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Introduction. I have had occasion to write at extravagant length about the
quantum mechanical evolution of initially Gaussian wavepackets.1 The recent
appearance of a paper by Katsunori Mita2 has served, however, to remind me
of an aspect to the topic which I have previously neglected to consider. It is my
intention in this short essay to remedy that omission, and to frame an opinion
concerning the value of the ideas put forward by Mita.

We look to the quantum mechanics of a mass point m that moves freely in
one dimension; i.e., to the system

H = 1
2m p2

Because momentum is a constant of the motion ([H, p] = 0) it is simplest to
work in the momentum representation, where the Schrödinger equation reads

1
2m p2ϕ(p, t) = i�∂tϕ(p, t)

and leads immediately to

ϕ(p, t) = ϕ(p) · e− i
�
(p2/2m)t

where ϕ(p) = ϕ(p, 0) is subject only to the normalization condition∫
|ϕ(p)|2dp = 1

1 See “Gaussian wavepackets” (), especially pages 2–12. I will be at
pains to adhere here to the notations adopted there.

2 “Dispersive properties of probability densities in quantum mechanics,”
AJP 71, 894 (2003).
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I restrict my attention here to the (p0, λ)-parameterized class of cases
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Passing by Fourier transformation to the x-representation, we find

ψ(x, t) = 1√
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}
where v ≡ p0/m is a “velocity” of arbitrary value, where the parameters τ , λ
and σ—which are dimensionally a “time,” a “momentum” and a “length”—
stand in the relationships

τ ≡ �m/2λ2 ≡ 2mσ2/�

and where
σ(t) ≡ σ

√
1 + (t/τ)2

� σ

It is evident that

|ψ(x, t)|2 = 1
σ(t)

√
2π

exp
{
− 1

2

[
x−vt
σ(t)

]2} (1.1)

and

|ϕ(p, t)|2 = 1
λ
√

2π
exp

{
− 1

2

[p−mv

λ

]2} : all t (1.2)

both describe normal distributions, and that

〈x〉 = vt

∆x ≡
√
〈x2〉 − 〈x〉2 = σ(t)

〈p〉 = mv

∆p ≡
√
〈p2〉 − 〈p〉2 = λ

At t = 0 we have the “minimal dispersion relation”

∆x · ∆p = σλ = 1
2�

1. Expected results of energy measurements. From

Ē ≡ 〈H〉 = 1
2m 〈p2〉 = 1

2m

{
〈p〉2 + (∆p)2

}
it is immediate that for a free Gaussian wavepacket

Ē = 1
2mv2 + λ2/2m

= 1
2mv2 + �

2/8mσ2

= 1
2mv2 + � /4τ


 (2)

This result is susceptible to several modes of intuitive interpretation. We might,
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for example, write

Ē = classical drift energy + quantum correction

where both terms are constant, and the latter remains present even in the
absence of drift (v = 0). The “quantum correction” �

2/8mσ2 can be understood
physically as the energy that was invested in the assembly of the wavepacket (as
distinguished from the energy expended to launch it). Recall in this regard3

that the least energy investment sufficient to confine a particle to the interior
of a one-dimensional box of length � is given by E0 = �

2/8m(�/2π)2.

Equations (2) display Ē as a sum of two terms. Mita remarks, in this
regard, that the kinetic energy T = 1

2

∑
miẋ

2
i of a classical system of particles

—if we write xi = X + ri and understand X to refer to the center of mass

X ≡
∑

mixi∑
mi

: entails
∑

miri = 0

—can be written in a form

T = 1
2 (

∑
mi)Ẋ

2
+ 1

2

∑
miṙ

2
i

= Tof center of mass + Trelative to center of mass

typical of the several “splitting theorems” encountered in classical mechanics.4

It becomes tempting in this light to look upon (2)—though it refers to the
physics of a single particle—as the expression of a “quantum mechanical
splitting theorem.”

Our Gaussian wavepackets are, of course, not eigenfunctions of H. Energy
measurements will, therefore, display some inevitable statistical scatter. We
look, therefore, to

(∆E)2 = 〈H2〉 − 〈H〉2

= 1
4m2

{
〈p4〉 − 〈p2〉2

}
and after Mathematica -assisted calculation obtain

= 1
4m2

{
(m4v4 + 6m2v2λ2 + 3λ4) − (m2v2 + λ2)2

}
= λ2

(
v2 + 1

2m2λ
2
)

(3)

= 2(Ē + 1
2mv2)(Ē − 1

2mv2)

= 2(mv2 + �

4τ ) �

4τ > 0

It is not surprising that ∆E is under the direct control of λ = ∆p. I have
nothing sharp to say about the specific structure of (3), but am in position to
describe a more elegant method for deriving this and similar results:

3 See, for example, §2.2 in D. Griffiths, Introduction to Quantum Mechanics
(),

4 See classical mechanics (), pages 60–65.
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We proceed from the observation that

probability that 0 � measured energy � E

= probability that −
√

2mE � p � +
√

2mE

=
∫ +
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2mE
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]2}
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=
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0

w(E) dE

where w(E) describes how we expect the results of energy measurements to be
distributed. Immediately

w(E) = d
dE

∫ +
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−
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+ exp
{
−
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√

mE+
√

2 mv)2

4λ2

]}]

Mathematica—responding to the command

Integrate[w(E), {E, 0,∞}, Assumptions→{Re[λ]>0, Re[m]>0}]

—supplies
∫ ∞
0

w[E] dE = 1 even though (see the following figure) w(E) is weakly

1 2 3 4 5
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3

Figure 1: Graph of w(E) in the case m = v = λ = 1.

divergent at E = 0. Similar commands give back (compare (2) and (3))

Ē ≡ 〈E 〉 =
∫ ∞

0

E w(e) dE = m2v2 + λ2

2m

〈E2 〉 =
∫ ∞

0

E2w(e) dE = m4v4 + 6m2v2λ2 + 3λ4

4m2
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and make it easy to extend the list of expected moments:

〈E3 〉=
∫ ∞

0

E3w(e) dE = m6v6 +15m4v4λ2 +45m2v2λ4 +15λ6

8m3

〈E4 〉=
∫ ∞

0

E4w(e) dE = m8v8 +28m6v6λ2 +210m4v4λ4 +420m2v2λ6 +105λ8

16m4

...

“Energy conservation” finds expression in the fact that the moments of all
orders (which is to say: w(E) itself) are t-independent.

2. Mita’s contribution. Katsunori Mita indicates on his web page5 that the
theory of “probability density and probability density currents in quantum
mechanics” is his main research interest. One might therefore anticipate that
he prefers to work in the x-representation, and that he entertains a “fluid
dynamical” conception of ψ -motion; his recent publications would seem to
support that suspicion.6

We note by way of preparation that the Gaussian ψ(x, t) of page 2 can be
shown by direct (Mathematica -assisted) computation to satisfy

{
− �

2

2m∂2
x − i�∂t

}
ψ(x, t) = 0

and ∫
|ψ(x, t)|2 dx = 1 : all t

and that—consistently with results already stated—

〈p〉 = −i�
∫

ψ∗(x, t) ∂xψ(x, t) dx = mv : all t

〈H〉 = −(�2/2m)
∫

ψ∗(x, t) ∂2
xψ(x, t) dx = 1

2mv2 + 1
4 (�/τ) : all t

Mita draws attention to the fact that an integration-by-parts supplies

〈H〉 =
∫

E(x, t) dx (5)

5 www.smcm.edu/nsm/physics/MITA.HTM. We are informed that he chairs
the three-person department at St. Mary’s College of Maryland, and that he
began his career as a string/particle theorist.

6 “The real part of a wavefunction in tunneling,” APJ 62, 470 (1994);
“Virtual probability current associated with the spin,” AJP 68, 259 (2000);
“Fluid-like properties of probability densities in quantum mechanics,” AJP 69,
470 (2001).
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where
E(x, t) ≡ �

2

2m ∂xψ
∗(x, t) ·∂xψ(x, t)

can (and—when quantum mechanics is developed in the language of classical
field theory—definitely would) be looked upon as an “energy density.” With
Mita7 we observe that E can be notated

E = �
2

2m

|ψ∗∂xψ|2
ψ∗ψ

(6)
Recall now that

probability density ρ = ψ∗ψ

probability current J = i �

2m

(
ψ ∂xψ

∗ − ψ∗∂xψ
)

= 1
2m

(
ψ∗ �

i ∂xψ + conjugate
)

= 1
mRe

{
ψ∗ �

i ∂xψ
}

(7.1)

and, drawing inspiration from the last of those equations, define

D ≡ 1
m Im

{
ψ∗ �

i ∂xψ
}

(7.2)

= 1
2mi

(
ψ∗ �

i ∂xψ − conjugate
)

= − �

2m

(
ψ ∂xψ

∗ + ψ∗∂xψ
)

= − �

2m∂xρ

We then have
1
m ψ∗ �

i ∂xψ = J + iD

giving

E = m
2ρ | 1

m ψ∗ �

i ∂xψ |2

= m
2ρ (J2 +D2) (8)

= Edrift + Edispersion by Mita’s interpretation

We have here displayed E as a sum of two (manifestly non-negative) terms,
and might claim to have obtained a“quantum mechanical splitting theorem.”
It is, however, distinct from all previous such theorems, for computation in the
Gaussian case gives∫

Edrift(x, t) dx = 16m4v2σ6 + 4m2t2v2σ2
�

2 + t2�
4

32m3σ6 + 8mt2σ2�2

which by expansion in powers of � becomes

= 1
2mv2 + 1

4 (�/τ)ϑ2
{

1 − ϑ2 + ϑ4 − ϑ6 + · · ·
}

(here ϑ ≡ t�/2mσ2 = t/τ) and for all values of ϑ can be written

7 What I present is actually a one-dimensional reorganization of Mita’s
three-dimensional argument.
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= 1
2mv2 + 1

4 (�/τ) · ϑ2

1 + ϑ2
(9.1)

Similarly∫
Edispersion(x, t) dx = �

2mσ2

8m2σ4 + 2t2�2

= 1
4 (�/τ) · 1

1 + ϑ2

= 1
4 (�/τ) ·

{
1 − ϑ2

1 + ϑ2

}
(9.2)

We note that both

Edrift(t) ≡
∫

Edrift(x, t) dx and Edispersion(t) ≡
∫

Edispersion(x, t) dx

are time-dependent , though their sum is a familiar constant:

Edrift(t) + Edispersion(t) = Ē : all t (10)

The situation is illustrated in the following figure:

1 2 3 4 5 6 7 81 2 3 4 5 6 7 8

Ē = 1
2mv2 + 1

4
�

τ

1
2mv2

Figure 2: The lower curve shows the growth of Edrift(t), with time
marked off in τ -units. The shaded region shows the diminishing
contribution made to Ē by Edispersion(t). I can think offhand of
no way in which such a figure might be extracted from
observational data: the point illustrated is, in that sense and to
that extent, entirely formal.

Recognizing the physical importance that familiarly attaches to the

probability current J = 1
mRe

{
ψ∗pψ

}
Mita takes satisfaction from the fact that he has found work for

D = 1
m Im

{
ψ∗pψ

}
to do, and devotes the remainder of his paper to an effort to support his claim
that D is an “important object, susceptible to useful physical interpretation”
[my quotation marks]. I attempt to follow him down this road:
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Assuming ψ(x, t) to have the Gaussian form described on page 2, we (with
major assistance by Mathematica) compute

J(x, t) =
v + xt/τ2

1 + (t/τ)2
· 1

σ(t)
√

2π
exp

{
− 1

2

[
x−vt
σ(t)

]2}
︸ ︷︷ ︸

ρ(x, t)

= vρ+
t(x− vt)

τ2[1 + (t/τ)2]
ρ (11.1)

D(x, t) = x− vt
τ [1 + (t/τ)2]

ρ (11.2)

Therefore

J = vρ+ (t/τ)D (12.1)

which by (7.2) becomes

= vρ− �t
2mτ ∂xρ

= vρ− t �
2

4m2σ2 ∂xρ

This Mita would have us read as a statement that

= Jdrift + Jdispersion (12.2)

I would emphasize that (11) and (12) describe (non-obvious) special properties
of launched Gaussian solutions of the free-particle Schrödinger equation: they
do not pertain to free wavepackets-in-general.

From (12.1) it follows that the probability conservation equation

∂tρ + ∂xJ = 0

can be written
(∂t + v∂x)ρ = t �

2mτ ∂xxρ (13.1)

which in the case v = 0 assumes the form

↓
∂tρ = t �

2mτ · ∂xxρ
(13.2)

of a diffusion equation with a time-dependent diffusion coefficient . Equation
(13.1) can be recovered from (13.2) by a change of variables

t = t

x = x− v t

}
=⇒

{
∂ t = ∂ t + v∂x

∂x = ∂x

i.e., by passing to a drifting frame, the assumption here being that ρ(x, t)
transforms as a scalar: ρ(x, t) �−→ ρ(x, t) = ρ(x− v t, t).
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Mita remarks that if we return with (12.1) to (8) we find that the energy
density can be described

E = m
2ρ

[(
vρ+ (t/τ)D

)2 +D2
]

= 1
2mv2ρ +mv(t/τ)D + m

2ρ

[
1 + (t/τ)2

]
D2

Because D(x, t) is—whether one works from (7.2) (i.e., from D ∼ ∂xρ) of from
(11.2)—odd with respect to the point x = vt, it is evident (and confirmed by
Mathematica) that

∫
Ddx = 0 (all t) so for purposes of E-evaluation we might

as well write
↓
= 1

2mv2ρ + m
2ρ

[
1 + (t/τ)2

]
D2

Trivially
∫
ρ dx = 1, while non-trivially

∫
m
2ρ

[
1 + (t/τ)2

]
D2 dx = �/4τ . So

we do in fact recover (1). It becomes tempting at this point—at least in this
specifically Gaussian context—to adopt these modificiations of the definitions
proposed at (9):

Edrift ≡ 1
2mv2ρ (14.1)

Edispersion ≡ m
2ρ

[
1 + (t/τ)2

]
D2

=
m(x− vt)2

2τ2[1 + (t/τ)2]
ρ

= (�/4τ)
[

x−vt
σ(t)

]2
ρ (14.2)

Equation (1) can be considered on this basis to follow at once from∫
ρ dx =

∫ [
x−vt
σ(t)

]2
ρ dx = 1 : ρ = 1

σ(t)
√

2π
exp

{
− 1

2

[
x−vt
σ(t)

]2}
Note especially (in reference to Figure 2) that the Edrift and Edispersion latent in
(14) are time-independent ; we have recovered an “eneregetic splitting theorem”
of the type first encountered at the top of page 3.

Mita concludes his Gaussian §4 with the computation-based remark that∫
(D2/ρ) dx = σ2

�
2

4m2σ4 + t2�2

= (�/2mσ)2[1 + (t/τ)2]–1

from which, by �/2mσ = λ/m, he extracts

λ = constant value of ∆p = m

[
[1 + (t/τ)2] ·

∫
(D2/ρ) dx

]1
2

But if one knew the value of τ—as required to evaluate the expression on the
right—one would already know the value of λ =

√
2τ/�m, so it is hard to see

how the preceding equation can be read as compelling evidence that D is an
“important object.”
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Mita appears to have drawn inspiration from what he considers to be
the “interesting graphical representation” of the free motion of a Gaussian
wavepacket that appears as Figure 5.3 on page 87 (and also on the cover)
of Richard Robinett’s Quantum Mechanics: Classical Results, Modern Systems
& Visualized Examples (). A slight variant of Robinett’s figure is presented
as his Figure 1, and my own reconstruction appears below:

0 50 100 150 200

0

100

200

300

Figure 3: Reconstruction of a figure first constructed by Robinett,
and appropriated by Mita. Time t (in τ -units) runs →, and x runs ↑.
The contours show the drift and dispersal of the Gaussian

ρ(x, t) = 1
σ(t)

√
2π

exp
{
− 1

2

[
x−vt
σ(t)

]2}
= NormalDistribution[ vt, σ

√
1 + (t/τ)2 ]

with v = 0.7, σ = 0.5, τ = 1.0. The bold red line is a graph of the
“classical trajectory” x = vt. Points were selected randomly from
the evolving distribution, connected by lines and plotted by means
of the Mathematica commands

<<Statistics‘Continuous Distributions‘

qpath = Table[Random[

NormalDistribution[.7t, .5
√

1 + t2]], {t, 1, 200, 1}]
ListPlot[qpath, PlotJoined→True];
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Robinett himself appears to attach no particular physical significance to his
“stochastic meander.” But Mita seems inclined to attach literal significance
to Robinett’s figure, to read it as a description of “random oscillations of the
particle about its classical trajectory,” of “[one of the many] possible random
motion[s] of the particle along its classical trajectory.” In Mita’s view the figure
“suggests that the particle executes [meaning that in point of physical fact the
particle does execute?] analogous classical, random oscillations about 〈x〉.” In
the caption to his Figure 1 he allows himself to refer to “the random oscillations
of the particle” as though such “oscillations” were established realities. Mita’s
stated objective is to spell out “some interesting implications” of that train of
thought. Possibly Mita’s words are less seriously intended, more tentative, than
I read them. But I find in his paper no phrases of the type “let us pretend;”
“it is as if . . . ” In this specific regard I admit to some surprise that the AJP
referees did not blow their whistles.

The obvious difficulty with Mita’s idea, as I read it, is that if any one of
the computed sample points actually reported the result of an observation then
“collapse of the wavefunction” would render all subsequent points irrelevant .
If, on the other hand, Mita holds it to be essential that they remain unobserved,
then he has managed simply to encumber ordinary quantum mechanics with
an unphysical interpretive overlay. That criticism notwithstanding, Mita has
made some interesting points, and he is certainly not the first person to have
extracted valuable insight from a misconception.

Mita’s reading of Robinett’s figure does—obliquely—raise an interesting
question: How—in what approximation, and in what limit—does drift survive
the observation process? Certainly it is possible in the classical limit to “watch
a particle move.” In the deep quantum realm we expect repeated observation of
a particle in a state described initially by a Gaussian-at-rest to yield data with a
time-independent mean. But such a sequence of events, if viewed by an observer
in uniform motion, would surely yield a drifting mean. We confront, therefore,
this question: How, and to what extent, does a “launched Gaussian” manage
to retain its motion when (imprecisely?) watched? The problem appears to
have much in common with the “quantum Zeno problem,” the “cloud chamber
problem”8. . . and yet to differ from both in important ways. It is a problem—if
a problem—to which I hope to return on another occasion.

8 See pages 383–385 in Griffiths3 and Chapter 6 in Partha Ghose, Testing
Quantum Mechanics on New Ground ().


