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Introduction. Recent work—and a remark dropped casually by my statistical
colleague, Albyn Jones—has led me to the speculative perception that “the
quantum world, under certain circumstances, appears classical” for ultimately
the same reason that experiments repeated many times over can be expected to
yield results of high accuracy, and that the statistical properties of thermalized
systems are so sharp as to become susceptible to analysis by the methods of
thermodynamics.

The classical theory of errors is dominated by the normal distribution for
reasons rooted in the central limit theorem. The train of thought to which I
have alluded leads me to contemplate the existence of a quantum analog of the
central limit theorem, phrased in terms not of probability distributions but of
probability amplitudes or—equivalently but (as I will argue) more naturally—
Wigner distributions.

My purpose here is simply to collect together, for the convenience of future
reference, material pertaining to the “Gaussian quantum mechanics” which will
be central to any effort to put meat on the bare bones of my present intuition.
The rudiments of this subject are, of course, treated in every introductory
quantum text,1 but closer examination turns up a number of subtleties and
complications, and exposes a variety of methodological options, to which I will
draw attention. I borrow freely from some informal notes2 which were written
in support of the thesis research of a former student3 and inspired originally
by quite a different train of thought. Many of the results reported in the latter
sections of the essay are, so far as I am aware, new.

I work mainly in one-dimension, and will borrow mainly from the quantum
physics of free particles to lend dynamical substance to my remarks.

1 See, for example, David Griffiths, Introduction to Quantum Mechanics
(), Problems 2.22 (p. 50) and 2.40 (p. 69), and §3.4.2 (p. 111).

2 “Classical motion of quantum Gaussians,” ().
3 Rodney Yoder, The Phase Space Formulation of Quantum Mechanics and

the Problem of Negative Probabilities (Reed College thesis, ).
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1. Initial construction of the Gaussian packet. To express the circumstance that
“x-measurement (performed at time t = 0 with an instrument of imperfect
resolution) has shown the particle to reside in the vicinity of the point x = a”
we write

P (x, 0) ≡ |ψ(x, 0)|2 =
{

some properly positioned and
shaped distribution function

and notice that such a statement supplies only limited information about the
structure of ψ(x, 0) itself:

ψ(x, 0) =
√

P (x, 0) · eiα(x,0) : phase factor remains at present arbitrary

The phase factor has entered with simple innocence upon the stage, but is
destined to play a leading role as the drama unfolds.

Whether we proceed from some tentative sense of the operating character-
istics of instruments of finite resolution or seek only to model such statements
in a concrete but analytically tractable way, it becomes fairly natural to look
to the special case

P (x, 0) = 1
σ
√

2π
e−

1
2 [ x−a

σ ]2 (1)

The Gaussian on the right defines the “normal distribution” with

mean : 〈x〉 = a

variance ≡ (uncertainty)2 : 〈(x− a)2〉 = σ2

and the associated wave function reads

ψ(x, 0) =
[

1
σ
√

2π

] 1
2 e−

1
4 [ x−a

σ ]2 · eiα(x,0) (2)

I write ψ(x, 0) ≡ (x|ψ)0 to draw attention to the fact that we have worked
thus far in the x-representation. Passage to the momentum representation is
accomplished

ϕ(p, 0) ≡ (p|ψ)0 =
∫

(p|x) dx (x|ψ)0

= 1√
h

∫
e−

i
�
pxψ(x, 0) dx (3)

but cannot be carried out in detail until the phase factor has been specified.4

If, in the Gaussian case (2), we set α = 0 then (3) gives

ϕ(p, 0) =
[

1
λ
√

2π

] 1
2 e−

1
4 [ p

λ ]2 · e− i
�
ap with λ ≡ �/2σ (4)

4 The statement

normalization of P (x) ≡ |ψ(x)|2 ⇒ normalization of Q(p) ≡ |ϕ(p)|2

is, however, phase-insensitive, and is the upshot of Parseval’s theorem: see
P. Morse & H. Feshbach, Methods of Theoretical Physics (), p. 456.
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whence
Q(p, 0) = 1

λ
√

2π
e−

1
2 [ p

λ ]2 (5)

which is again normal, but centered at the origin of p-space:

〈p〉 = 0

〈(p− 0)2〉 = λ2

In
σλ = ∆x ·∆p = 1

2� (6)

we have encountered an instance of optimal compliance with the Heisenberg
uncertainty principle: ∆x ·∆p ≥ 1

2�.

To achieve arbitrary placement of the origin of the normal distribution in
momentum space—i.e., to achieve

(5) −→ Q(p, 0) = 1
λ
√

2π
e−

1
2 [ p−b

λ ]2

—it might appear most natural in place of (4) simply to write

ϕ(p, 0) =
[

1
λ
√

2π

] 1
2 e−

1
4 [ p−b

λ ]2 · e− i
�
a(p−b)

But then
ψ(x, 0) = 1√

h

∫
e+ i

�
pxϕ(p, 0) dp (7)

is, according to Mathematica, a mess; to achieve a simpler result I tentatively
omit the phase factor, writing

ψ(x, 0) = 1√
h

∫
e+ i

�
px

{[
1

λ
√

2π

] 1
2 e−

1
4 [ p−b

λ ]2
}
dp

=
[

1
σ
√

2π

] 1
2 e−

1
4 [ x

σ ]2 · e+ i
�
bx with σ ≡ �/2λ

The resulting distribution function

P (x, 0) = 1
σ
√

2π
e−

1
2 [ x

σ ]2

is (compare (5)) is again normal but centered at the origin in configuration
space; it is precisely (1) with a = 0. These simple results indicate that if
we desire to displace P (x, 0) and Q(p, 0) simultaneously from their respective
origins we are going to have to learn how to “manage the mess.” They bear
directly upon the problem of the “launched Gaussian wavepacket,” to which I
turn in §5.

2. Standing motion of a Gaussian wavepacket. Dynamical evolution

|ψ)0 −−−−−−−−−−−−→
free particle

|ψ)t
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is particularly easy to describe in the momentum representation (essentially
because p and H = 1

2mp2 trivially commute); we have

ϕ(p, t) =
∫

(p|e− i
�
(p2/2m) t|q)︸ ︷︷ ︸ϕ(q, 0) dq

= e−
i
�
(q2/2m) tδ(q − p)

= ϕ(p, 0) · e− i
�
(p2/2m) t (8)

The t-dependence of ϕ(p, t) is so simple as to imply

Q(p, t) = Q(p, 0) (9)

Because the particle has been assume to move freely , almost nothing is going
on in momentum space. . .but enough (see again (8)) to cause interesting things
to happen in configuration space:

Working from

ψ(x, t) = 1√
h

∫
e+ i

�
pxϕ(p, t) dp (10)

with ϕ(p, t) =
{[

1
λ
√

2π

] 1
2 e−

1
4 [ p

λ ]2 · e− i
�
ap

}
· e− i

�
(p2/2m) t

=
[

1
λ
√

2π

] 1
2 exp

{
− [1+i(t/τ)]p2

4λ2

}
· e− i

�
ap

NOTE : We have introduced here the
“natural time” τ ≡ �m/2λ2 = 2mσ2/�

we find

ψ(x, t) =
[

1
σ[1+i(t/τ)]

√
2π

] 1
2

exp
{
− 1

4
(x−a)2

σ2[1+i(t/τ)]

}
(11)

It becomes natural at this point to define

σ(t) ≡ σ
√

1 + (t/τ)2 (12)

Then σ[1+ i(t/τ)] = σ(t)ei arctan(t/τ) and 1
σ2[1+i(t/τ)] = [1− i(t/τ)]/σ2(t), so we

have
P (x, t) = |ψ(x, t)|2 = 1

σ(t)
√

2π
exp

{
− 1

2

[
x−a
σ(t)

]2} (13)

which is normal, with fixed mean (〈x〉 = a: all t) and growing variance.

That the ψ(x, t) of (11) is in fact a solution of the Schrödinger equation is
confirmed by calculation; Mathematica informs us that{

− �
2

2m

(
∂
∂x

)2 − i� ∂
∂t

}
ψ(x, t)

= (�τ − 2mσ2)︸ ︷︷ ︸ ·(complicated factor) · e−
1
4 [ x−a

σ(t) ]2

0 by definition of τ
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3. Relationship to the free particle propagator. It follows also from the definition
τ ≡ 2mσ2/� that

lim
σ↓0

σ2[1 + i(t/τ)] = i�t/2m

so, working from (11), we have

lim
σ↓0

ψ(x, t) ∼=
√
σ ·

[
2m

i�t
√

2π

] 1
2

exp
{

i
�

m(x−a)2

2t

}
=

√
2σ
√

2π ·
√

m
iht e

i
�

m
2

(x−a)2

t︸ ︷︷ ︸ (14)

K(x, t; a, 0) : the free particle propagator!

We are inspired by this development to notice that

S(x, t; a, 0) ≡ �

i

{
− 1

4
(x−a)2

σ2[1+i(t/τ)]

}
(15)

↓
= m

2
(x−a)2

t in the limit σ ↓ 0

is (according to Mathematica) a solution of the Hamilton-Jacobi equation

1
2m

(
∂S
∂ x

)2 + ∂S
∂ t = 0 (16)

and gives
∂2S
∂x∂a = �

2iσ2[1+i(t/τ)]

↓
= −m

t in the limit σ ↓ 0

so (11) can be written

ψ(x, t) =
√

2σ
√

2π ·
√

i
h

∂2S
∂x∂a e

i
�
S(x,t;a,0) (17)

which is exact, but serves in the limit to cast useful light on the origin of

(14). The factor
√

i
h

∂2S
∂x∂a e

i
�
S originates in early work of J. H. Van Vleck,5

and has for more than half a century (i.e., since the invention of the Feynman
formalism6) stood guard at the portal through which quantum and classical
mechanics communicate. But it should, in this connection, be noticed that

5 “The correspondence principle in the statistical interpretation of quantum
mechanics,” P. N. A. S. 14, 178 (1928).

6 See Chapter 7 of Pauli Lectures on Physics: Volume 6. Selected Topics in
Field Quantization. This is the English translation () of material which
Pauli presented at a research seminar held at the ETH in Zürich during the
academic year  -.
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the function S(x, t; a, 0) introduced at (15) cannot arise from orthodox classical
mechanics, for it is complex—this we might emphasize by writing

S(x, t; a, 0) = �
1
4

[
x−a
σ(t)

]2 · { t+iτ
τ

}
—and its real/imaginary parts become entangled by the non-linearity of the
Hamilton-Jacobi equation (16).

The factor
√

2σ
√

2π which intrudes at (14) derives from this circumstance:
the propagator K(x, t; a, 0) is the solution of the Schrödinger equation which
has by design the property that

lim
t↓0

K(x, t; a, 0) = δ(x− a)

while (11) refers to the solution which can (in a certain limit, and somewhat
informally) be said to evolve from

√
δ(x− a); we have∫

Gaussian dx = 1 with Gaussian ≡ 1
σ
√

2π
e−

1
2 [ x

σ ]2

∫ √
Gaussian dx =

√
2σ
√

2π

which captures the analytical essence of the situation. Pursuing this remark in
finer detail: it follows from (11) that

ψ(x, 0) =
[

1
σ
√

2π

] 1
2

exp
{
− 1

4
(x−a)2

σ2

}
=
√

Gaussian (18)

=
√

δ(x− a) in the limit σ ↓ 0

and by computation

ψ(x, t) =
∫

K(x, t; y, 0)ψ(y, 0) dy (19)

=
∫ √

m
iht e

i
�

m
2

(x−y)2

t

√
1

σ
√

2π
e−

1
4 [ y−a

σ ]2 dy

=
√

τ
4πσ2it

1
σ
√

2π

∫
e−

1
4σ2

{
[1−i(τ/t)]y2−2[a−i(τ/t)x]y+[a2−i(τ/t)x2]

}
dy

=
√

τ
4πσ2it

1
σ
√

2π

√
π 4σ2

[1−i(τ/t)] exp
{

1
4σ2

[a−i(τ/t)x]2−[1−i(τ/t)][a2−i(τ/t)x2]
[1−i(τ/t)]

}
we do in fact (after simplifications) recover precisely (11).

We observe finally that results obtained above by the process σ ↓ 0 could
equally well have been achieved by t ↑ ∞; i.e., that (11) entails

1√
2σ

√
2π
· ψ(x, t) −→ K(x, t; a, 0) for t� τ (20)
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For an electron we have

τ = 2�

mc2 if σ set equal to the Compton length: σ = �

mc

∼ 2.6× 10−21 seconds

so the process (20) is prompt; it becomes (by the factor ( 1
137 )2 = 5.3 × 10−5)

even more prompt if we set

σ = classical electron radius = e2

�c · Compton length

But for a grain of sand (cubic millimeter of SiO2, which has a mass of 2.65×10−3

gm.) we have

τ = 5.0× 1016 seconds if σ = 10−4 centimeters (one micron)

∼ 1.6× 109 years

which is certainly not prompt; even for such a precisely located smallish lump
of macroscopic stuff (4.4×10−5 mole of quarz, with its more than 1020 internal
degrees of freedom) the process (20) takes roughly the age of the universe to
approach to completion.

4. Remarks concerning the “natural time” parameter. The (non-relativistic)
quantum dynamics of a free particle supplies two dimensioned constants (m and
�), from which it is not possible to construct a “natural time.” But particular
solutions of the Schrödinger equation have distinctive shapes, and therefore
supply characteristic assortments of numbers with the physical dimension of
length; it was thus that we came to associate a

“natural time” τ ≡ 2m
�
· (minimal variance) = 2mσ2

�

with the Gaussian solutions (11). We were motivated by (20) to look to the
numerical value assumed by τ in some characteristic cases, but (20) touches
upon a fairly esoteric point; the simple essence of the matter was implicit already
in (12), which written

σ2(t) = σ2[1 + (t/τ)2]

informs us that

τ =
{

time required for the variance σ2(t) to
grow to twice its initial/minimal value

We have
σ(t) ∼=ut

u ≡ �

2mσ

}
if t� τ (21)

For an electron �/2m = cm2 sec−1

u = 5.8× 108 cm sec−1 if σ = Bohr radius

= 1
2 (c/137) = orbital speed

2
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To set u = c is to obtain

σ = 1
2 (Compton length)

which establishes the sense in which the quantum mechanical expansion of a
primeval Gaussian mimics the expansion of the universe. Note also that by
the Heisenberg uncertainty principle ∆p ∼ �/2σ = mu; this elementary remark
establishes a sense in which (21) is not at all surprising.

But from another point of view (21) is surprising: The “fundamental
solution”7 of the heat/diffusion equation ∇2ψ = D ∂

∂tψ is Gaussian

k(x, t) ≡ 1√
4πt/D

e−
x2

4t/D

= 1
σ(t)

√
2π

e−
1
2 [ x

σ(t) ]
2

with σ(t) =
√

2t/D

and exposes this fact:

σ ∼ t
1
2 : characteristic signature of a “diffusion processes”

If, formally, we set D = −i 2m
�

then the heat equation becomes the free-particle
Schrödinger equation, and k(x, t) becomes precisely the propagator K(x, t), as
defined at (14). Looking back again to (11–13) we see that it is the complexity
of the construction σ

√
1 + i(t/τ) that accounts for

σ ∼ t
1
2 −−−−−−−−−→

surprising
σ ∼ t

5. The “launched” Gaussian wavepacket. The Gaussian packet (11) sits in one
place and grows slowly fat. By “launching” such a packet we place ourselves in
position to model the quantum mechanical motion of a projectile, which departs
(neighborhood of) the origin at time t = 0 with velocity v and with momenta
which lie in the neighborhood ∆p of p = mv. I discuss three distinct but
equivalent routes to the construction of such a “launched Gaussian wavepacket.”

It is an implication (set a = 0) of the argument that culminated in (11)
that

ψ(x, t) =
[

1
σ[1+i(t/τ)]

√
2π

] 1
2
exp

{
− 1

4
x2

σ2[1+i(t/τ)]

}
︸ ︷︷ ︸

Gaussian standing at x = 0

= 1√
h

∫
e+ i

�
pxϕ(p, t) dp

ϕ(p, t) =
{[

1
λ
√

2π

] 1
2 e−

1
4 [ p

λ ]2
}
· e− i

�
(p2/2m) t

7 Also called the “source solution;” see p. 10 and Chapter 3 of D. V. Widder,
The Heat Equation ().
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The idea now is to shift the momentum distribution (p→ p− p0 with p0 ≡ mv)
and then work backwards, writing

ψ(x, t) = 1√
h

∫
e+ i

�
px

{[
1

λ
√

2π

] 1
2 exp

{
− 1

4 [p−p0
λ ]2

}}
· e− i

�
(p2/2m) t dp

=
[

1
hλ

√
2π

] 1
2

∫
e−(Ap2+2Bp+C) dp

A ≡ 1
4λ2 [1 + i(t/τ)]

B ≡ − 1
4λ2 [p0 + imτ x]

C ≡ 1
4λ2 p

2
0

=
[

1
hλ

√
2π

] 1
2
[
π
A

] 1
2 e

B2−AC
A

=
[

π
hλA

√
2π

] 1
2 exp

{
[p0+i(m/τ)x]2−p2

0[1+i(t/τ)]
4λ2[1+i(t/τ)]

}
=

[
1

σ[1+i(t/τ)]
√

2π

] 1
2 exp

{
− x2

4σ2[1+i(t/τ)] + i
�

p0x−(p2
0/2m)t

1+i(t/τ)︸ ︷︷ ︸
}

(22)

new term

From

=
[
etc.

] 1
2 exp

{
1

4σ2(t)

[
−(x−vt)2+i

t
τ (x2−v2τ2)

]}
· exp

{
i
�

p0x
1+(t/τ)2

}
(23)

it becomes clear that the associated probability density

P (x, t) = 1
σ(t)

√
2π

exp
{
− 1

2

[
x−vt
σ(t)

]2} (24)

does as anticipated describe a Gaussian which drifts to the right with speed v,
growing fat in the familiar way as it does so.

At time t = 0 (22) gives

ψ(x, 0) =
[

1
σ
√

2π

] 1
2 e−

1
4 [ x

σ ]2 · e i
�
p0x (25)

which is a specialized instance of (2): set a = 0 and α(x, 0) = 1
�
p0x. If we

were able to argue on some grounds that introduction of the phase factor e
i
�
p0x

serves to “launch” the Gaussian packet then we should be able to recover (22)
by dynamical propagation of (25). Returning to (19) (where the same idea was
developed in the case p0 = 0), we have∫

K(x, t; y, 0)ψ(y, 0) dy

=
∫ √

m
iht e

i
�

m
2

(x−y)2

t

√
1

σ
√

2π
e−

1
4 [ y

σ ]2 · eiky dy with k ≡ p0/�

=
√

τ
4πσ2it

1
σ
√

2π

∫
e−

1
4σ2

{
[1−i(τ/t)]y2+2i[−2σ2k+(τ/t)x]y+[−i(τ/t)x2]

}
dy

=
√

τ
4πσ2it

1
σ
√

2π

√
π 4σ2

[1−i(τ/t)] exp
{
− 1

4σ2
[−2σ2k+(τ/t)x]2+[1−i(τ/t)][−i(τ/t)x2]

[1−i(τ/t)]

}
=

[
1

σ[1+i(t/τ)]
√

2π

] 1
2

exp
{
− x2

4σ2[1+i(t/τ)] + ikx−(σ2/τ)k2t
1+i(t/τ)

}
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which (by σ2/τ = �/2m and k = p0/�) does in fact precisely reproduce (22).
But how might we have foreseen that the adjustment

[
1

σ
√

2π

] 1
2 e−

1
4 [ x

σ ]2 −→
[

1
σ
√

2π

] 1
2 e−

1
4 [ x

σ ]2 · e i
�
p0x (26)

serves to “launch” the standing Gaussian packet on the left? The question
motivates me to pose a related question (which might have been posed already
in connection with (2)): If ψ(x, t) is a solution of the free particle Schrödinger
equation ψxx + iκψt = 0 (κ ≡ 2m/�), what condition is imposed upon α(x, t)
by the requirement that ψ · eiα be also a solution? From

(∂2
x + iκ∂t)ψe

iα =
{

(ψxx + iκψt)︸ ︷︷ ︸ +(iαxx − α2
x − καt)ψ + 2iαxψx

}
eiα

0

we see that necessarily

αxx + iα2
x + iκαt + 2αx

∂ logψ
∂x = 0

In the present application (see again (22))

∂ logψ
∂x = − x

2σ2[1+i(t/τ)] = − mx
�τ [1+i(t/τ)]

and Mathematica assures us that α(x, t) ≡ p0x−(p2
0/2m)t

�[1+i(t/τ)] does in fact satisfy

αxx + iα2
x + i 2m

�
αt − 2mx

�τ [1+i(t/τ)]αx = 0 (27)

This result is confirmatory of (22), but provides disappointingly little insight
into the mechanism that lies at the base of (26).

Many years ago I had occasion8 to describe the structure of the group of
transformations which send

solutions −→ solutions of the free particle Schrödinger equation

That work—in which the Gaussian “fundamental solution”

g(x, t) = 1√
4πat

e−
1

4atx
2

with a ≡ �

2m

plays a central role—is by nature an elaborate generalization of the little
argument just concluded, and does serve to provide insight into (26). But to
venture down that seldom-traveled road would be ask too much of my reader; I
turn now, therefore, to a simpler line of argument—a selected detail from that
more comprehensive work—which captures the essence of the point at issue.

8 appell, galilean & conformal transformations in classical/
quantum free particle dynamics (). I drew inspiration there from
several sources, but especially from §6 of Widder’s introductory chapter.
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An inertial observer glides by, contemplating the physics (our §2) of a
standing Gaussian. The following discussion proceeds from the remark that to
us, his Gaussian will appear to have been “launched.” Let us suppose that our
inertial friend—so that we can continue to use {x, t}—uses {X,T } to coordinate
the points of spacetime, with

x = X + vT

t = T
; inversely

X = x− vt

T = t

He writes (see again (11))

Ψ(X,T ) =
[

1
σ[1+i(T/τ)]

√
2π

] 1
2

exp
{
− 1

4
X2

σ2[1+i(T/τ)]

}
to describe his Gaussian-at-the-origin, and notes that Ψ(X,T ) is a solution of
the Schrödinger equation, which he writes{(

∂
∂X

)2 + iκ ∂
∂T

}
Ψ = 0

Those pronouncements, in our variables, read

Ψ(x− vt, t) =
[

1
σ[1+i(t/τ)]

√
2π

] 1
2

exp
{
− 1

4
(x−vt)2

σ2[1+i(t/τ)]

}
and (since ∂

∂X = ∂
∂x and ∂

∂T = v ∂
∂x + ∂

∂t ){(
∂
∂x

)2 + iκ
[
v ∂
∂x + ∂

∂t

]}
Ψ(x− vt, t) = 0

The latter equation does not possess free particle Schrödinger form, except in
the trivial case v = 0. We observe, however, that we can multiply the latter
equation by any non-zero factor without distroying its validity, and that we
have at our disposal the operator identity (“shift rule”)

eϕ
{(

∂
∂x

)2 + iκ
[
v ∂
∂x + ∂

∂t

]}
=

{(
∂
∂x − ϕx

)2 + iκ
[
v
(
∂
∂x − ϕx

)
+

(
∂
∂t − ϕt

)]}
eϕ

=
{(

∂
∂x

)2 + iκ ∂
∂t

}
eϕ

+
{(
− 2ϕx + iκv

)
∂
∂t +

(
ϕ2
x − ϕxx − iκvϕx − iκvϕt

)}
eϕ

The implication is that ψ(x, t) ≡ eϕ · Ψ(x − vt, t) will satisfy the free particle
Schrödinger equation if

(−2ϕx + iκv
)

= ϕ2
x − ϕxx − iκvϕx − iκvϕt = 0

These conditions are readily seen to entail

ϕ(x, t) = 1
2 iκvx− 1

4 iκv
2t + constant

= i
�

{
mvx− 1

2mv2t
}

+ ϕ0
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so we obtain

ψ(x, t) =
[

1
σ[1+i(t/τ)]

√
2π

] 1
2

exp
{
− 1

4
(x−vt)2

σ2[1+i(t/τ)]

}
· e i

�

{
mvx− 1

2mv2t
}

=
[

1
σ[1+i(t/τ)]

√
2π

] 1
2

exp
{

1
σ2[1+i(t/τ)]

[
−x2

4 + i
�

(
mvx− 1

2mv2t
)]}

which precisely reproduces (22). This line of argument traces (26) to the
circumstance that Galilian covariance of the Schrödinger equation requires that
the wavefunction acquires a factor when transformed. We might on dimensional
grounds argue that the only factors available (at t = 0) have the form

e(numeric) i
�
mvx

and that detailed analysis has served only to establish that

numeric = 1

6. The associated Wigner distributions. In  E. P. Wigner had occasion9 to
pull from his hat (or perhaps from that of Leo Szilard) the definition

Pψ(x, p) ≡ 2
h

∫
ψ∗(x + ξ) e2 i

�
pξ ψ(x− ξ)dξ

and by  J. E. Moyal10 had traced the fact that the so-called “Wigner
distribution function” is so richly endowed with wonderful properties to the
circumstance that Pψ(x, p) stands in Weyl correspondence with the density
matrix

hPψ(x, p) ←−−−−−−−−→
Weyl

|ψ)(ψ|

My present objective is to construct a description of Pgaussian(x, p).

Looking first to the simple static Gaussian11

ψ(x) =
[

1
σ
√

2π

] 1
2 e−

1
4 [ x−a

σ ]2

Mathematica supplies

Pψ(x, p) = 2
he

− 1
2{[

x−a
σ ]2+[ p

λ ]2}

= 1
σ
√

2π
e−

1
2 [ x−a

σ ]2 · 1
λ
√

2π
e−

1
2 [ p

λ ]2 (28)

= |ψ(x)|2 · |ϕ(p)|2

9 “On the quantum correction for thermodynamic equilibrium,” Phys. Rev.
40, 749 (1932).

10 “Quantum mechanics as a statistical theory,” Proc. Camb. Phil. Soc. 45,
92 (1949). For historical comments, additional references and a summary of
the mathematical/physical details see §6 in “Status and some ramifications of
Ehrenfest’s theorem” ().

11 This is (2), with α = 0.
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where (as henceforth) I have allowed myself to make tacit use of (6): λ = �/2σ.
These general properties of the Wigner distribution∫∫

Pψ(x, p)dxdp = 1 (29.1)∫
Pψ(x, p)dp = |ψ(x)|2 and

∫
Pψ(x, p)dx = |ϕ(p)|2 (29.2)

Pψ(x, p) is bounded : |Pψ(x, p)| ≤ 2/h (29.3)

pertain transparently to the Pψ(x, p) encountered at (28), but this “most
distinctive quirk” of the Wigner distribution

Pψ(x, p) is not precluded from assuming negative values (29.4)

does not: (28) describes a function which is everywhere positive, and is therefore
not a “quasi-distribution” but a true distribution function; it is, in plain words,
a bivariate normal distribution, defined on phase space.

Working now from the launched Gaussian wavepacket (22)—written

ψ(x, t) =Ψ · exp
{

1
1+iθ

[
− 1

4σ2x
2 + i

�
p0x

]}
Ψ ≡

[
1

σ[1+iθ]
√

2π

] 1
2 exp

{
− i

�

(p2
0/2m)t
1+iθ

}
with θ ≡ t/τ—we have

Pψ(x, p) = 2
h |Ψ|

2

∫
exp

{
1

1−iθ

[
− 1

4σ2 (x + ξ)2 − i
�
p0(x + ξ)

]}
e2 i

�
pξ

· exp
{

1
1+iθ

[
− 1

4σ2 (x− ξ)2 + i
�
p0(x− ξ)

]}
dξ

= 2
h |Ψ|

2

∫
e−[Aξ2+2Bξ+C]/2�σ2(t) dξ :

{
A≡ �

B≡ i[�xθ+2p0σ
2−2pσ2(t)]

C ≡ �x2−4p0xσ
2θ

= 2
h |Ψ|

2 · [π
�

2�σ2(t)]
1
2︸ ︷︷ ︸ exp

{
−[�xθ+2mvσ2−2pσ2(t)]2−�[�x2−4mvxσ2θ]

2�2σ2(t)

}
= 2

h exp
{
− 2�mv2σ2tθ

2�2σ2(t)

}
= 2

h exp
{
− x2 1

2σ2 + xp θ
σλ − p2 (1+θ2)

2λ2 + pmv
λ2 − m2v2

2λ2

}
= 2

h exp
{
− 1

2

[
x
σ − θ · pλ

]2 − 1
2

[
p−mv

λ

]2} (30.1)

= 2
h exp

{
− 1

2

[
x−vt
σ − θ · p−mv

λ

]2 − 1
2

[
p−mv

λ

]2} (30.2)

It is gratifying to observe that (30) gives back (28) when we simultaneously
turn off the drift (set v = 0), execute a spatial displacement x → x − a and
go to the origin of time (θ = 0). And that (as one readily verifies) the implied
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marginal distribution
∫
Pψ(x, p) dp reproduces precisely (24). We observe—as

we observed already at (28)—that the prefactor

2
h can be written 1

σ
√

2π
· 1
λ
√

2π
, and is time-independent

and that—surprisingly?—it is not σ(t) but σ = σ(0) which enters into the design
both of the prefactor and of the exponent. We note finally that (30) describes
a Wigner distribution which is non-negative, everywhere and always.

7. Minimal dispersion, and the emergence of correlation. From the statement

∆x∆p ≥ 1
2� : all states |ψ)

of the Heisenberg uncertainty principle it becomes natural to ask: For what
states |ψ) is equality achieved? It is in response to this natural question that one
is led to the so-called “states of minimal dispersion” which are, as it emerges,
Gaussian; it is largely (though by no means exclusively) from this fact that
physicists acquire their special interest in “Gaussian wavepackets.”

In  Schrödinger observed12 that if A and B are self-adjoint operators
associated with any pair of observables, then

(∆A)2(∆B)2 ≥
〈AB− BA

2i

〉2

+
{〈AB + BA

2

〉
− 〈A〉〈B〉

}2

(31)

≥
〈AB− BA

2i

〉2

with equality if and only if it is simultaneously the case that

• the “quantum correlation coefficient”
〈

AB+BA
2

〉
− 〈A〉〈B〉 vanishes, and

• the vectors
{
A− 〈A〉

}
|ψ) and

{
B− 〈B〉

}
|ψ) are parallel

These conditions, in the special case A→ x and B→ p, are readily shown13 to
entail—compare (25)—

ψ(x) ≡ (x|ψ) = [ 1
σ
√

2π
]
1
2 e−

1
4 [

x−〈x〉
σ ]2e

i
�
〈p〉x with σ = ∆x

Turning now (from “quantum pre-dynamics”) to quantum dynamics, one
sets

ψ(x, 0) = minimal dispersion wavepacket

12 The detailed argument is reviewed in §2 of “Status and some ramifications
of Ehrenfest’s theorem” (). See also the discussion in §7.1 of Max Jammer’s
The Conceptual Development of Quantum Mechanics ().

13 See David Bohm, Quantum Mechanics () §10.10; David Griffiths,
Introduction to Quantum Mechanics () §3.4.2 or virtually any other good
quantum text.
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and looks to the dispersive properties of

ψ(x, t) =
∫

K(x, t; y, 0)ψ(y, 0) dy (32)

It is a familiar fact14 that the ground state of an oscillator is Gaussian

ψoscillator(x, 0) = [mω
�π ]

1
4 e−

mω
2�

x2
: evidently σ = ∆x =

√
�/2mω

and, because we are talking here about an eigenstate, we know even without
appeal to the propagator that

ψoscillator(x, t) = [mω
�π ]

1
4 e−

mω
2�

x2 · e− i
�
[ 12 �ω]t

We have here exhibited a particular state of a particular system with the
property that minimal dispersiveness is persistent . If, more generally (and
more interestingly), we take

ψ(x, 0) = [mω
�π ]

1
4 e−

mω
2�

(x−A)2 : displaced copy of the groundstate

and work from (32), we at length15 obtain

ψ(x, t) = [mω
�π ]

1
4 e−

mω
2�

(x−A cosωt)2 · e−if(x,t)

where f(x, t) ≡ ωt
2 + mω

2�

[
2xA sinωt− 1

2A
2 sin 2ωt

]
is periodic; then

|ψ(x, t)|2 = [mω
�π ]

1
2 e−

mω
�

(x−A cosωt)2

= Gaussian, sloshing rigidly back and forth, with amplitude A

The results just summarized are of interest not least because they are so
atypical : generally, minimal dispersiveness is not persistent. Indeed, we saw
already in §4 that

∆x∆p = 1
2� −−−−−−−−−−−−→

free particle

1
2�

√
1 + (t/τ)2 (33)

τ ≡ ∆x
u with u = ∆p

m

I propose now to discuss, from a rather novel point of view, how (33) comes
about.16

14 See Bohm, §13.8.
15 See quantum mechanics (), Chapter 2, pp. 89–95 for the details.

One needs to know that the oscillator propagator can be described

Koscillator(x, t, y, 0) =
√

mω
2πi� sinωt exp

{
− mω

2i� sinωt

[
(x2 + y2) cosωt− 2xy

]}
16 Closely related remarks can be found in Bohm’s §10.8, but he was obliged to

proceed without the assistance of a tool which (as I hope to demonstrate) lends
itself particularly well to such discussion—the notion of a Wigner distribution.
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Equation (30) has the form

Pψ(x, p; t) = 2
he

polynomial of degree 2 in variables x and p

= 2
he

quadratic in “displaced variables” X≡x−vt and P≡p−mv

and can be notated

Pψ(x, p; t) = 1
2π

√
det A e−

1
2ξξξ

T
A ξξξ (34)

with

ξξξ ≡
(
X
P

)
and A ≡


 1

σ2 −θ 1
σλ

−θ 1
σλ

1+θ2

λ2


 (35)

⇓
1
2π

√
det A = 1

2π
1
σλ = 2

h

I wrote (34) to establish contact with the standard theory of bivariate normal
distributions, and digress now to review the bare essentials of that subject.17

We have these Gaussian integral formulæ:

1
2π

√
ac− b2

∫∫



1
x
y
x2

xy
y2


 e−

1
2 (ax2+2bxy+cy2)dxdy =




1
0
0

+c/(ac− b2)
−b/(ac− b2)
+a/(ac− b2)




subject only to the conditions a > 0, c > 0 and ac− b2 > 0. Evidently

F (x, y) ≡ 1
2π

√
ac− b2e−

1
2 (ax2+2bxy+cy2)

= 1
2π

√
det A exp

{
− 1

2

(
x
y

)T (
a b
b c

)
︸ ︷︷ ︸

(
x
y

) }

A

can be understood to describe a bivariate distribution, with vanishing means∫∫ (
x
y

)
F (x, y) dxdy =

(
0
0

)

and (trivially centered) second moments—variances and “covariances”—given
by (

σ2
xx σ2

xy

σ2
yx σ2

yy

)
≡

∫∫ (
xx xy
yx yy

)
F (x, y) dxdy = 1

det A

(
+c −b
−b +a

)
= A

–1

17 See Harald Cramér, Mathematical Methods of Statistics (), §21.12.
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In terms of the latter, we have

A = 1
σ2

xxσ
2
yy−σ2

xyσ
2
yx


 σ2

yy −σ2
xy

−σ2
yx σ2

xx




= 1
σ2

xσ
2
y(1−ρ2)

(
σyσy −ρσxσy

−ρσxσy σxσx

)
=

(
σxσx ρσxσy

ρσxσy σyσy

)–1

= 1
1−ρ2


 1

σ2
x
−ρ 1

σxσy

−ρ 1
σxσy

1
σ2

y


 (36)

where I have abandoned the phoney distinction between σxy and σyx, adopted
the notational simplifications σxx → σx and σyy → σy, and introduced18 the
(dimensionless) “correlation coefficient”

ρ ≡
σ2
xy

σxσy
(37)

The distribution F (x, y) is constant on curves

(
x
y

)T (
a b
b c

) (
x
y

)
≡ xxxT

Axxx = constant

which (by det A = 1
σ2

xσ
2
y(1−ρ2) > 0, which entails −1 ≤ ρ ≤ +1) are in fact

concentric ellipses, centered at the origin, and of a shape/orientation which is
set by the spectral properties of A. One has

eigenvalues =
(σ2

x + σ2
y)±

√
(σ2

x − σ2
y)2 + 4ρ2σ2

xσ
2
y

2σ2
xσ

2
y(1− ρ2)

(38)

= 1
2 (sum)± 1

2 (difference)

(sum) = σ2
x+σ2

y

σ2
xσ

2
y(1−ρ2)

= 1
1−ρ2

[
1
σ2

x

+ 1
σ2

y

]
= trA

To discover the orientation of the ellipse we draw upon the fact19 that every
2× 2 symmetric matrix can be written(

cosϑ − sinϑ
sinϑ cosϑ

)T (
λ1 0
0 λ2

) (
cosϑ − sinϑ
sinϑ cosϑ

)

=

(
1
2 (sum) + 1

2 (difference) cos 2ϑ − 1
2 (difference) sin 2ϑ

− 1
2 (difference) sin 2ϑ 1

2 (sum)− 1
2 (difference) cos 2ϑ

)

18 See Cramér, p. 265.
19 See §1 of “Non-standard applications of Mohr’s construction”().
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Working from (36) and (38), we therefore have

sin 2ϑ =
2ρσxσy√

(σ2
x − σ2

y)2 + 4ρ2σ2
xσ

2
y

cos 2ϑ =
σ2
x − σ2

y√
(σ2

x − σ2
y)2 + 4ρ2σ2

xσ
2
y




(39)

Looking to what (38) and (39) have to say in some special cases: if ρ = 0 then it
is obvious from (36) but also an implication of (38) that the eigenvalues of A are
1/σ2

x and 1/σ2
y, while (39) gives ϑ = 0 (no rotation is required to diagonalize

the already-diagonal matrix: the principal axes coincide with the coordinate
axes): no cross-term appears in the exponent, so F (x, y) factors

F (x, y) = f(x) · g(y)

(f(x) and g(y) are, as it happens, both Gaussian) and the random variables x
and y have become “independent.” At ρ = ±1 the right side of (38) becomes
singular, but useful information can be obtain by setting ρ = 1 − ε (else
ρ = −1 + ε) and studying the approach to singularity (limit ε ↓ 0); we have

eigenvalues =




1
ε

σ2
x+σ2

y

2σ2
xσ

2
y

+ · · · −→ ∞
1

σ2
x+σ2

y
+ · · · −→ 1

σ2
x+σ2

y

(40)

and so obtain concentric elongated ellipses of vanishing area—in short: a line,
of

slope = tanϑ = ±
√

1−cos 2ϑ
1+cos 2ϑ

= ±σy

σx
(41)

(I will not linger to resolve the sign ambituity); the random variables x and y
have become perfectly (anti)correlated, which is to say “dependent.”20

Returning with these classic resources to our physical problem: comparison
of (35) with (36) gives

σ2
X = 1

1−ρ2σ
2

σ2
P = 1

1+θ2
1

1−ρ2λ
2

σXσP = ρ
θ

1
1−ρ2σλ

20 We are in position now to use 1st and 2nd moment data, whether obtained
from experimental observation or from some theoretical F(x, y), to construct a
“bivariate normal distribution of best fit.” I have no present reason to pursue
the details (a variant of the program will be taken up in a companion essay),
but see Cramér’s Chapter 21 or the resources in Mathematica’s “Multinormal
Distribution” package to gain a sense of what lies down that much-traveled
road.
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The first two of those equations entail σXσP = 1√
1+θ2

1
1−ρ2σλ, which upon

comparison with the third gives

ρ = θ√
1+θ2 i.e., 1

1−ρ2 =1+θ2 (42)

whence
σX = σ

√
1 + θ2

σP = λ

}
(43)

which precisely reproduce (12) and its momental companion. But while (12)
refers to a property of the Gaussian wavepacket ψ(x, t) described by (11), the
equations (43) refer to a more complex (but physically equivalent) object: the
Pψ(x, p; t) of (30).

We are, by (42), placed in position to state (in reference to the quantum
dynamics of a free Gaussian wavepacket) that the correlation coefficient

ρ(t) = t/τ√
1+(t/τ)2

=
{

(t/τ) + · · · −→ 0 at t = 0
1− 1

2 (τ/t)2 + · · · −→ 1 for t� τ ; i.e., as t ↑ ∞

That x-measurements and p -measurements yield results which are initially
uncorrelated is plausible enough, but that there exists any sense in which

asymptotically in time, p-measurements become
redundant with x-measurements!

is counterintuitive. . . though susceptible to interpretation. Asymptotically in
time, we have P = slope·X; i.e.,

p−mv = slope · (x− 〈x〉)

while it follows from (41) by (43) that

slope = λ
σ
√

1+θ2 ∼ λτ
σt = m

t −→ 0

The distribution—which at finite times was constant on concentric ellipses with
moving centers—has in the limit t ↑ ∞ become axially symmetric about the
“line of zero slope” p = mv; we have become unable to say anything useful
concerning the likely outcome of an x -measurement, but retain our initial
ability to speak usefully about p -measurements. Looking to (30.1) for direct
support of this conclusion, we are reminded that, to the extent that Pψ(x, p; t)
has acquired axial symmetry, it has lost its normalizability; the thing to notice
is that the marginal distribution∫ {

right side of (30.1)
}
dx = 1

λ
√

2π
exp

{
− 1

2

[
p−mv

λ

]2}
is θ-independent: it supports our conclusion at all finite times, and therefore
does so also in the limit.
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Looking again to (30), we notice that

Pψ(x, p; t) is maximal at the moving point
{
x(t) = vt
p(t) = mv : constant

maximal value is at all times given by 2
h

and that the maximal value is in fact greatest-possible for a (bivariate) Wigner
distribution. The valuation drops to 2

he
− 1

2 (60% of maximum) on the moving
curve [

x−vt
σ − θ · p−mv

λ

]2 +
[
p−mv

λ

]2 = 1 (44)

which at t = 0 reads [
x
σ

]2 +
[
p−mv

λ

]2 = 1 (45)

The latter equation describes a ellipse (center displaced a distance mv up the
p -axis), with principal axes parallel to the coordinate axes, and

area = πσλ = h
4 (46)

Generally, the area of the ellipse xxxT
Axxx = 1 (det A > 0) can be described

area = π
√

product of eigenvalues of A
–1 = π

√
det A–1 = π/

√
det A

In connection with the general theory of bivariate Gaussian distributions we
have already had occasion to remark that det A

–1 = σ2
xσ

2
y(1−ρ2), and from this

it now follows (see again (35)) that the area of the ellipse (44) is given (not just
initially but) at all times by (44): the deformation (45) −−−−→

t
(44) is, in fact,

area-preserving .

The “incompressibility of dynamical phase flow”21 is in classical mechanics
a celebrated implication of the fact that dynamical phase flow is canonical, and
has important applications especially to (classical) statistical mechanics. It is
a notion not common to quantum mechanics, but has here been encountered
in connection with a particular application of the “phase space formulation” of
quantum mechanics. I now show that (45) −−−−→

t
(44) can, in fact, be extracted

from the classical dynamics of a free particle:

Generally, if
x0

p0

}
−−−−→

t

{
x = f(x0, p0; t)
p = g(x0, p0; t)

describes an invertible (not necessarily dynamical) t-parameterized map, and if

ϕ(x0, p0) = 0

21 Liouville’s theorem: see §9-8 in H. Goldstein, Classical Mechanics ().
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serves implicitly to describe a curve C0 inscribed on phase space, then we write

ϕ(x, p) = 0 −−−−→
t

ϕ(x, p; t) ≡ ϕ(f –1(x, p; t), g–1(x, p; t)) (47)

to described the flow-induced deformation C0 → Ct of the curve. The dynamical
flow generated by the free particle Hamiltonian can be described

x0

p0

}
−−−−→

t

{
x = x0 + 1

mp0t
p = p0

: “free particle sheer”

and as an instance of (47) induces

[
x
σ

]2 +
[
p−mv

λ

]2 = 1 −−−−→
t

[x−(p/m)t
σ

]2 +
[
p−mv

λ

]2 = 1 (48)

But [
x−vt
σ − θ · p−mv

λ

]
= 1

σ

[
x− vt− σ

τλ (p−mv)t
]

σ
τλ = 1

m

=
[x−(p/m)t

σ

]
after simplifications

so at (48) we have in fact recovered (45) −−−−→
t

(44): see the following figure.

Figure 1: Mechanism responsible for the dynamical development
of correlation. The figure derives from (48), in which I have set
σ, λ, m and v all equal to unity, and t = {0, 1, 2, 3}. A similar
graphic appears on p. 204 of Bohm’s text, but is claimed by him to
refer only to the classical physics of a free particle, and because he
works without knowledge of the phase space formalism he is obliged
to be vaguely circumspect in drawing his quantum conclusions. We,
however, are in position to identify the sense in which (48) pertains
as directly and literally to the quantum physics of a free particle as
it does to the classical physics. Also implicit in the figure are the
statements

σx(t) = σ
√

1 + (t/τ)2

σp(t) = constant

which we associate familiarly with the quantum motion of Gaussian
wavepackets, but are seen now to pertain equally well to the classical
motion of Gaussian populations of free particles.
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8. Quantum analog of Liouville’s theorem. It is a frequently reenforced lesson of
computational experience (unsupportable, so far as I am aware, by any direct
appeal to physical intuition) that the dialog between classical and quantum
mechanics becomes uniquely felicitous when the Hamiltonian depends at most
quadratically upon its arguments, and it is for this reason that most experienced
physicists would, I anticipate, hold that the quantum/classical confluence
developed in the preceding section and summarized in the figure is “not very
surprising.” My objective here will be to show how the phase space formalism
can be used to make such a train of argument clear and precise.

In ordinary quantum mechanics the motion (in the Schödinger picture) of
the density matrix ρρρ ≡ |ψ)(ψ| can be described

i� ∂
∂tρρρ = [H, ρρρ ]

The preceding equation can be shown without much difficulty22 to stand in
Weyl correspondence with the following fairly awesome equation:

∂
∂tPψ(x, p; t) = 2

�
sin

{
�

2

(
∂
∂x

H

∂
∂p

P
− ∂

∂x
P

∂
∂p

H

)}
H(x, p)Pψ(x, p; t) (49)

in connection with which it is to be understood that H(x, p)←−−−−→
Weyl

H; that

sin
{

�

2

(
etc.

)}
≡

{
�

2

(
etc.

)}
− 1

3!

{
�

2

(
etc.

)}3 + 1
3!

{
�

2

(
etc.

)}5 − · · ·
= differential operator of infinite order

and that ∂
∂x

H
sees the x-dependence of H but is blind to that of P , etc. The

point to which I would draw attention is that (49) simplifies greatly

↓

=
(

∂
∂x

H

∂
∂p

P
− ∂

∂x
P

∂
∂p

H

)
HPψ if H is quadratic in its arguments

= ∂H
∂x

∂P
∂p − ∂P

∂x
∂H
∂p

= [H,Pψ] : Poisson bracket

Equation (49) is, within the phase space formalism, the analog of—and conveys
precisely the same information as—the Schrödinger equation. It can be written

∂
∂tPψ(x, p; t) = [H,Pψ] + power series in �

(which suggests the special utility of the formalism to semi-classical lines of
argument) and in quadratic cases assumes precisely the structure of the Liouville
equation

∂
∂tD(x, p; t) = [H,D ] (50)

22 See Chapter 3, p. 110 of quantum mechanics ().
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—the upshot of Liouville’s theorem, according to which the local density of any
population of points sprinkled on phase space is, with respect to any flowing
point, constant:

d
dtD

(
x(t), p(t); t

)
= ∂D

∂t + ṗ∂D
∂p + ẋ∂D

∂x

= ∂D
∂t − ∂H

∂x
∂D
∂p + ∂H

∂p
∂D
∂x

= ∂D
∂t − [H,D ]

= 0 (51)

Liouville’s theorem is, as previously remarked, an expression ultimately of the
“incompressibility of classsical phase flow.” The quantum dynamical equation
(49) can in this light be construed to be a modified analog of Liouville’s equation,
an assertion that “phase flow in the quantum world is—except for quadratic
Hamiltonians—not incompressible, but squishy.”

Returning now from generalities to the Gaussian’s of immediate interest,
we observe that the Wigner distribution encountered at (30)—which we are in
position now to write

P (x, p; t) = 1
σ
√

2π
1

λ
√

2π
exp

{
− 1

2

[x−(p/m)t
σ

]2 − 1
2

[
p−mv

λ

]2} (52)

—is, almost trivially, a solution of the Liouville equation (50). And that, since

Hfree = 1
2mp2

is quadratic, means that it is (to say the same thing another way) a solution
also of the “Schrödinger equation” (49).

9. A paradox, and its resolution. In accounting thus for the “quantum/classical
confluence” we have achieved almost too much of a good thing. For (52) contains
no reference to �, and describes a correctly normalized Gaussian solution of
(49/50) for all values of σ and λ—even those that stand in violation of the
Heisenberg/minimality conditions σλ ≥ 1

2�. But the uncertainty principle
admits in quantum mechanics of no exceptions!

My first approach to the resolution of this paradoxical development hinges
on the seldom-remarked fact that only conditionally can a solution P (x, p; t)
of (49) be interpreted to be the Wigner distribution associated with some wave
function ψ(x, t).

When one is—as we were, at beginning of §6—introduced to the “forward
Wigner construction”

ψ(x) −−−−−−−−→
Wigner

Pψ(x, p) ≡ 2
h

∫
ψ∗(x + ξ) e2 i

�
pξ ψ(x− ξ)dξ (53)

and told that it lies at the foundation of an elaborately developed “phase space
formulation of quantum mechanics” which is entirely equivalent to the standard



24 Gaussian wavepackets

formulation (but in some respects more attractive), it becomes natural to ask:
“How does one pass backwards across the bridge that interconnects the two
formalisms? How does one describe ψ(x) ←−−−−−

Wigner
Pψ(x, p)?” Curiously, the

literature known to me is silent on this point. The desultory attention which I
had given to the problem over a span of forty years had served only to convince
me that, since the solution entailed a kind of de-convolution, “extraction of a
functional square root,” it was probably hard. I was therefore amazed when
my colleague Mark Beck (who has an experimental interest in the phase space
formalism) referred casually, in private conversation, to this elegant solution:23

By Fourier transformation of (53) we have

∫
Pψ(x, p)e−2 i

�
pξ̂ dp =

∫
ψ∗(x + ξ) δ(ξ − ξ̂)ψ(x− ξ)dξ

= ψ∗(x + ξ̂) ψ(x− ξ̂)

Select a point a at which
∫
Pψ(a, p) dp = ψ∗(a) ψ(a) �= 0.24 Set ξ̂ = a − x to

obtain ∫
Pψ(x, p)e−2 i

�
p(a−x) dp = ψ∗(a) ψ(2x− a)

which by notational adjustment 2x− a �→ x gives

ψ(x) = [ψ∗(a)]–1 ·
∫

Pψ(x+a
2 , p) e

i
�
p(x−a) dp

↓

= [ψ∗(0)]–1 ·
∫

Pψ(x2 , p) e
i
�
px dp in the special case a = 0

Evidently |ψ(0)|2 =
∫
Pψ(0, p) dp, so we have Beck’s formula—the “backward

Wigner construction”

ψ(x) =
eiα√∫

Pψ(0, p) dp
·
∫

Pψ(x2 , p) e
i
�
px dp←−−−−−−−−

Wigner
Pψ(x, p) (54)

The wavefunction ψ is delivered to us already normalized, fixed to within
specification of an unphysical phase factor.

Insertion of the P (x, p; 0) of (52)25 into Beck’s formula (I discard the phase

23 The following account of “Beck’s trick” is taken from §6 of “Status and
some ramifications of Ehrenfest’s theorem” ().

24 Such a point is, by
∫
ψ∗(x) ψ(x) dx = 1, certain to exist. It is often most

convenient (but not always possible) to—with Beck—set a = 0.
25 It is simply to avoid irrelevant notational complexity that I have set t = 0.
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factor) gives

ψ(x, 0) =

∫
1

σ
√

2π
1

λ
√

2π
exp

{
− 1

2

[
x
2σ

]2 − 1
2

[
p−mv

λ

]2}
e

i
�
px dp√∫

1
σ
√

2π
1

λ
√

2π
exp

{
− 1

2

[
p−mv

λ

]2}
dp

=
1

σ
√

2π
exp

{
− 1

4

[
1

2σ2 + 2λ2

�2

]
x2

}
e

i
�
mvx√

1
σ
√

2π

This function is supposed to be “already normalized,” but is normalized—
and in fact reproduces precisely (25)—if and only if

[
1

2σ2 + 2λ2

�2

]
= 1

σ2 , and
this is equivalent to the stipulation that the minimality condition σλ = �/2 be
satisfied .

We are brought thus to this resolution of our paradox:

Each of the {σ, λ} -parameterized functions (52) is a solution of the Liouville
equation (50). And each, therefore, is a solution of the “Schrödinger equation”
(49). But it is possible to set up an association of the form

P (x, p; t)←−−−−−−−−
Wigner

→ ψ(x, t) if and only if σλ = 1
2� (55)

Quantum mechanics enforces the minimality condition, which was seen already
at (46) to be interpretable as a statement that certain ellipses (those of Figure 1)
have area = 1

4�. This development is superficially reminiscent of the principle
used by Planck to “quantize” the classical mechanics of an oscillator, and of
the subsequent “Bohr-Sommerfeld quantization condition,” and might reward
closer study.

I discuss now an alternative approach to resolution of our paradox. We
recall that (to within a dimensionally enforced factor of h, and as was first
appreciated by Moyal10)

Wigner distribution P (x, p)←−−−−−−−−−−−−→
Weyl

density matrix ρρρ (56)

and that in the general (or “mixed”) case the density matrix

ρρρ =
∑

statistically weighted projection operators

=
∑

pk|ψk)(ψk|
↓
=

∑
single term of unit weight

= |ψ)(ψ| in the “pure case”

An algebraic characterization of the mixed/pure distinction is provided by the
statement

trρρρ2
{= 1 in the “pure” case
< 1 in the “mixed” case

(57)
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(Notice in this connection that 0 < tr is automatic.) Weyl transform theory
supplies the information that if

A←−−−−→
Weyl

A(x, p) and B←−−−−→
Weyl

B(x, p)

then26

tr AB = 1
h

∫ ∫
A(x, p)B(x, p) dxdp

It follows that if—generalizing remarks presented at the beginning of §6—we
write

ρρρ←−−−−→
Weyl

hP (x, p)

then (57) can, within the phase space formalism, be expressed

h

∫ ∫
P (x, p)P (x, p) dxdp

{= 1 in the “pure” case
< 1 in the “mixed” case

(58)

If, in particular, we take P (x, p) to be given (at time t) by the right side of (52)
then the

∫∫
is trivial, and we (at all times) obtain

h 1
4πσλ

{= 1 in the “pure” case
< 1 in the “mixed” case

The gratifying implication is that

σλ




< 1
2� is quantum mechanically precluded

= 1
2� in the “pure” case

> 1
2� in the “mixed” case

(59)

Only in the pure case is it sensible to search for an “associated wavefunction
ψ(x, t)” (Beck has taught us how to conduct that search), and only in that
case are we authorized to adopt the more emphatic notation Pψ(x, p; t). In the
mixed case we expect to be able to write something like

right side of (52) =
∑∫

pkPψk
(x, p; t)

↑
| Weyl
↓
= spectral resolution of ρρρ

The problem thus posed will, as it relates to “fat Gaussians,” be solved in §12.
We touch here upon a particular instance of an important general problem to
which I hope to return in the near future. Our “paradox” has, in any event,
been laid neatly—and informatively—to rest.

26 See quantum mechanics (1967), Chapter 2, p. 109.
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10. Non-Gaussian wavepackets. The “wavepacket” concept is very general, and
admits in principle of infinitely many realizations. So also is the notion of a
“bivariate (quasi)-distribution.” The “phase space formulation” of quantum
mechanics serves to fuse those two primitive notions.

Talk about “wavepackets” tends to degenerate quickly into illustrative
talk about “Gaussian wavepackets,” not because the packets encountered in
laboratory situations are known to be Gaussian, but simply because the function
e−x2

is (in all relevant respects) analytically so tractable. Similarly, talk about
“bivariate distributions” tends to focus upon properties of the “bivariate normal
distribution,” but in the latter connection “analytical tractability” is a lucky
accident; the deeper reason is that, in many applications, normal distributions
acquire (from the central limit theorem) special importance. The phase space
formalism permits that “special importance” to be shipped back into quantum
mechanical discourse (or does it? That is the question which, as indicated in
my introductory remarks, serves to motivate my present work.)

My objectives here will be to emphasize—working all the while within the
bounds of “analytical tractability”—that many of the methods/results which
we have used/obtained in reference to Gaussians are in fact not specific to
Gaussians, and to show that some of the information brought thus to light is
of physical/mathematical interest in its own right.

Let P (x, p) be any real-valued function of the indicated arguments, subject
only to the normalization condition∫ ∫

P (x, p) dxdp = 1 (60)

The side-condition P (x, p) ≥ 0 (all x and p) would, if imposed, cause P (x, p) to
become a “bivariate distribution function,” but will not be imposed. We might,
for example, take P (x, p) to be given by any of the following expressions:

P0(x, p) ≡ + 1
2π·σλe

− 1
2 z

P1(x, p) ≡ − 1
2π·σλe

− 1
2 z

{
1− z

}
P2(x, p) ≡ + 1

2π·σλe
− 1

2 z
{
1− 2z + 1

2z
2
}

...

Pn(x, p) ≡ (−)n 1
2π·σλe

− 1
2 z

{
Ln(z)

}




(61)

where z ≡
[
x
σ

]2 +
[
p
λ

]2
and Ln(z) ≡ 1

n!e
z
(
d
dz

)n
e−zzn is the Laguerre polynomial of order n. We are

assured by Mathematica that each of those functions does in fact (all positive
σ and λ) satisfy (60), and are informed additionally that in each case

h

∫ ∫
P (x, p)P (x, p) dxdp = 1 if and only if σλ = 1

2�
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—none of which remains surprising when I confess that I borrowed (61) from an
antique discussion27 of the phase space formulation of the quantum theory of
an oscillator. When the minimality condition is satisfied, P0(x, p) reproduces
precisely (28), which when (consistently with minimality) we set

σ =
√

�ω
2m

1
ω and λ =

√
�ω
2m m

reads and entails

P0(x, p) = 2
he

− 1
2 z with z = 2m

�ω

{
(ωx)2 + (p/m)2

}
|
| backward Wigner, according to Beck
↓

ψ0(x) =
√

1
σ
√

2π
e−

1
4 [ x

σ ]2

=
[
mω
�π

] 1
4 e−

mω
2�

x2
: oscillator groundstate (see again §7)

Similarly

Pn(x, p) = (−)n 2
he

− 1
2 zLn(z)

↑
| Wigner
↓

ψn(x) =
√

1
n!σ

√
2π

e−
1
4 [ x

σ ]2Hn( xσ ) : nth oscillator eigenstate

so the functions (61) are actually not at all esoteric, and would be “well-known”
if only the phase space formalism were! It is interesting to notice that oscillator
eigenfunctions become localized “by action of the spring.” If we used the spring
to assemble a copy of the ground state, but at time t = 0 snipped the spring ,
we would be returned to precisely the familiar physics of §1. But. . .

If we used spring to assemble an excited oscillator state and then got
similarly busy with our snips, we would at times t > 0 find ourselves watching
the evolution of a non-Gaussian wavepacket . And (to return to my main point)
we would find, moreover, that our former methods still served: we would, on
the basis of the classical flow pattern, construct28

Pn(x, p; t) ≡ Pn(x− (p/m)t, p−mv)

27 quantum mechanics (), Chapter 3, pp. 116–120. My original sources
were U. Uhlhorn, Arkiv für Fysik 11, 87 (1956) §5; M. S. Bartlett & J. E. Moyal,
Proc. Camb. Phil. Soc. 45, 545 (1949) and the appendix to G. A. Baker, Jr.,
Phys. Rev. 109, 2198 (1958).

28 Notice that we could have adopted this modified definition

z ≡
[
x−a
σ

]2 +
[
p−b
λ

]2
without changing the force of preceding discussion. I have set a = 0 and b−mv
in order to “lauch” our “dissociated oscillator packets.”
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We would observe that (since H = 1
2mp2 for t > 0) the argument that gave

(51) still pertains, and that (since the Hamiltonian is quadratic) it is therefore
automatic that Pn(x, p; t) satisfies the quantum dynamical equation (49).

The statements (59) pertain not just to P0(x, p) but to each of the quasi-
distributions Pn(x, p), each of which is—subject only to the proviso σλ ≥ 1

2�

—quantum mechanically unexceptionable. It becomes interesting in this light
to notice that

Pn(x, p) is classically precluded except in the case n = 0

The elementary reason for this state of affairs is made evident by Figure 2:

1 2 3 4 5

-1

-0.5

0.5

1

Figure 2: Graphs of

F0(z) ≡ +e−
1
2 z

F1(z) ≡ −e−
1
2 z

{
1− z

}
F2(z) ≡ +e−

1
2 z

{
1− 2z + 1

2z
2
}


 vs.

√
z

Fn(z) crosses the axis n times, with the consequence that each of the
excited state functions Pn(x, p) {n = 1, 2, . . .} becomes negative on
concentric elliptical rings drawn on classical phase space. This is
the reason for the “quasi-distribution” terminology, and the reason
that such distributions do not admit of classical interpretation.

Venturing now a bit farther afield, we notice that the function

f(x) ≡ 1√
2α

sech( x
α ) (62)

are localized/normalized, and might plausibly be taken to describe the initial
design of a wavepacket; |f(x)|2 looks, in fact, very “Gaussian” when plotted
(see Figure 3), and f(x) shares with Gaussians the uncommon property of
being self-inversive under Fourier transformation:
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Figure 3: Plot of |f(x)|2 = 1
2α sech2( x

α ) in the case α = 1.

g(x) ≡
[

1
σ
√

2π

] 1
2 e−

1
4 ( x

σ )2 −−−−−−−→
Fourier

g̃(p) ≡ 1√
h

∫
e−

i
�
pxg(x) dx

=
[

1
λ
√

2π

] 1
2 e−

1
4 ( p

λ )2 : λ ≡ �/2σ

↑
| compare
↓

f(x) ≡ 1√
2α

sech( x
α ) −−−−−−−→

Fourier
f̃(p) ≡ 1√

h

∫
e−

i
�
pxf(x) dx

= 1√
2β

sech( p
β ) : β ≡ 4

π · �/2α

Because |f(x)|2 and |f̃(p)|2 are even functions of their respective arguments, it
is immediate that

〈xodd〉 = 〈podd〉 = 0

but when we look to the even moments it becomes clear that the sech-packet
places us near the outer limits of “analytical tactability.” After a certain amount
of experimentation (many complaints from Mathematica) I have, however, come
up with this trick:

∫
1
2α sech2( x

α ) · cosh(sx) dx = 〈x0〉+ s2

2! 〈x
2〉+ s4

4! 〈x
4〉+ · · ·

= πsα
4

{
tan

[
πsα
4

]
+ cot

[
πsα
4

]}
= 1 + s2

2!
π2α2

12 + s4

4!
π4α4

240 + · · ·
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from which we conclude that ∆x =
√

π2/12α and ∆p =
√

π2/12β:

∆x∆p = π2

12αβ = 2π
3 · 1

2� = 2.0944 · 1
2� (63)

We had no reason to expect the sech2 distribution to be minimally dispersive,
and it is not. Evidently the normal distribution with the same variance is

1

α
√

π3/6
exp

{
− 1

2

[
x

α
√

π2/12

]2}
(64)

but if we sought the normal distribution which “best approximates” the sech2

distribution it would be natural to seek to

minimize
∫ [

1
σ
√

2π
e−

1
2 ( x

σ )2 − 1
2α sech2

(
x
α

)]2

dx

The integral, however, appears to be intractable. This train of thought did,
however, lead me to set ∫ [

1
σ
√

2π
e−

1
2 ( x

σ )2
]2

dx = 1
2σ

√
π

equal to ∫ [
1
2α sech2

(
x
α

)]2

dx = 1
3α

and thus (on admittedly the most tenuous of grounds) directed my attention
to a normal distribution

1
3α/

√
2

exp
{
− 1

2

[
x

3α/2
√
π

]2}
(65)

does, on the evidence of Figure 4, appear to provide a better fit.

Looking to the associated Wigner function, we (after some elementary
manipulation29) have

Pf (x, p) = 2
h

1
2α 2

∫ ∞

0

sech
(
x+ξ
α

)
sech

(
x−ξ
α

)︸ ︷︷ ︸ cos
(

2
�
pξ

)
dξ

= 1
2

[
cosh

(
2
αx

)
+cosh

(
2
αξ

)]–1

The integral appears to lie beyond Mathematica’s capability, but can be
discovered in Gradshteyn & Ryzhik,30 whose reported evaluation (after a
correction) entails

=
1
�

sin
(

2xp
�

)
sinh

(
2x
α

)
sinh

(
παp

�

) (66)

29 The intent of the manipulation is to make manifest the reality of the Wigner
function. For the identity, see Abramowitz & Stegun, 4.5.43.

30 Table of Integrals, Series, and Products (), where at 3.983.1 one reads∫ ∞

0

cos ax dx

b chβx + c
= (missing factor of 4?)

π sin
(
a
β arch c

b

)
β
√
c2 − b2 shaπ

β

: c > b > 0
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Figure 4: Comparisons of (64)—above—and (65) with |f(x)|2, in
the case α = 1. The latter appears to the eye to provide the better
fit.

The accuracy of (66) is supported by the observations that (according to
Mathematica)

∫ ∫
Pf (x, p) dxdp = 1 and, as (29.3) requires,

|Pf (x, p)| ≤ Pf (0, 0) = 2
h

More convincingly, insertion of (66) into Beck’s formula (54) is readily found to
give back precisely the f(x) of (62). When written out as functions, Pf (x, p)
and its “best fitting” Gaussian counterpart (I work from (52), with t = v = 0
and λ = �/2σ)

Pg(x, p) = 2
h exp

{
− 1

2

[ x
σ

]2 − 1
2

[ 2σp
�

]2}∣∣∣σ=3α/2
√
π (67)

resemble one another not at all, but when plotted (see Figure 5) their difference
is almost imperceptible. They do, however, differ in one important respect:
Pg(x, p) is everywhere positive, but Pf (x, p) vanishes/changes sign on the
hyperbolic contours defined by

xp = nh
4 : n = ±1,±2,±3, . . .
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Figure 5: The function Pf (x, p) is plotted above, and its “best
Gaussian approximant” Pg(x, p) below. In preparing the figure I
have set α = � = 1.

More specifically, we have

Pf (x, p) > 0 : −1 < 4xp
h < +1

Pf (x, p) < 0 : −2 < 4xp
h < −1 or + 1 < 4xp

h < +2

Pf (x, p) > 0 : −3 < 4xp
h < −2 or + 2 < 4xp

h < +3
...




(68)

The Wigner function Pf (x, p) is a “quasi-distribution” with emphasis on the
quasi, and is classically disallowed, but in the latter connection we notice that
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the central positive region expands to enclose all of phase space in the classical
limit � ↓ 0.

We know on the basis of the general Galilean transform argument advanced
in §5 that to “launch” the wavepacket f(x)—because to launch any wavepacket
—we have only to make the adjustment

f(x) −−−−−−−→
launch

f(x) · e i
�
mvx (69.1)

which in the phase space formulation of quantum mechanics (see again (53),
the equation which, at the beginning of §6, served to define Pf (x, p)) becomes

Pf (x, p) −−−−−−−→
launch

Pf (x, p−mv) (69.2)

The preceding remark is consistent with the pattern of events foreshadowed
already in classical mechanics,31 where the Hamiltonian theory of Galilean
transformations is found to be simpler than the corresponding Lagrangian
theory; the later requires that a gauge transformation be built into the definition
of a Galilean transformation. That adjustment entails adjustment

S −→ S +
{
−mvx + 1

2mv2t
}

of the classical action, and it is to this development that both (69.1) and (69.2)
can ultimately be traced.

To obtain a description of the (free) dynamical evolution of ψ(x, 0) ≡ f(x)
we might attempt to proceed from (19), writing

ψ(x, 0) −−−−−−−−−−−−→
free dynamical

ψ(x, t) =
∫ √

m
iht e

i
�

m
2

(x−y)2

t 1√
2α

sech
(
y
α

)
dy

but the integral appears to be intractable. Alternatively, we might pass to the
phase space formalism, write

Pf (x, p; 0) −−−−−−−−−−−−→
free dynamical

Pf (x, p; t) = Pf (x− 1
mpt, p; 0)

=
1
�

sin
(

2xp
�

)
sinh

(
2x
α

)
sinh

(
παp

�

)
∣∣∣∣∣
x→x− 1

mpt

(70)

and attempt to recover ψ(x, t) by appeal to Beck’s formula (54). But again, the
integrals encountered in the final step appear (except at t = 0) to be intractable;
we have encountered a problem in which the phase space formalism is easier to
carry to completion than the standard formalism.

11. A conjecture—stated and refuted. For a while—intuitively, and on the
slender evidence afforded by the harmonic oscillator—it seemed to me plausible
to conjecture that

Pground state(x, p) is, for all systems, everywhere non-negative

31 See classical mechanics (), p. 252–254.
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But we are in position now to show by counterexample that such a conjecture
is untenable.

While integrals involving sechx, sech2 x, etc. tend, as we have seen, to
be less tractable than those involving exp

{
− x2

}
, the derivative properties of

the former functions are in some respects more attractive than those of the
Gaussian; one has (

d
dx

)2sinh x = sinhx− 2 sinh3 x(
d
dx

)2sinh2 x = 4 sinh2 x− 6 sinh4 x

...

which on their right sides exhibit what we might call the property of “non-linear
functional closure” (and an absence of radicals). The latter identity lies at the
heart of the construction of a famous solitonic solution of the Korteweg-deVries
equation ut+uux+kuxxx = 0,32 but it is the former which is of present interest;
it entails (

d
dx

)2sinh
(
x
α

)
= 1

α2

{
1− 2 sinh2

(
x
α

)}
sinh

(
x
α

)
or again {

− �
2

2m

(
d
dx

)2 − �
2

mα2 sinh2
(
x
α

)}
sinh

(
x
α

)
= − �

2

2mα2 sinh
(
x
α

)
We conclude that (62) describes a localized eigenstate f(x) of the system

H(x, p) = 1
2mp2+U(x)

U(x) ≡ −Umin sinh2
(
x
α

)
in which the “attractive sech2-potential” has been “tuned” by setting

Uminα
2 = �

2/m

The associated eigenvalue is
E = − 1

2Umin

Because f(x) is node-free, we conclude that f(x) is in fact the ground state of
the system in question. But the associated Wigner function Pf (x, p) has already
been shown not to be everywhere non-negative. My conjecture is refuted.

One remark before I take leave of this topic: Richard Crandall33 has drawn
attention to a wonderful property shared by the quantum potentials

UN (x) ≡ − �
2

2mα2N(N + 1) sinh2
(
x
α

)
: N = 1, 2, 3, . . .

32 See classical field theory (), p. 55.
33 R. E. Crandall & B. R. Litt, “Reassembly and time advance in reflectionless

scattering,” Ann. of Phys. 146, 458 (1983); R. E. Crandall, “Exact propagator
for reflectionless potentials,” J. Phys. A 16, 3005 (1983).
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of which we have encountered the leading instance (N = 1). Citing Morse &
Feshbach,34 Crandall remarks that UN (x) admits of exactly N bound states,
and that the energies associated with those states can be described

EN,n = − �
2

2mα2 (N − n)2 : n = 0, 1, . . . , N − 1

For the system considered in connection with my ill-fated conjecture there is,
on these grounds, a single bound state, which is perforce the ground state:
no allusion to a “nodal folk theorem” is in fact required. It was, by the way,
Crandall’s interest in this problem which stimulated me to look into some of
the associated classical mechanics.35

12. Fat Gaussians are mixtures. For the purposes of this discussion I adopt a
notational refinement: we agree to

write σ and λ when the minimality condition σλ = 1
2� is in force

write σσσ and λλλ otherwise

We note that it is always possible to achieve minimality by rescaling ; i.e., to
write

σσσ = bσ and λλλ = bλ : b > 0 is the “fatness parameter”

Look now again to the familiar bivariate normal distribution function

P (x, p) = 1
σσσλλλ·2π exp

{
− 1

2

[ x
σσσ

]2 − 1
2

[ p
λλλ

]2} (70)

= 1
b2 · 2

h exp
{
− 1

2b2

[ x
σ

]2 − 1
2b2

[ p
λ

]2}
which will satisfy the quantum mechanically enforced boundedness condition
(29.3) if and only if b ≥ 1 (which we henceforth assume to be the case), but
was seen at (59) to be the Wigner transform of a wavefunction ψ(x) only in
the case b = 1. The question now before us —first posed at the end of §9—is
this: What quantum mechanical meaning can be assigned to the “fat Gaussian”
distributions which arise from (70) when b > 1?

Introduce dimensionless variables

x̃ ≡ x/σ and p̃ ≡ p/λ

and notice that
(x/σ)2 + (p/λ)2 = x̃2 + p̃2 = constant

inscribes an ellipse on the
{
x, p

}
-plane, but a circle on the

{
x̃, p̃

}
-plane.

Introduce polar coordinates
x̃ = r cos θ
p̃ = r sin θ

34 Methods of Theoretical Physics (), p. 1654.
35 classical mechanics (), Appendix C.
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and notice that (70) can be written

P (x, p) = 1
b2 · 2

h exp
{
− 1

2b2 r
2
}

Finally, introduce
z ≡ r2

to obtain
P (x, p) = 1

b2 · 2
he

− 1
2b2

z (71)

and notice (see again (61)) that one recovers
↓
= oscillator ground state 2

he
− 1

2 z at b ↓ 1

Evidently dxdp = σλ · dx̃dp̃ = �

2 rdrdθ = �

4dzdθ, in consequence of which we
recover ∫ ∫

P (x, p) dxdp = �

4
1
b2

2
h 2π

∫ ∞

0

e−
1

2b2
zdz = 1

So much by way of preparation.

Look now to the Wigner functions

Pn(x, p) ≡ (−)n 2
h e−

1
2 zLn(z) (72)

which were at (61) directed to our attention by—of all things!—the quantum
theory of oscillators. Notice that∫ ∫

Pm(x, p)Pn(x, p) dxdp = (−)m+n
(

2
h

)2 �

4 2π
∫ ∞

0

e−zLm(z)Ln(z) dz

= 1
hδmn (73)

by the orthogonality of the Laguerre polynomials.36 The idea now (see again
the end of §9) is to write

P (x, p) =
∑
n

pnPn(x, p)

pn = h

∫ ∫
P (x, p)Pn(x, p) dxdp

which, when P (x, p) is given by (71), becomes (after simplifications)

fat Gaussian =
∑
n

pnPn(x, p) (74)

pn = (−)n 1
b2

∫ ∞

0

e−
1
2

(
1+ 1

b2

)
zLn(z) dz

36 For a nice account of the properties of these polynomials see Chapter 23
of J. Spanier & K. B. Oldham, An Atlas of Functions ().
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The integral is tabulated,37 and gives

pn = 2
b2+1

[
b2−1
b2+1

]n (75)

concerning which several elementary remarks (the net effect of which is to
inspire confidence in the accuracy of (75)) are in order:

∑
n

pn = 1 : all values of k

pn are non-negative for all n if and only if b ≥ 1

if b = 1 then p0 = 1 and all other pn vanish

The second of the preceding points merits special comment: if b < 1 were
allowed, then not only would we stand in violation of the uncertainty principle,
we would acquire an obligaton to try to make sense of “negative statistical
weights” in the sense of ordinary probability theory—a notion for which even
quantum mechanics makes no provision.

I conclude this discussion with miscellaneous comments of a more general
nature:

The issue before us has been pre-dynamical: we have been concerned with
the quantum mechanical interpretation of Wigner distributions of a certain (“fat
Gaussian”) design; we have not been concerned with the dynamical motion/flow
of such a distribution; no Hamiltonian has been specified. Reference to
“oscillators” is relevant only to this extent: the conditions

P (x, p) = constant and Hosc(x, p) = E

give rise to identical populations of (elliptical) curves. It would cut closer to
the analytical heart of the matter to observe (say) that38

n∑
k=0

(
n
k

)
H2k(x)H2n−2k(y) = (−)nn!Ln(x2 + y2)

and that the Hermit polynomials Hn(x) ≡ (−)nex
2( d

dx

)n
e−x2

—made familiar
to us by the quantum theory of oscillators—are in all respects very “Gaussian.”

37 See Gradshteyn & Ryzhik, 7.414.5, where we are informed that∫ ∞

0

e−azLn(z) dz = (a− 1)na−n−1 : �[a ] > 0

38 See A. Erdélyi et al , Higher Transcendental Functions II (), 10.13.32.
The identity quoted is intended merely to typify the intricately patterned
relationships which link the Hermite with Laguerre polynomials.
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Straightforward extension of the method described above permits one to
accomplish the “spectral analysis” (not just of “fat Gaussians” but) of any
Wigner function of the specialized form

P (x, p) = f(z) with z = z(x, p) = (x/σ)2 + (p/λ)2

But it leaves us still powerless to attack the general problem posed at the end
of §9—powerless to discover weights pn and functions Pn(x, p) which permit
one to write

P (x, p) =
∑
n

pnPn(x, p)

when the Wigner function P (x, p) is arbitrary.

The question arises: How—physically—would one prepare the mixture of
states to which a “fat Gaussian” has been found to refer? One thinks naturally
of “simultaneous x and p measurements of less-than-optimal precision,” but
(in the absence of a well worked out phase space formulation of the quantum
theory of measurement) I see no way to make that idea precise. I describe an
alternative procedure which does in fact hinge upon the quantum physics of
oscillators. Considering σ (whence also λ = �/2σ) to have been given, select
an oscillator in which the mass and frequency have been “tuned” in such a way
as to achieve

H(x, p) = 1
2mp2 + mω2

2 x2 = 1
4�ω

{
(x/σ)2 + (p/λ)2

}︸ ︷︷ ︸ (76)

z

Select an oscillator from a thermalized population of such oscillators. It will be
in state |n) with probability

pn = 1
Z e−β(n+ 1

2 ) : β ≡ �ω
kT

and since the partition function

Z =
∞∑
n=0

e−β(n+ 1
2 ) =

e−
1
2β

1− e−β

we have
pn =

(
1− e−β

)[
e−β

]n
which if we set

e−β = b2−1
b2+1 i.e., b2 = 1+e−β

1−e−β = coth ( 1
2β) (77)

is found by quick algebra to possess precisely the structure of (75)! That “fat
Gaussians” lurk within the thermal physics of a quantum oscillator, and become
minimally dispersed ground state Gaussians as T ↓ 0, is a result which I find
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quite satisfying—made the more so by the following observation: Classically we
expect to have 1

2kT = E = 1
2mω2(amplitude)2, giving

(amplitude)2 = kT
mω2 (78.1)

On the other hand, it was remarked already on p. 28 and follows from (76) that
σ2 = �/2mω, while (77) entails

b2 = 2
β + β

6 −
β3

360 + · · ·
∼ 2kT

�ω for temperatures of “classical magnitude” kT � �ω

so we have
σσσ2 = (bσ)2 ∼ kT

mω2 (78.2)

The point to notice is that if we accept the identification

σσσ ←→ amplitude

then (78.1) and (78.2) say precisely the same thing! 39

The idea now is to adjust the temperature T so as to assign the desired
value to the “fatness constant” b and then, at time t = 0, to “snip the spring.”
If T = 0 then b = 1 and we end up with a Gaussian of minimal dispersion (pure
ground state), but if T > 0 (which entails b > 1) we produce a thermal mixture
of oscillator states, represented within the phase space formalism by a Wigner
function of “fat Gaussian” design. . .which then moves off under the dynamical
control of whatever Hamiltonian we have build into our apparatus (i.e., which
we abruptly turn on when we snipped the spring; the default Hamiltonian is
would be that of a free particle).

13. “Entropy” of a Gaussian wavepacket. It was Boltzmann—working during
the decade prior to  toward a kinetic theoretic interpretation of the entropy
concept—who first drew the attention of physicists to the importance of the
construction

H = −
∑

pn log pn = −〈 log pn〉

in connection with which it is indispensable to notice that (obviously, else by
l’Hôpital’s Rule)

lim
p↑1

p log p = lim
p↓0

p log p = 0

And it was Claude Shannon () who first appreciated that Boltzmann’s
construction possesses an abstract significance far deeper, and a utility far more
diverse, than that originally contemplated.

39 For related discussion see §30 in L. D. Landau & E. M. Lifshitz, Statistical
Physics ().
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Quantum mechanics—which is nothing if not an intensely probabilistic
subject—presents an abundance of distribution functions of various types. One
might therefore expect importance to attach to expressions of (say) the form

H[ψ] ≡ −
∫
|ψ(x, t)|2 log |ψ(x, t)|2 dx (79)

and is surprised to discover that the notion thus expressed appears to be—or
at least until quite recently have been40—absent from the quantum mechanical
literature. Within the phase space formalism one is similarly inspired to write

H[P ] ≡ −
∫ ∫

P (x, p; t) logP (x, p; t) dxdp (80)

which, though absent from the quantum mechanical literature, is formally
identical to an equation standard to classical statistical mechanics:41 at thermal
equilibrium one expects to have P (x, p) = 1

Z e−
1

kT E(x,p) which gives

H[P ] = 1
kT 〈E 〉+ logZ

and by a celebrated line of argument42 discovers that the expression on the
right admits of the interpretation

=
entropy

k

It is in allusion to this fact that in modern literature43 one encounters, even in
contexts which have nothing to do with thermodynamics, the terminology

− logP (event) ≡ “event-information”

H[P ] = −
∑

events

P logP = −〈 logP 〉 = mean event-information
≡ “entropy”

40 I will have occasion later to cite papers by C. Adami and others, which
began to appear during the mid-’s.

41 Quantum statistical mechanics is nearly as old as quantum mechanics itself
(arguably older, since it was a statistical mechanical problem that inspired
Planck), and already by  it had been pointed out by J. von Neumann
(in his Mathematische Begründung der Quantaenmechanik ; see p. 394 in the
English translation) that in thermalized situations it makes sense to write

ρρρ = 1
Z e−

1
kT H with Z = tr e−

1
kT H

and to set
thermodynamic entropy = −k trρρρ log ρρρ

and it was to facilitate interpretion of these statements that Wigner was led
to the invention of the Wigner transform. So when I say “absent from the
quantum literature” I should emphasize that I mean absent in contexts which
make no reference to thermal equalibrium.

42 See statistical physics (), Chapter 3, pp. 35–38.
43 See, for example, “213.B, Information Theory” in Encyclopedic Dictionary

of Mathematics ().
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H[P ] is by nature a real number-valued functional of the distribution P (event).

The relative unimportance of (79) can, I suppose, be accounted for as
follows: write ψ = Ae

i
�
S . Then (79) reads H[ψ] = −

∫
|A|2 log |A|2 dx, from

which all reference to the phase factor S has dropped away. But it is within
that phase factor—closely related to the classical action—that much of the
most characteristically quantum mechanical “good stuff” is known to reside.
The dismissive force of that remark evaporates when one turns from (79) to
(80), for folded into the functional structure of Pψ(x, p; t), is all the physically
significant information conveyed by both A(x, t) and S(x, t); this follows from
the invertibility of the Wigner transform (Beck’s formula).

On another occasion I will look (within the phase space formalism) to
some of the more general quantum applications of the entropy concept; here
my intention is simply to plant seeds for future harvest, and to examine entropic
aspects of the Gaussian wavepackets which are at present my major concern

It serves my present needs to adopt a notational refinement of (1):

G(x;σ) ≡ e−
{

1
2 [

x
σ ]2+log(σ

√
2π)

}
= centered Gaussian distribution with variance σ2

Evidently

H[G ] = 1
2

{
1 + log(2π)

}
+ log σ

= 1.41894 + log σ (81)

For purposes of comparison, consider the flat “particle-in-a-box distribution”

b(x; a) ≡
{

1
2a : x2 ≤ a2

0 : outside that interval

Obviously 〈x〉 = 0, and by quick calculation 〈x2〉 = 1
3a

2, so

B(x;σ) ≡ b(x;σ
√

3) ≡ centered box distribution with variance σ2

We compute

H[B ] =
[
−

∫ +a

−a

1
2a log 1

2a dx = log(2a)
]
a=σ

√
3

= log(2
√

3) + log σ
= 1.24245 + log σ < H[G ] : all values of σ

Or consider this distribution, borrowed from discussion subsequent to (62) in
§10:

F (x;σ) ≡
[

1
2α sech2

(
x
α

)]
α=
√

12/π2σ

≡ centered sech2 distribution with variance σ2
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We compute

H[F ] =
[
−

∫
1
α sech2

(
x
α

)
log sech

(
x
α

)
dx + log(2α)

]
α=
√

12/π2σ

= 2− 2 log 2 + log(2
√

12/π2) + log σ
= 1.40458 + log σ < H[G ] : all values of σ

The preceding inequalities are illustrative of a general inequality, which emerges
from the solution of this problem:

maximize H[p(x)] subject to the constraints



〈x0〉 = 1
〈x1〉 = 0
〈x2〉 = σ2

Using the method of Lagrange multipliers to manage the constraints, we are
led44 to write δ

∫ {
p log p + a + bx + cx2

}
dx = 0 whence∫

δp
{

log p + (1 + a) + bx + cx2
}
dp = 0

giving

p(x) = e−
{

(1+a)+bx+cx2
}

and we find ourselves obligated by the constaints to set c = 1
2σ2 , b = 0 and

e−(1+a) = 1
σ
√

2π
; i.e., to reproduce (1). The proposition45 that

Among the distributions p(x) of specified variance,
entropy H[p(x)] is maximized at the Gaussian

lends the Gaussian an importance which (it seems to me) cuts much deeper
than mere “analytical tractability;” it is on these grounds not a “distribution
among equals” but by birthright entitled to a little occasional “tyranny.”

Returning with (81) to (13), we see that the standing motion of a Gaussian
wavepacket lends the associated entropy a time-dependence which can be
described

H[|ψ(x, t)|2] = 1
2

{
1 + log(2π)

}
+ logσ(t) (82.1)

σ(t) = σ
√

1 + (t/τ)2

44 My analytical method is a variant of one devised by Boltzmann to extract
the Maxwell distribution from the H-theorem; see D. ter Haar, Elements of
Statistical Mechanics (), p. 20, or Chapter 2, p. 34 in statistical physics
(). Also Appendix 14 in Max Born’s Natural Philosophy of Cause and
Chance ().

45 Albyn Jones assures me that this result is “reasonably well known,” but
could suggest no published source, nor have I attempted to locate one.
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and (asymptotically) grows as log t as the packet becomes spatially dispersed.
In the momentum representation (see again (9) and (5)) one on the other hand
obtains

H[|ϕ(p, t)|2] = 1
2

{
1 + log(2π)

}
+ log λ (82.2)

which is constant in time.

The phase space formalism leads to conclusions which are relatively more
interesting, and made so because they embrace all of the “missing physics;” it
looks, after all, not to marginal distributions but to the underlying joint (quasi-)
distribution. In the case of a “freely moving launched Gaussian wavepacket”
we at (30.2) had

Pψ(x, p; t) = 1
σλ2π exp

{
− 1

2

[
X
σ − θP

λ

]2 − 1
2

[
P
λ

]2}
(here as before: λ ≡ �/2σ, θ ≡ t/τ , X ≡ x − vt and P ≡ p = mv) and if we
allow ourselves to work from (80) obtain

H[Pψ] =
∫ ∫

Pψ(x, p; t)
{

1
2

[
X
σ − θP

λ

]2 + 1
2

[
P
λ

]2 + log(σλ2π)
}
dXdP

= 1
2σ2 〈X2〉 − θ

σλ 〈XP 〉+ 1+θ2

2λ2 〈P 2〉+ log(σλ2π)

= 1+θ2

2 − θ2 + 1+θ2

2 + log(σλ2π)
= 1 + log(σλ2π) (83)

The structure of (83) inspires the following series of comments, which will in
turn motivate some adjustments, and open some doors:

I draw attention first to the fact that at (80)—as previously also at (79)—
we committed a major breach of etiquette: we allowed ourselves to form the
logarithm of an expression which bears physical dimension. The logarithm is
uniquely forgiving of such indiscretions, but our faux pas should not be allowed
to stand uncorrected. Whether one argues from the defintion (53) of the Wigner
transform or from

∫∫
P (x, p) dxdp = 1, it is clear that

dimPψ(x, p) = 1
action

But it is an implication of the familiar boundedness condition (29.3) (i.e., of
the Heisenberg uncertainty principle) that

footprint of most compact Wigner function = h
2

and it becomes therefore natural to write

1 =
∫ ∫

P (x, p) dxdp =
∫ ∫

P̃ (x, p) dxdp
h/2

P̃ (x, p) ≡ h
2P (x, p)
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This obvious variant of (80) H[P̃ ] ≡ −
∫∫

P̃ log P̃ dΩ (I adopt here the fairly
standard abbreviation dΩ ≡ 2

hdxdp) is free of the defect to which I have drawn
attention,46 and entails

H[P̃ ] = H[P ]− log(h/2) (84)

Thus are we led, in place of (83), to write

H[P̃gaussian ] = 1 + log(σλ2π)− log(h/2)
= 1 because σλ2π = h/2 (85)

To show that we stand now in the presence of a contraction I have now
to digress a bit: Let |ψn) refer to some/any set of orthonormal states, and let
pn ≡ |ψn)(ψn| refer to the associated set of associated projection operators.
One has

p2
n = pn ; pmpn = 0 (m �= n) ;

∑
pn = 1 (86.1)

where the former statements imply trace-wise orthonormality

tr pmpn = δmn (86.2)

and where the latter says simply that the
{
|ψn)

}
are complete in whatever space

they span, whether infinite or finite dimensional. Let
∑

anpn be some/any
linear combination of projection operators, and let f(•) be some/any formal
power series in a single variable; it follows formally from (86.1) that47

f
(∑

anpn
)

=
∑

f(an) pn (87)

Let the density matrix ρρρ =
∑

pnpn refer to some/any statistically weighted
mixture of such states. It is (formally) an implication of (87) that

ρρρ = eΣ(log pn)pn (88)

which lends meaning in orthonormal cases to the expression “log ρρρ.” We find
ourselves therefore in position to write

H[ρρρ ] = −tr (ρρρ log ρρρ) (89.1)

= −tr
{∑

m,n

(pm log pn) pmpn

}
= −

∑
pn log pn (89.2)

46 It is interesting to note that (79), in the absence of a generally available
“natural length,” admits of no such adjustment.

47 The following statement is more familiar as encountered within the theory
of diagonal matrices.
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We conclude that the entropy of a mixed state has nothing to do with “quantum
statistics,” but everything to do with the mixture statistics. The entropy of a
mixture is maximal when48

pn = 1
N with N ≡ tr 111 = dimension of spanned space : all n

in which case one has
H[ρρρ ]max = logN

The entropy becomes minimal in the “pure case” ρρρ2 = ρρρ ; i.e.; when one of the
pn is unity and the rest vanish, in which case one has

H[ρρρ ]min = 0 (90)

which is contradicted by (85). The force of the contradiction is, however,
blunted by the circumstance that (88) becomes strictly meaningless in the pure
case, and the accuracy of (89.2) is to that extent compromised. Let us look
therefore to a case in which none of the pn vanish—the case of a thermalized
oscillator.

We observed already near the end of §12 that in for a thermalized quantum
oscillator one has

Z =
[
2 sinh1

2β
]–1 and pn = (1− e−β)e−nβ

with β ≡ �ω/kT . Working from (89.2) we are led therefore to write

Hosc =
∑

(1− e−β)e−nβ
{
− log(1− e−β) + nβ

}
= − log(1− e−β) + (1− e−β)

(
− β d

dβ

) ∑
e−nβ

= − log(1− e−β) + β/(eβ − 1) (91)

which is readily brought to a form

= − log 2 sinh1
2β + 1

2β coth 1
2β

which a thermodynamicist would have extracted more swiftly from

=
{
1− β d

dβ

}
logZ

We observe that (91) does conform to (90) in the limit β ↑ ∞ (i.e., as T ↓ 0).
We know,on the other hand, that a thermalized mixture of quantum states gives
rise within the phase space formalism to the “fat Gaussian”

P (x, p; t) = 1
σσσλλλ2π exp

{
− 1

2

[
X
σσσ − θP

λλλ

]2 − 1
2

[
P
λλλ

]2}
48 For the detailed argument see A. I. Khinchin, Mathematical Foundations

of Information Theory (), p. 4.
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and by trivial adjustment (send σ �→ σσσ = bσ and λ �→ λλλ = bλ) of the calculation
which gave (83) we have

H[P̃fat gaussian mixture ] = 1 + log(σλσλσλ 2π)− log(h/2)

= 1 + log b2

= 1 + log coth1
2β

= 1 + log
{
(1 + e−β)/(1− e−β)

}
(92)

It is gratifying to observe in reference to (85) that

H[P̃fat gaussian mixture ] ≥ H[P̃pure gaussian ], with equality in the limit β ↑ ∞

but the limit does not conform to (90), and—which is more to the point—the
right sides of (91) and (92) are distinct. How did that come to be so?

The answer has to do with some fundamentals of the Weyl correspondence:
from

P (x, p)←−−−−−−−−
Weyl

ρρρ

it does not follow that

P (x, p) logP (x, p)←−−−−−−−−
Weyl

ρρρ log ρρρ

because more generally

A(x, p)←−−−−−−−−
Weyl

A does not imply f
(
A(x, p)

)
←−−−−−−−−

Weyl
f(A) (93)

That (invariably)

Weyl transform of sum = sum of Weyl transforms (94.1)

but (except in some special cases)

Weyl transform of product �= product of Weyl transforms (94.2)

is seen from49

A(x, p) =
∫ ∫ {

1
h trA e−

i
�
(αp+βx)

}
e

i
�
(αp+βx) dαdβ (95)

to follow from the corresponding elementary properties of the trace. The
circumstance highlighted at (93) has sometimes been held (by von Neumann and
others: see J. R. Shewell, “On the formation of quantum-mechanical operators,”

49 The following description of the inverse Weyl transform—which can, by the
way, be made the basis of an alternative derivation of Beck’s formula (54)—can
be extracted from material presented on pp. 101–103 of quantum mechanics
(), Chapter 3.
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AJP 27, 16 (1959)) to comprise a defect of the Weyl correspondence procedure,
though I fail to see why; starting from the classical Hamiltonian, one has

H(x, p) −−−−−−−−→
Weyl

H does not imply e−βH(x,p) ←−−−−−−−−
Weyl

e−βH

and recognizes that if it were otherwise then quantum mechanics and classical
statistical mechanics would be the same theory! Standardly, one gives meaning
to e−βH either by appeal to the spectral resolution of H

H =
∑

En|n)(n| =⇒ e−βH =
∑

e−βEn |n)(n|

or (in favorable cases) by appeal to the methods of operator algebra, or by
appeal to Feynman’s sum-over-paths technique. The former procedure, when
brought to bear upon ρρρ log ρρρ places one in position to exploit the additive
property (94.1) of the Weyl transform; writing

ρρρ =
∑

pn|n)(n| −→ ρρρ log ρρρ =
∑

pn log pn|n)(n|
|
| Weyl/Wigner

↓
=

∑
pn log pnPn(x, p)

we would be led back again to precisely (89.2), and to the conclusion that “the
entropy of a mixed state has. . . to do with the mixture statistics.”

We conclude that (89) and (80) speak about different things: the former
alludes (in quantum dress) to the familiar stuff of ordinary statistical mechanics,
while the latter presents us with an opportunity to say something new. To
emphasize the peculiarly quantum mechanical character of that “something
new” I will henceforth write

Hq[P ] ≡ −
∫ ∫

P (x, p) log P̃ (x, p) dxdp (96)

where the subscript is intended to suggest “quantum.” The expression on the
right side of (96) is recommended to our attention with the same force, and for
the same function-theoretic reasons, that serve invariably—in all contexts—to
recommend 〈logP 〉. But I chose my phraseology with care when I said that
Hq[P ] is “peculiarly quantum mechanical;” P (x, p) refers in (96) to a Wigner
function (or “quasi-distribution”), and Wigner functions can assume negative
values, with the result that

Hq[P ] will, in general, be complex

From the elementary observation that

P̃ (x, p) =
{

|P̃ (x, p)| at points where P (x, p) ≥ 0
eiπ|P̃ (x, p)| at points where P (x, p) < 0
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we conclude that

Hq[P ] = −
∫ ∫

P (x, p) log |P̃ (x, p)| dxdp− iπ

∫ ∫
neg

P (x, p) dxdp (97)

where the first
∫∫

ranges over all of phase space, while the second ranges only
over the domain on which P (x, p) < 0.

To gain some feeling for what (97) has to say in concrete cases, we look
again to the Wigner functions (72) of a harmonic oscillator. Borrowing some
computational technique from §12, we for the ground state have

Hq[P0] = − 1
2

∫ ∞

0

{
e−

1
2 z

}{
− 1

2z
}
dz − iπ 1

2

∫
empty

{
e−

1
2 z

}
dz

= 1 + i 0

which simply reproduces (85). For the first excited state (for which the Wigner
function becomes negative on the interval 0 ≤ z < 1) we have

Hq[P1] = − 1
2

∫ 1

0

{
− e−

1
2 z

[
1− z

]}{
− 1

2z + log
[
1− z

]}
dz

− 1
2

∫ ∞

1

{
− e−

1
2 z

[
1− z

]}{
− 1

2z + log
[
z − 1

]}
dz

− iπ 1
2

∫ 1

0

{
− e−

1
2 z

[
1− z

]}
dz

= 2.90469− 0.60935 i− 1
2

∫ ∞

1

{
− e−

1
2 z

[
1− z

]}
log

[
z − 1

]
dz

where the numerics have been obtained by evaluation of expressions which
Mathematica generated with ease, though it found the final integral to be
“intractable.” A simple change of variable leads, however, to an elementary
Laplace transform

1
2

∫ ∞

1

{
e−

1
2 z

[
z − 1

]}
log

[
z − 1

]
dz = 1

2
√
e

∫ ∞

0

e−sy y log y dz
∣∣∣
s= 1

2

= 1
2
√
e

[
1−γ−log s

s2

]
s= 1

2

= 1.35369

so we have Hq[P1] = 1.55100 − 0.60935 i, and the emergence of no evident
pattern. The evaluation of Hq[P2] promises to be even more tedious, and I see
no way to adapt generating function techniques to the evaluation Hq[Pn]. The
moral appears to be that one can expect Hq[P ]-evaluation to be difficult. Nor
is this surprising; it is merely a particular manifestation of a pervasive fact: In
thermalized situations, entropy can be extracted from the partition function—
thermodynamics supplies the general procedure—where all computational
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difficulties come into convenient focus (“to know Z is to know everything”).
But in non-thermalized contexts (i.e., the absence of a partition function) one
enjoys no such advantage, and can expect entropy calculations almost always
to be difficult. It is into just such a context that Hq[P ] plunges us, for (in
the absence of a successful hidden-variable theory) we certainly do not expect
the design of Pψ(x, p) to have anything to do with any interpretation of the
“thermalization” concept.


