in Experiment 1, Stay
was defined as two consecutive responses to the
same square (e.g., in the eight-choice case, a re-
sponse on square 4 followed by another response
to 4 was a Stay, whereas a 4 response followed by
one to any other square was a Change). In the two-
choice condition, a stochastic generator is expected
to repeat with a probability of .5, and the same for
changes. For the four-choice case, a stochastic gen-
erator’s expected Stay equals 0.25; and for the
eight-choice case, expected Stays equal .125. As
shown by the level 1 percentages in the top two
lines of the table, the pigeons tended to repeat
more than predicted. However, when, as in Experi-
ment 1, percentages of pairs and triplets (SS,
SC...; SSS, SSC...) were calculated from the
subjects’ own level 1 percentages, they closely
matched the predictions from a stochastic model.
Figure 24.3, middle, plots the pigeons’ percentages
of triplets on the y-axis as a function of the pre-
dicted values on the x-axis. The fit is almost per-
fect: Triplet percentages were precisely those
predicted by a stochastic model.

In addition to the slight tendency to repeat, in-
dicated by the level 1 percentages in table 24.2,
some of the birds showed a bias for or against par-
ticular response locations. This bias was especially

noticeable in the eight-choice case where, for ex-
ample, one subject responded to square 1, the top
square, with a relative frequency less than 0.01,
whereas the relative frequency of responses to
square 6, on the bottom left was 0.22. The expected
proportion (given an unbiased distribution) was
0.125 for each case. Other subjects showed similar,
although less extreme, biases. We noticed that the
smallest birds had the most difficulty responding to
the top square (1), and when we measured birds’
heights, a significant inverse correlation was found
between height and percentage of responses to the
top choice location (72 = 0.909, Fisher’s 7 to z test
(p < .04).

Only the eight-choice condition contained the
top choice location and that might have con-
tributed to the marginally lower U values in the
eight-choice case. To evaluate this possibility, we
replicated the two- and four-choice conditions, but
with different square locations from those in the
initial phase of the study. In particular, we com-
pared levels of variability in the two-choice condi-
tion when the locations were one and two; three
and six; four and five; and seven and eight, respec-
tively (shown in figure 24.6, bottom). We com-
pared the four-choice conditions when the
locations were three, four, five, and six versus when
they were one, eight, two, and seven. Figure 24.8
indicates that locations in fact influenced levels of
variability. Indeed, location exerted a much larger
effect on U value than did number of choice alter-
natives. Figure 24.7, middle, shows the U values
averaged across these repeated conditions together
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with the eight choices for comparison and clearly
indicates that number of response alternatives had
no significant impact on levels of variability. To the
extent that number of choice alternatives appeared
to affect response variability, biases for and against
particular locations were responsible.

Figure 24.9, top, shows the one statistically sig-
nificant effect of number of alternatives: namely
the time between pecks to the trial-initiating center
key and the response to one of the available choice
alternatives, F(2, 8) =14.26, p <.003. More time
was required to choose among eight alternatives
than for four, and likewise for four than for two.
This result is consistent with that reported by Bad-
deley (1966) for human participants.

The main finding was that number of operanda
did not significantly influence response variability.
These results differ from human random-gene-
ration experiments and support a stochastic-
generator theory of operant variability, as did Page
and Neuringer’s earlier findings. However, both
Page and Neuringer’s study and the experiment
just described studied pigeons, whereas the random
generation literature is based exclusively on human
participants. To test for species differences, we re-
peated Experiment 2a with human participants.

EXPERIMENT 2B: PROCEDURE

Unless otherwise specified, the procedure was iden-
tical to that in Experiment 2a. Each of six college
students was paid $8 per hour for § hours of par-
ticipation plus the possibility of two additional in-

Choice Alternatives

centives. If the participant’s lowest U value (in the
two, four, or eight condition) was higher than the
lowest U value of the pigeons in Eperiment 2a, then
an additional $25 was awarded; and the participant
whose lowest U value was higher than all other hu-
man participants’ lowest values received an addi-
tional $50.

Participants responded on the numeric keypad
of an e-Mac computer. Keys 4 and 6 were used in
the two-choice case; keys 1, 3, 7, and 9 in the four-
choice condition; and keys 1 through 9, except 3,
in the eight-choice condition. A visual representa-
tion of the active keys was shown on the screen,
with the key’s image illuminated after each re-
sponse. The procedure differed from Experiment
2a in that center-key presses and responses to a star
were not required, and participants were rewarded
with points rather than food. Each session was di-
vided into “blocks” consisting of 150 responses in
two-, four-, or eight-choice conditions, with order
of conditions randomized such that every set of
three blocks contained each of the conditions. Ad-
ditional feedback was provided at the end of each
block in the form of percentage of reinforced re-
sponses, with a graph on the computer’s screen
showing all blocks of the condition just completed.

Results

Each participant’s final 3,600 responses (a number
chosen because all participants emitted at least that
number of responses per condition) provided the
data for the analyses. Figure 24.7, bottom, shows U
values as a function of number of choice alterna-



Truly Random Operant Responding 475

0.65
(u]
0.60 ]
—_ o o
Q
Q
N 0.554 X
(5]
E °
= 0.50 4 A
Q
|72}
g
% 0.45 -
&
0.40
A
0.35
2 4 8
Choice Alternatives
1.25 5
o
—_ 1.00 4
Q
2
£ 0751
=
§ o
a 0.504
o
E x\x—/f
0.254
é w 3)
+
0.00
2 4 8

Choice Alternatives

Figure 24.9. Average interresponse time under the
2-, 4- and 8-choice conditions of Experiments 2a
(top) and 2b (bottom).

tives. A repeated-measures ANOVA indicated a sig-
nificant effect of conditions, F(2, 6) = 6.26, p <.02,
with the four-choice condition differing from the
eight-choice (Fisher’s PLSD). The two-alternative
condition did not differ significantly from either of
the other two conditions. Participants succeeded at
achieving high levels of variability, and three of the
six participants had higher lowest scores than the pi-
geons in Experiment 2a. Thus, although a signifi-
cant difference emerged, the difference was small
and a consistent decrease in variability across two-,
four-, and eight-choice conditions was not observed.

Table 24.3 shows relative frequencies of Stays

and Changes, as in Experiment 2a. The human re-
sults were comparable to the pigeons’ with per-
centages close to those predicted from a stochastic
model. Figure 24.3, bottom, shows the high corre-
lation between stochastic-based predictions and
observed triplet values.

Figure 24.9, bottom, shows the mean of all par-
ticipants’ median response times. Apart from a
higher mean in the two-choice condition (largely
due to one participant responding especially slowly
in that condition), no pattern emerged across condi-
tions, and a repeated-measures ANOVA showed no
significant effects. The difference between these find-
ings and those from pigeons, where response laten-
cies increased with number of choice alternatives,
may partly be due to the location biases demon-
strated by the pigeons, which were not seen with the
human participants. Also, the procedures differed
somewhat. In the pigeon case, latencies were
measured from a trial initiating peck; in the human
case, responding to the choice alternatives was
continuous—there was no trial initiator in order to
minimize the tedium of the experiment—and the da-
tum therefore was average interresponse time rather
than latency. That the response time data differ also
from those previously reported in the human ran-
domness literature (e.g., Baddeley, 1966) may be
due to the fact that, in the present case, many thou-
sands of responses were emitted, under control of
reinforcing feedback, whereas, as noted above, few
responses and the absence of feedback characterize
the previous human random-generation research.

The main finding was that, for both pigeons and
people, levels of variability were not consistently af-
fected by number of choice alternatives, a result
predicted by stochastic theory. We conclude that
there are multiple sources of operant variability. We
know that people can memorize random sequences
(Ericsson & Chase, 1982) and can respond in
chaotic-like ways (Neuringer & Voss, 1993). Fur-
thermore, when people are asked to respond ran-
domly, but few responses are required and feedback
is not provided, memory for instances and subse-
quences may well be involved. However, when rein-
forcement is contingent on approximations to a
stochastic model and extended practice is provided,
the evidence supports a stochastic-generating pro-
cess (Experiments 2a and 2b), one that is highly
sensitive to changing contingencies (Experiment 1).

‘We turn now to the general question of why abil-
ity to respond unpredictably, whether based on me-
morial or stochastic processes, might be adaptive.
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Table 24.3 Relative frequencies of Stays (S) and Changes (C) given two, four,

or eight choice alternatives with people

Type Observed (2) Predicted (2) Observed (4) Predicted (4) Observed (8)  Predicted (8)
S 409 .500 .240 250 .110 - 125
C 501 .500 .760 .750 .890 .875
SS 257 167 .060 .058 .018 012
SC 233 208 177 182 .093 .098
CS 233 205 177 182 .093 .098
CC 277 251 585 577 797 792
SSS 117 .068 .010 .014 .001 .001
SSC 141 085 .051 .044 .016 011
SCS 116 085 .074 044 ~.030 011
SCC 116 103 .103 139 .062 .087
CSS 141 .085 .051 .044 .016 011
CSC .092 103 128 139 .076 .087
CCS 116 . 1103 .103 139 .062 .087
CCC 161 126 482 439 727 .705

Note: The observed level-1 values (S and C) were used to generate the predicted level-2 (SS, SC. . .) and Level-3 (SSS, SSC. . .)

values.

REASONS TO RESPOND
UNPREDICTABLY

Protection

Driver and Humphries (1988) describe “protean
behavior . . . (that) is sufficiently unsystematic in
appearance to prevent a reactor predicting in detail
the position or actions of the actor” (p. 36).
Stochastic-like protean responses have evolved in
many species as a means of protection from attack
or predation. Examples include the unsystematic
zigzag flights of butterflies and similar movements
by other species—mosquitoes, stickleback fish,
ptarmigan, squirrels, rabbits, antelopes—in re-
sponse to the threat of attack by a predator. Mob-
bing behaviors are similarly protean in nature, such
as unpredictable attacks by gulls against a potential
predator or the aerial mobbing by hawks of star-
lings. Driver and Humpbhries note that, besides pro-
viding immediate protection, protean behaviors
interfere with the ability of an opponent to learn to
anticipate antipredation responses. They also note
that protean behavior is “not so random as to be
formless; it is a structured system within which pre-
dictability is reduced to a minimum” (p. 157). This
point parallels one made above: Selection pressures,
whether phylogenetic or ontogenetic, help to estab-
lish the set of possibly functional responses from
which instances emerge stochastically.

Attraction

Habituation is basic: Repeated stimuli tend to be
ignored and unexpected variations attract atten-
tion. “Variations attract” describes mating prefer-
ences in some species, such as songbirds
(Catchpole & Slater, 1995). Female mocking-
birds, for example, prefer males who sing com-
plex songs; female sparrows display sexually
more to song variety than stereotypy; and great
tits demonstrate sexual interest in males with the
largest song repertoires. Implied by these studies
is that females can discriminate levels of stochas-
ticity (or entropy); evidence supporting this con-
jecture comes from a series of studies showing
that pigeons and people can discriminate among
levels of entropy in visual displays (Young &
Wasserman, 2001). That males respond to female
preferences for variability was shown by Searcy
and Yasukawa (1990), who observed that when
male red-winged blackbirds were presented with a
female dummy, song variability increased. Evi-
dence of direct sensitivity of song complexity to
reinforcement contingencies was shown by Man-
abe, Staddon, and Cleaveland (1997): The vari-
ability of budgerigar songs was directly reinforced
with food under a lag schedule and song complex-
ity was sensitive to the value of the lag. Thus, atten-
tion and attraction by conspecifics may reinforce
variations.
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Competition

When animals compete for such resources as food,
shelter, and mates, predictable responding may be
disadvantageous, as a competitor might thereby
take countermeasures. As indicated above, game
theory shows that, in such competitive situations,
optimization of reinforcement may depend on sto-
chastic allocation of choices; in particular, the
Nash equilibrium predicts that animals should
match relative allocations of stochastic responses
to relative frequencies of reward.

Exploration

We use exploration in its generic sense to imply
the exploration of a problem space—geographic,
artistic, scientific, or personal. The goal may be
to discover new resources, as inexploration of
spatial locations or new lands (Peterson, 1996;
Viswanathan et al, 1996), or the discovery of solu-
tions to some problem, as in scientific exploration
or solving mechanical problems (Beveridge, 1950;
Maier, 1933), or exploration with an aesthetic
goal, as in artistic and literary creativity (Camp-
bell, 1960). Stochastic responding within circum-
scribed limits may be functional in these cases,
because it avoids overreliance on previous patterns
of response that may no longer be effective. As
with all of the other cases described in this chapter,
it is important for a functional set to be circum-
scribed or defined, a point emphasized by Stokes
with respect to creativity (Stokes, 2001; Stokes &
Harrison, 2002).

Knowledge and Skill Acquisition

Choosing varied over repetitive stimulation (Fiske
& Maddi, 1961) enables acquisition of knowl-
edge. Variations in behaviors and strategies also
facilitate the acquisition of cognitive and motor
skills. For example, Siegler (1996) has shown that
children who vary their strategies are most suc-
cessful in acquiring mathematical skills. Varying
practice routines facilitates acquisition of motor
skills (Manoel & Connolly, 1997; Mechner,
1992; Schmidt & Lee, 1999). And, acquisition
of difficult-to-learn operant sequences is facili-
tated by reinforcement of response variations
(Neuringer et al., 2000; Seymour, 2003).
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Volition

The operant may be conceptualized as a class of
responses, with instances emerging stochastically
(Skinner, 1974). In an example of rat’s lever-
pressing given above, the class may comprise
pressing with left paw, right paw, or mouth; with
high or low force; and so on. Discriminative cues
may increase the likelihood of an operant class,
but the particular instances cannot be predicted,
either in terms of time of occurrence or topogra-
phy; the individual responses emerge stochasti-
cally. This view of the operant provides a model of
voluntary action because voluntary actions are
both functional—they are goal-directed actions
that can be explained, at least in part, by
reinforcement—and potentially unpredictable or
stochastic (see Neuringer, 2002). Operant varia-
bility manifests both of these characteristics—
functionality and stochasticity—and therefore may
play an important role any explanation of voluntary
action.

In each of these cases—protection, attraction,
competition,  exploration, acquisition, and
volition—controlled variability appears to be func-
tional. In some instances, variability is a species-
typical, evolved response to a stimulating situation
(e.g., varied bird songs). In other cases, variability
is not selected by evolutionary pressures but rather
by reinforcing consequences experienced by the in-
dividual organism. Thus, many normal, ongoing
activities involve controlled, stochastic-like emis-
sion of functional responses—for both phylogenic
and ontogenic reasons. Absence of such controlled
variability may characterize some psychopatholo-
gies. For example, levels of variability in those di-
agnosed with depression tend to be lower than in
nondepressed individuals (Channon & Baker,
1996; Hopkinson & Neuringer, 2003), and the
same is true for individuals with autism (Baron-
Cohen, 1992; Lee, McComas, & Jawor, 2002;
Miller & Neuringer, 2000). Individuals with atten-
tion deficit-hyperactivity disorder may manifest the
opposite, that is, abnormally high (and uncon-
trolled) levels of variability.

We again emphasize the importance of con-
trolled variability, because “doing anything” may
have low probability of success or be deleterious. By
“controlled,” we mean that operant reinforcement
and phylogenic survival shape the set from which
possible responses emerge, establish when and
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where variations are adaptive, establish within-class -

probability distributions, and, no doubt, determine
when it is adaptive to use memorial processes to be-
have variably and when to use stochastic ones. Op-
erant stochasticity therefore combines two views:
one in which behavior is determined by genes and
experiences and the other in which some behaviors
are unpredictable or indeterminate, even assuming
high-quality knowledge of prior experiences.and
genetic contributions. There is determination of
response classes and potential indetermination of
within-class instances. Stated differently, operant
variability is a process of stochastic-like emissions
from a defined set of possible instances.

Why Stochastic?

But why is the emission process stochastic, at least
under some circumstances? At present, we can only
speculate. Stochastic variability may be adaptive in
protection, attraction, and competition for reasons
indicated by game theory: namely, to counter pre-
diction by another animal or person. Stochastic
variability maximizes unpredictability. Stochastic
variability may be generated in nonsocial cases as a
way to avoid behavioral traps and to produce rein-
forcing effects. For example, in human creativity,
stochastic behaviors may result in effects that are
surprising to the creator himself or herself, and
therefore are autoreinforcing. Additionally, ran-
domizing heuristics may have evolved because
memory for instances and sequences, as well as it-
erative computations based on chaotic-like func-
tions, require more “computational power” than
stochastic emission.
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