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Introduction & motivation. Folklore alleges, and in some texts it is explicitly—
if, as will emerge, not quite correctly—asserted, that “quantum mechanical
expectation values obey Newton’s second law.” The pretty point here at issue
was first remarked by Paul Ehrenfest (–), in a paper scarcely more than
two pages long.1 Concerning the substance and impact of that little gem, Max
Jammer, at p. 363 in his The Conceptual Development of Quantum Mechanics
(), has this to say:

“That for the harmonic oscillator wave mechanics agrees with
ordinary mechanics had already been shown by Schrödinger. . . 2

A more general and direct line of connection between quantum
mechanics and Newtonian mechanics was established in 1927 by
Ehrenfest, who showed ‘by a short elementary calculation without
approximations’ that the expectation value of the time derivative
of the momentum is equal to the expectation value of the negative
gradient of the potential energy function. Ehrenfest’s affirmation of
Newton’s second law in the sense of averages taken over the wave
packet had a great appeal to many physicists and did much to further
the acceptance of the theory. For it made it possible to describe
the particle by a localized wave packet which, though eventually
spreading out in space, follows the trajectory of the classical motion.
As emphasized in a different context elsewhere3, Ehrenfest’s theorem

1 “Bemerkung über die angenäherte Gültigkeit der klassichen Machanik
innerhalb der Quanatenmechanik,” Z. Physik 45, 455–457 (1927).

2 Jammer alludes at this point to Schrödinger’s “Der stetige Übergang
von der Mikro- zur Makromechanik,” Die Naturwissenschaften 28, 664 (1926),
which in English translation (under the title “The continuous transition from
micro- to macro-mechanics”) appears as Chapter 3 in the 3rd (augmented)
English edition of Schrödinger’s Collected Papers on Wave Mechanics ().

3 See Jammer’s Concepts of Mass (), p. 207.
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and its generalizations by Ruark4. . . do not conceptually reduce
quantum dynamics to Newtonian physics. They merely establish an
analogy—though a remarkable one in view of the fact that,
owing to the absence of a superposition principle in classical
mechanics, quantum mechanics and classical dynamics are built on
fundamentally different foundations.”

“Ehrenfest’s theorem” is indexed in most quantum texts,5 though the
celebrated authors of some classic monographs6 have (so far as I have been able
to determine, and for reasons not clear to me) elected pass over the subject
in silence. The authors of the texts just cited have been content simply to
rehearse Ehrenfest’s original argument, and to phrase their interpretive remarks
so casually as to risk (or in several cases to invite) misunderstanding. Of more
lively interest to me at present are the mathematically/interpretively more
searching discussions which can be found in Chapter 6 of A. Messiah’s Quantum
Mechanics () and Chapter 15 of L. E. Ballentine’s Quantum Mechanics
(). Also of interest will be the curious argument introduced by David Bohm
in §9.26 of his Quantum Theory (): there Bohm uses Ehrenfest’s theorem
“backwards” to infer the necessary structure of the Schrödinger equation.

I am motivated to reexamine Ehrenfest’s accomplishment by my hope (not
yet ripe enough to be called an expectation) that it may serve to illuminate the
puzzle which I may phrase this way:

I look about me, in this allegedly “quantum mechanical world,” and
see objects moving classically along well-defined trajectories. How
does this come to be so?

I have incidental interest also some mathematical ramifications of Ehrenfest’s
theorem in connection with which I am unable to cite references in the published
literature. Some of those come instantly into focus when one looks to the general
context within which Ehrenfest’s argument is situated.

4 The allusion here is to A. E. Ruark, “. . . the force equation and the virial
theorem in wave mechanics,” Phys. Rev. 31, 533 (1928).

5 See E. C. Kemble, The Fundamental Principles of Quantum Mechanics
(), p. 49; L. I. Schiff, Quantum Mechanics (3rd edition, ), p. 28;
E. Mertzbacher, Quantum Mechanics (2nd edition, ), p. 41; J. L. Powell &
B. Crassmann, Quantum Mechanics (), p. 98; D. J. Griffiths, Introduction
to Quantum Mechanics (), pp. 17, 43, 71, 150, 162 & 175. Of the authors
cited, only Griffiths draws recurrent attention to concrete applications of
Ehrenfest’s theorem.

6 I have here in mind P. A. M. Dirac’s The Principles of Quantum Mechanics
(revised 4th edition, ) and L. D. Landau & E. M. Lifshitz’ Quantum
Mechanics (). W. Pauli’s Wellenmechanik () is a reprint of his famous
Handbuch article, which appeared—incredibly—in , which is to say: too
early to contain any reference to Ehrenfest’s accomplishment.
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1. Quantum motion of moments: general principles. Let |ψ) signify the state of a
quantum system with Hamiltonian H, and let A refer to some time-independent
observable.7 The expected mean of a series of A-measurements can, by standard
quantum theory, be described

〈A〉 = (ψ|A|ψ)

and the time-derivative of 〈A〉—whether one works in the Schrödinger picture,8

the Heisenberg picture,9 or any intermediate picture—is given therefore by

d
dt 〈A〉 = 1

i� 〈AH− HA〉 (1)

Ehrenfest himself looked to one-dimensional systems of type

H ≡ 1
2mp2 − V with V ≡ V (x)

and confined himself to a single instance of (1):

d
dt 〈p〉 = 1

i� 〈pH− Hp〉
= 1

i� 〈pV− Vp〉

Familiarly

[x , p ] = i�1 =⇒ [xn, p ] = i� · nxn−1 whence [V (x), p ] = i� · V ′
(x)

so with Ehrenfest we have

d
dt 〈p〉 = −〈V ′

(x)〉 (2.1)
A similar argument supplies

d
dt 〈x〉 = 1

m 〈p〉 (2.2)

though Ehrenfest did not draw explicit attention to this fact.

Equation (2.1) is notationally reminiscent of Newton’s 2nd law

ṗ = −V ′
(x) with p ≡ mẋ

and equations (2) are jointly reminiscent of the first-order “canonical equations
of motion”

ẋ = 1
mp

ṗ = −V ′
(x)

}
(3)

7 I will be using sans serif boldface type to distinguish operators (q-numbers)
from real/complex numbers (c-numbers).

8 A is constant, but |ψ) moves: d
dt |ψ) = 1

i�H|ψ).
9 |ψ) is constant, but A moves: d

dtA = 1
i� [A,H ].
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that associate classically with systems of type H(x, p) = 1
2mp2 + V (x). But

except under special circumstances which favor the replacement

〈V ′
(x)〉 	−→ V

′
(〈x〉) (3)

the systems (2) and (3) pose profoundly different mathematical and interpretive
problems. Whence Jammer’s careful use of the word “analogy,” and of the
careful writing (and, in its absence, of the risk of confusion) in some of the
texts to which I have referred.

The simplest way to achieve (3) comes into view when one looks to the
case of a harmonic oscillator. Then V

′
(x) = mω2x is linear in x, (3) reduces to

a triviality, and from (2) one obtains

d
dt 〈p〉 = −mω2〈x〉
d
dt 〈x〉 = 1

m 〈p〉

}
(4)

For harmonic oscillators it is true in every case (i.e., without the imposition of
restrictions upon |ψ)) that the expectation values 〈x〉 and 〈p〉 move classically.

The failure of (3) can, in the general case (i.e., when V (x) is not quadratic),
be attributed to the circumstance that for most distributions 〈xn〉 �= 〈x〉n.
It becomes in this light natural to ask: What conditions on the distribution
function P (x) ≡ ψ∗(x)ψ(x) are necessary and sufficient to insure that 〈xn〉 and
〈x〉n are (for all n) equal? Introducing the so-called “characteristic function”
(or “moment generating function”)

Φ(k) ≡
∞∑
n=0

1
n!

(ik)n〈xn〉 =
∫

eikxP (x)dx

we observe that if 〈xn〉 = 〈x〉n (all n) then Φ(k) = eik〈x〉, and therefore that

P (x) = 1
2π

∫
e−ik[x−〈x〉]dk = δ(x− 〈x〉)

It was this elementary fact which led Ehrenfest to his central point, which
(assuming V (x) to be now arbitrary) can be phrased as follows: If and to the
extent that P (x) is δ-function-like (refers, that is to say, to a narrowly confined
wave packet), to that extent the exact equations (2) can be approximated

d
dt 〈p〉 = −V ′

(〈x〉)
d
dt 〈x〉 = 1

m 〈p〉

}
(5)

and in that approximation the means 〈x〉 and 〈p〉 move classically.

But while P (x) = δ(x − 〈x〉) may hold initially (as it is often assumed
to do), such an equation cannot, according to orthodox quantum mechanics,
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persist, for functions of the form
√
δ(x− xclassical(t))eiα(x,t) cannot be made to

satisfy the Schrödinger equation.

2. Example: the free particle. To gain insight into the rate at which P (x) loses
its youthfully slender figure—the rate, that is to say, at which the equations
〈xn〉 = 〈x〉n lose their presumed initial validity—one looks naturally to the
time-derivatives of the “centered moments” 〈(x− 〈x〉)n〉, and more particularly
to the leading (and most tractable) case n = 2. From 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2
it follows that

d
dt 〈(x− 〈x〉)

2〉 = d
dt 〈x

2〉 − 2〈x〉 ddt 〈x〉 (6)

To illustrate the pattern of the implied calculation we look initially to the case
of a free particle: H = 1

2m p2. From (2) we learn that

d
dt 〈p〉 = 0 so 〈p〉 is a constant; call it p ≡ mv
d
dt 〈x〉 = v

⇓
〈x〉 = x0 + vt where x0 ≡ 〈x〉initial is a constant of integration (7)

Looking now to the leading term on the right side of (6), we by (1) have

d
dt 〈x

2〉 = 1
2i�m 〈[x

2, p2 ]〉

The fundamental commutation rule [AB,C] = A[B,C] + [A,C]B implies (and
can be recovered as a special consequence of) the identity

[AB,CD] = AC[B,D] + A[B,C]D + C[A,D]B + [A,C]DB

with the aid of which we obtain [x2, p2 ] = 2i�(xp + px), giving

d
dt 〈x

2〉 = 1
m 〈(xp + px)〉 (8)

Shifting our attention momentarily from x2 to (xp + px), in which we have now
an acquired interest, we by an identical argument have

d
dt 〈(xp + px)〉 = 1

2i�m 〈[(xp + px), p2 ]〉
= 2

m 〈p
2 〉 (9)

and are led to divert our attention once again, from (xp + px) to p2. But

d
dt 〈p

2 〉 = 1
2i�m 〈[p

2 , p2 ]〉
= 0 so 〈p2 〉 is a constant; call it m2u2

by an argument that serves in fact to establish that

For a free particle 〈pn 〉 is constant for all values of n. (10)
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Returning with this information to (9) we obtain

〈(xp + px)〉 = 2mu2t+a

a ≡ 〈(xp + px)〉initial is a constant of integration

which when introduced into (8) gives

〈x2〉 = 1
m

{
mu2t2 + at

}
+s2

s2 ≡ 〈x2〉initial is a final constant of integration

We conclude that the time-dependence of the centered 2nd moments of a free
particle can be described

σ2
p(t) ≡ 〈(p− 〈p〉)2〉 = m2(u2 − v2) (11.1)

σ2
x(t) ≡ 〈(x− 〈x〉)2〉 = 1

m

{
mu2t2 + at

}
+ s2 − (x0 + vt)2

= (u2 − v2)t2 + 1
m (a− 2mvx0)t + (s2 − x2

0) (11.2)

Concerning the constants which enter into the formulation of these results,
we note that

x0 and s have the dimensionality of length

u and v have the dimensionality of velocity

a has the dimensionality of action

and that the values assignable to those constants are subject to some constraint:
necessarily (whether one argues from σ2

p ≥ 0 or from σ2
x(t→ ±∞) ≥ 0)

u2 − v2 ≥ 0

while σ2
x(0) ≥ 0 entails

s2 − x2
0 ≥ 0

A graph of σ2
x(t) has the form of an up-turned parabola or is linear according

as u2− v2 ≥ 0; the latter circumstance is admissible only if a− 2mvx0 = 0, but
in the former case the requirement that the roots of σ2

x(t) = 0 be not real and
distinct (i.e., that they be either coincident or imaginary) leads to a sharpened
refinement of that admissibility condition:

(u2 − v2)(s2 − x2
0)−

[
1

2m (a− 2mvx0)
]2 ≥ 0 (12)

By quick calculation we find (proceeding from (11.2)) that the least value ever
assumed by σ2

x(t) can be described

σ2
x(t)

∣∣∣
least

=
(u2 − v2)(s2 − x2

0)−
[

1
2m (a− 2mvx0)

]2
(u2 − v2)
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and so obtain

σ2
p(t)σ

2
x(t) = m2(u2 − v2)

[
(u2 − v2)t2 + 1

m (a− 2mvx0)t + (s2 − x2
0)

]
≥ m2(u2 − v2)(s2 − x2

0)−
[
1
2 (a− 2mvx0)

]2 (13)

In deriving (13) we drew upon the principles of quantum dynamics, as
they refer to the system H = 1

2m p2, but imposed no restrictive assumption
upon the properties of |ψ); in particular, we did not (as Ehrenfest himself did)
assume (x|ψ) ≡ ψ(x) to be Gaussian. A rather different result was achieved by
Schrödinger by an argument which draws not at all upon dynamics (it exploits
little more than the definition 〈A〉 ≡ (ψ|A|ψ) and Schwarz’ inequality); if A and
B refer to arbitrary observables, and |ψ) to an arbitrary state, then according
to Schrödinger10

(∆A)2(∆B)2 ≥
〈AB− BA

2i

〉2

+
{〈AB + BA

2

〉
− 〈A〉〈B〉

}2

(14)

≥
〈AB− BA

2i

〉2

which in a particular case (A 	→ x, B 	→ p) entails

σ2
p(t)σ

2
x(t) ≥ (�/2)2 +

{〈xp + px

2

〉
− 〈x〉〈p〉

}2

(15)

Reverting to our established notation, we find{
etc.

}2

=
{
m(u2 − v2)t + 1

2 (a− 2mvx0)
}2

and observe that the expression on the right invariably vanishes once, at time

t = −
[ a− 2mvx0

2m(u2 − v2)

]
Which is precisely the time at which, according to (11.2), σ2

x(t) assumes its
least value. Evidently (13) will be consistent with (15) if and only if we impose
upon the parameters {x0, s, u, v and a} this sharpened—and non-dynamically
motivated—refinement of (12):

(u2 − v2)(s2 − x2
0)−

[
1

2m (a− 2mvx0)
]2 ≥ (�/2m)2 (16)

Notice that we recover (12) if we approach the limit that m→∞ in such a way
as to preserve the finitude of 1

2m (a− 2mvx0).

10 “Zum Heisenbergschen Unscharfenprinzip,” Berliner Berichte, 296 (1930).
For discussion which serves to place Schrödinger’s result in context, see §7.1 in
Jammer’s The Conceptual Development of Quantum Mechanics (). For a
more technical discussion which emphasizes the importance of the “correlation
term” {etc.}—a term which the argument which appears on p. 109 of Griffiths’
text appears to have been designed to circumvent—see the early sections in
Bohm’s Chapter 10. Or see my own quantum mechanics (), Chapter
III, pp. 51–58.
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3. A still simpler example: the “photon”. We are in the habit of thinking of the
free particle as the “simplest possible” dynamical system. But at present we
are concerned with certain algebraic aspects of quantum dynamics, and from
that point of view it becomes natural to consider the Hamiltonian

H = cp (17)

which depends not quadratically but only linearly upon p. We understand c to
be a constant with the dimensionality of velocity.11 Classically, the canonical
equations of motion read

ẋ = c and ṗ = 0 (18)

and give
x(t) = x0 + ct and p(t) = constant

The entities to which the theory refers (lacking any grounds on which to call
them “particles,” I will call them “photons”) invariably move to the right with
speed c. Quantum mechanically, Ehrenfest’s theorem gives

d
dt 〈p〉 = 0 and d

dt 〈x〉 = 1
i� 〈[x, cp ]〉 = c

which exactly reproduce the classical equations (17), and inform us that the 1st

moments 〈x〉 and 〈p〉 move “classically:”

〈x〉 = x0 + ct

〈p〉 = constant: call it p

Looking to the higher moments, the argument which gave (10) now supplies the
information that that indeed 〈pn〉 is constant for all values of n, and so also
therefore are all the centered moments of momentum; so also, in particular, is

σ2
p(t) = constant; call it P 2

From
d
dt 〈x

2 〉 = 1
i� 〈[x

2, cp ]〉 = 2c〈x〉 = 2c(x0 + ct)

we obtain
〈x2 〉 = s2 + 2cx0t + c2t2

giving
σ2
x(t) = 〈x2 〉 − 〈x〉2 = (s2 + 2cx0t + c2t2)− (x0 + ct)2

= s2 − x2
0

= constant

11 One might be tempted to write P/2m in place of c, but it seems extravagant
to introduce two constants where one will serve.



A simpler example: the “photon” 9

By extension of the same line of argument one can show (inductively) that the
centered moments 〈(x− 〈x〉)n〉 of all orders n are constant. Looking finally to
the mean motion of the “correlation operator” C ≡ 1

2 (xp + px) we find

d
dt 〈C〉 = 1

2i� 〈[(xp + px), cp ]〉 = c〈p〉 = cp

giving
〈C〉 = a + cpt

The motion of the “correlation coefficient”

C =
〈xp + px

2

〉
− 〈x〉〈p〉 (19)

can therefore be described

C(t) = (a + cpt)− (x0 + ct)p = a− px0

The correlation coefficient C is, in other words, also constant. We conclude that
for the “photonic system”

σ2
p(t)σ

2
x(t) = constant

= P 2 · (s2 − x2
0)

≥ (�/2)2 + (a− px0)2 according to Schrödinger

and on these grounds that the parameters {x0, s, P, p and a} are subject to a
constraint which can (compare (16)) be written

P 2(s2 − x2
0)− (a− px0)2 ≥ (�/2)2 (20)

From the constancy of the moments of principal interest to us we infer that
the “photonic” system is non-dispersive. That same conclusion is supported also
by this alternative line of argument: (17) gives rise to a “Schrödinger equation”
which can be written c(�

i
∂
∂x )ψ = i� ∂

∂tψ or more simply

(∂x + 1
c ∂t)ψ = 0

and the general solution of which is well known to move “rigidly” (which is to
say: non-dispersively) to the right:

ψ(x, t) = f(x− ct)

Only at (20) does the quantum mechanical photonic system differ in any
obvious respect from its classical counterpart. It seems to me curious that
the system has not been discussed more widely. The system—which does not
admit of Lagrangian formulation—derives some of its formal interest from the
circumstance that both T-invariance and P-invariance are broken.
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4. Computational features of the general case. One could without difficulty—
though I on this occasion won’t—construct similarly detailed accounts of the
momental dynamics of the systems

free fall : H = 1
2m p2 + mg x

harmonic oscillator : H = 1
2m p2 + mω2 x2

and, indeed, of any system with a Hamiltonian

H = c1p
2 + c2(xp + px) + c3x

2 + c4p + c5x + c61

which depends at most quadratically upon the operators x and p. To illustrate
problems presented in the more general case I look to the system

H = 1
2m p2 + 1

4k x4 (21)

The classical equations of motion read

ṗ = −kx3

ẋ = 1
mp

}
(22)

while Ehrenfest’s relations (2) become

d
dt 〈p〉 = −k〈x3〉
d
dt 〈x〉 = 1

m 〈p〉

}
(23.1)

The latter are, as Ehrenfest was the first to point out, exact corollaries of
the Schrödinger equation H|ψ) = i� ∂∂t |ψ), and they are in an obvious sense
“reminiscent” of their classical counterparts. But (23.1) does not provide an
instance of (22), for the simple reason that 〈x3〉 and 〈x〉 are distinct variables.
More to the immediate point, (23.1) does not comprise a complete and soluable
system of differential equations.

In an effort to achieve “completeness” we look to

d
dt 〈x

3〉 = 1
i� 〈[x

3 ,H ]〉 = 1
2mi� 〈[x

3 , p2 ]〉
[x3 , p2 ] = [x3 , p ]p + p[x3 , p ]

= 3i�(x2p + px2)
= 3

2m 〈(x
2p + px2)〉 (23.2)

and discover that we must add (x2p + px2) to our list of variables. We look
therefore to

d
dt 〈(x

2p + px2)〉 = 1
i� 〈[(x

2p + px2),H ]〉
By tedious computation

[(x2p + px2), p2 ] = i�(xp2 + 2pxp + p2x)

[(x2p + px2), x4 ] = −8i�x5
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so we have

d
dt 〈(x

2p + px2)〉 = 1
2m 〈(xp

2 + 2pxp + p2x)〉 − 8
3k〈x

5〉 (23.2)

but must now add both 〈(xp2 + 2pxp + p2x)〉 and 〈x5〉 to our list of variables.
Pretty clearly (since H introduces factors faster that [x, p] = i�1 can kill them)
equations (23) comprise only the leading members of an infinite system of
coupled first-order linear (!) differential equations.

Writing down such a system—quite apart from the circumstance that it
may require an infinite supply of paper and ink—poses an algebraic problem of
a high order, particularly in the more general case

H = 1
2m p2+V (x)

V (x) described by power series, or Laplace transform, or. . .

and especially in the most general case H = h(x, p). But assuming the system
to have been written down, solving such a system poses a mathematical problem
which is qualitatively quite distinct both from the problem of solving it’s
(generally non-linear) classical counterpart

ṗ = −V ′
(x)

ẋ = 1
mp

}
: equivalently mẍ = −V ′

(x)

and from solving the associated Schrödinger equation{
1

2m

(
�

i
∂
∂x

)2 + V (x)
}
ψ(x, t) = i� ∂∂tψ(x, t)

Distinct from and, we can anticipate, more difficult than. But while the
computational utility of the “momental formulation of quantum mechanics”
can be expected to be slight except in a few favorable cases, the formalism does
by its mere existence pose some uncommon questions which would appear to
merit consideration.

5. The momental hierarchy supported by an arbitrary observable. Let A refer to
an arbitrary observable. According to (1)

d
dt 〈A〉 = 1

i� 〈[A,H]〉

Noting that if A and B are hermitian then [A,B] is antihermitian but 1
i� [A,B]

is again hermitian (which is to say: an acceptable “observable”), let us agree
to write

A0 ≡ A

A1 ≡ 1
i� [A,H]

A2 ≡ 1
i� [ 1

i� [A,H],H] ≡
(

1
i�

)2{
A,H2

}
...

An+1 ≡ 1
i� [An ,H] ≡

(
1
i�

)n{
A,Hn

}
: n = 0, 1, 2, . . . (24)
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The H-induced quantum motion of the “momental heirarchy supported by A”
can be described

d
dt 〈An〉 = 〈An+1〉 : n = 0, 1, 2, . . . (25)

The heirarchy truncates at n = m if and only if it is the case that Am+1 = 0
(which entails An = 0 for all n > m); if and only if, that is to say, An is a
constant of the motion. In such a circumstance one has(

d
dt

)m+1〈A〉t = 0

which entails that 〈A〉t is a polynomial in t; specifically

〈A〉t =
m∑
n=0

1
n! 〈An〉0t

n (26)

Several instances of just such a situation have, in fact, already been encountered.
For example: let H have the “photonic” structure (17), and let A be assigned
the meaning 1

m!x
m; the resulting heirarchy truncates in after m steps:

A0 ≡ 1
m!x

m

A1 = c1 1
(m−1)! x

m−1

A2 = c2 1
(m−2)! x

m−2

A3 = c3 1
(m−3)! x

m−3

...
Am = cm 1 (a physically uninteresting constant of the motion)
An = 0 for n > m

In §3 we had occasion to study just such heirarchies in the cases m = 1 and
m = 2, and were—for reasons now clear—led to polynomials in t. We developed
there an interest also in the truncated heirarchy

A0 ≡ 1
2 (xp + px)

A1 = cp

A2 = 0

Tractability of another sort attaches to heirarchies which, though not
truncated, exhibit the property of cyclicity , which in its simplest manifestation
means that

Am = λA0

for some λ and some least value of m. Then Am+q = λAq, A2m = λ2 A0 and

(
d
dt

)m〈A〉t = λ〈A〉t
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which again yields to solution by elementary means:

〈A〉t = sum of exponentials involving the mth roots of λ

For example: let H have the generic quadratic structure

H = 1
2ap2 + 1

2b x2

and let A be assigned the meaning x (alternatively p);

A0 ≡ x

A1 = ap

A2 = −bax

...

A0 ≡ p

A1 = −bx

A2 = −abp

...

Each of the preceding hierarchies is cyclic, with period 2 and λ = −ab. If we
set a = 1/m and b = mω2 then λ = −ω2, and we obtain results that bear on
the quantum mechanics of a harmonic oscillator ; in particular, we have(

d
dt

)2〈x〉t = −ω2〈x〉t

which informs us that 〈x〉t oscillates harmonically for all |ψ):12 the standard
Gaussian assumption is superfluous. In the limit ω ↓ 0 (i.e., for b = 0) the
preceeding heirarchies (instead of being cyclic) truncate, and we obtain results
appropriate to the quantum mechanics of a free particle. When A is assigned
the meaning x2 (alternatively p2) we are led to hierarchies

A0 ≡ x2 A0 ≡ p2

A1 = a(xp + px) A1 = −b(xp + px)
...

...

which become identical to within a factor at the second step, and it is thereafter
that the hierarchy continues cyclically

A0 ≡ 1
2 (xp + px)

A1 = (ap2 − b x2)
A2 = −2ab(xp + px)

...

with period 2 and λ = −4ab. From the fact that d
dt 〈x2〉t is oscillatory it follows

that
〈x2〉t = constant + oscillatory part

12 This seldom remarked fact was first brought casually to my attention years
ago by Richard Crandall.
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and from this we conclude it to be a property of harmonic oscillators that (for
all |ψ)) σ2

x(t) and σ2
p(t) “ripple” with twice the base frequency of the oscillator .

Hierarchies into which 0 intrudes are necessarily truncated, and those which
contain a repeated element are necessary cyclic, but in general one can expect
a hierarchy to be neither truncated nor cyclic. In the general case one has

〈A〉t =
∞∑
n=0

1
n! 〈An〉0t

n within some radius of convergence (27)

which does give back (26) when the hierarchy truncates, does sum up nicely
in cyclic cases,13 and can be construed to be a generating function for the
expectation values of the members of the hierarchy. This, however, becomes a
potentially useful point of view only if one (from what source?) has independent
knowledge of 〈A〉t. I note in passing that at (27) we have recovered a result
which is actually standard; in the Heisenberg picture one writes

At = e−
1
i�

HtA0e
+ 1

i�
Ht

to describe quantum motion, and makes use of the operator identity

=
∞∑
n=0

1
n!

(
1
i�

)n{
A ,Hn

}
tn

≡
∞∑
n=0

1
n!Ant

n (28)

from which (27) can be recovered as an immediate corollary.

6. Reconstruction of the wave function from momental data.14 While 〈A〉 is a
“moment” in the sense that it describes the expected mean (1st moment) of a
set of A-measurements, I propose henceforth to reserve for that term a more
restrictive meaning. I propose to call the numbers 〈xn〉—which by standard
usage are the moments of probability distribution |ψ∗(x)ψ(x)|—“moments of
the wave function,” though the wave function ψ(x) is by nature a probability
amplitude. In that extended sense, so also are the numbers 〈pn〉 “moments
of the wave function.” But so also are some other numbers. My assignment
is to describe the least population of such numbers sufficient to the purpose
at hand (reconstruction of the wave function), and then to show how they in
fact achieve that objective. It proves convenient to consider those problems in
reverse order, and to begin with review of some classical probability theory:

13 Note that while An = 0 implies truncation, the |ψ)-dependent circumstance
〈An〉 = 0 does not; similarly, An = λA0 implies cyclicity but 〈An〉 = λ〈An〉 does
not.

14 Time is passive in the following discussion (all I have to say should be
understood to hold at each moment), so allusions to t will be dropped from my
notation.
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Let P (x, p) be some bivariate distribution function. The marginal moments
〈xm〉 and 〈pn〉 can be described in terms of the associated marginal distribution
functions f(x) ≡

∫
P (x, p)dp and g(p) ≡

∫
P (x, p)dx

〈xm〉 =
∫

xmf(x)dx and 〈pn〉 =
∫

png(p)dp

If x and p are statistically independent random variables then P (x, p) contains
no information not already present in f(x) and g(p); indeed, one has

P (x, p) = f(x)g(p) giving 〈xmpn〉 = 〈xm〉〈pn〉 : x and p independent

But that is a very special situation; the general expectation must be that x and
p are statistically dependent. Then P (x, p) contains information not present
in f(x) and g(p), the mixed moments 〈xmpn〉 individually contain information
not present within the set of marginal moments, and one must be content to
write

〈xmpn〉 =
∫∫

xmpnP (x, p)dxdp

That f(x) can be reconstructed from the data {〈xm〉 : m = 0, 1, 2, . . .}, and
g(p) from the data {〈pn〉 : n = 0, 1, 2, . . .}, has in effect been remarked already
in §1; form

F (β) ≡
∞∑
m=0

1
m!

〈
xm

〉(
i
�
βx

)m =
〈
e

i
�
βx

〉
=

∫
e

i
�
βxf(x)dx

Then

f(x) = 1
h

∫
e−

i
�
βxF (β)dβ

and similarly

g(p) = 1
h

∫
e−

i
�
αpG(α)dα

where G(α) ≡
〈
e

i
�
αp

〉
. The question now arises: How (if at all) can one

reconstruct P (x, p) from the data {〈xmpn〉}? The answer is: By straightforward
extension of the procedure just described. Group the mixed moments according
to their net order

1

〈x〉 〈p〉
〈x2〉 〈xp〉 〈p2〉

〈x3〉 〈x2p〉 〈xp2〉 〈p3〉
...
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and form

Q(α, β) ≡
∞∑
k=0

1
k!

(
i
�

)k{ k∑
n=0

(
k
n

)〈
xnpk−n

〉
βnαk−n

}

=
∞∑
k=0

1
k!

(
i
�

)k〈(αp + βx)k
〉

=
〈
e

i
�
(αp+βx)

〉
=

∫∫
e

i
�
(αp+βx)P (x, p)dxdp

Immediately

P (x, p) = 1
h2

∫∫
e−

i
�
(αp+βx)

〈
e

i
�
(αp+βx)

〉︸ ︷︷ ︸ dqdy (29)

moment data
〈
xmpn

〉
resides here

If x and p are statistically independent, then
〈
e

i
�
(αp+βx)

〉
=

〈
e

i
�
αp

〉〈
e

i
�
βx

〉
and

we recover P (x, p) = f(x)g(p).

My present objective is to construct the quantum counterpart of the
preceding material, and for that purpose the so-called “phase space formulation
of quantum mechanics” provides the natural tool. This lovely theory, though it
has been available for nearly half a century,15 remains—except to specialists in
quantum optics16 and a few other fields—much less well known than it deserves
to be. I digress now, therefore, to review its relevant essentials:

15 Seeds of the theory were planted by Hermann Weyl (see Chapter IV, §14
in his Gruppentheorie und Quantenmechanik (2nd edition, )) and Eugene
Wigner: “On the quantum correction for thermodynamic equilibrium,” Phys.
Rev. 40, 749 (1932). Those separately motivated ideas were fused and
systematically elaborated in a classic paper by J. E. Moyal (who worked in
collaboration with the British statistician M. E. Bartlett): “Quantum mechanics
as a statistical theory,” Proc. Camb. Phil. Soc. 45, 92 (1949). The foundations
of the subject were further elaborated in the ’s by T. Takabayasi (“The
formulation of quantum mechanics in terms of ensembles in phase space,”
Prog. Theo. Phys. 11, 341 (1954)), G. A. Baker Jr. (“Formulation of quantum
mechanics in terms of the quasi-probability distribution induced on phase
space,” Phys. Rev. 109, 2198 (1958)) and others. For a fairly detailed account
of the theory and many additional references, see my quantum mechanics
(), Chapter 3, pp. 27–32 and pp. 99 et seq. or the Reed College thesis of
Thomas Banks: “The phase space formulation of quantum mechanics” (1969).

16 L. Mandel & E. Wolf, in Optical coherence and quantum optics (),
make only passing reference (at p. 541) to the phase space formalism. But Mark
Beck (see below) has supplied these references: Ulf Leonhardt, Measuring the
Quantum State of Light (); M. Hillery, R. F. O’Connell, M. O. Scully and
E. P. Wigner, “Distribution functions in physics: fundamentals,” Phys. Rep.
106, 121 (1984).
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To the question “What is the self-adjoint operator A that should, for the
purposes of quantum mechanical application, be associated with the classical
observable A(x, p)?” a variety of answers have been proposed.17 The rule of
association (or correspondence procedure) advocated by Weyl can be described

A(x, p) =
∫∫

a(α, β)e
i
�
(αp+βx)dαdβ

|
| weyl transformation (30)
↓

A =
∫∫

a(α, β)e
i
�
(αp+β x)dαdβ

It was to the wonderful properties of the operators E(α, β) ≡ e
i
�
(αp+β x) that

Weyl sought to draw attention.18 Those entail in particular that if

A←−−−−−
Weyl

A(x, p) and B←−−−−−
Weyl

B(x, p)

then
traceAB = 1

h

∫∫
A(x, p)B(x, p)dxdp (31)

and permit this description of the inverse Weyl transformation:

A −−−−−→
Weyl

A(x, p) =
∫∫ {

1
h trace AE+(α, β)

}
e

i
�
(αp+βx)dαdβ (32)

Those facts acquire their relevance from the following observations: familiarly,
〈A〉 = (ψ|A|ψ) can be written

〈A〉 = trace Aρρρ

ρρρ ≡ |ψ)(ψ| is the density matrix associated with the state |ψ)

Writing
A −−−−−→

Weyl
A(x, p) and ρρρ −−−−−→

Weyl
h · Pψ(x, p)

one therefore has
〈A〉 =

∫∫
A(x, p)Pψ(x, p)dxdp (33)

17 See J. R. Shewell, “On the formation of quantum mechanical operators,”
AJP 27, 16 (1959).

18 Among those many wonderful properties are the trace-wise orthonormality
property

traceE(α, β)E+ (ᾱ, β̄) = hδ(α− ᾱ)δ(β − β̄)

from which it follows in particular that

traceE(α, β) = hδ(α)δ(β)
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where by application of (32) we have

Pψ(x, p) = 1
h2

∫∫
(ψ|e− i

�
(αp+β x)|ψ)e

i
�
(αp+βx)dαdβ (34)

which can by fairly quick calculation be brought to the form

Pψ(x, p) = 2
h

∫
ψ∗(x + ξ) e2

i
�
pξ ψ(x− ξ)dξ (35)

At (35) we have recovered the famous “Wigner distribution function,”
which Wigner in  was content simply to pluck from his hat.19 The function
Pψ(x, p)—which in the phrase space formalism serves to describe the “state”
of the quantum system, but is invariable real-valued—possesses many of the
properties one associates with the term “distribution function;” one finds, for
example, that ∫∫

Pψ(x, p)dxdp = 1∫
Pψ(x, p)dp = |ψ(x)|2 and

∫
Pψ(x, p)dx = |ϕ(p)|2

where ϕ(p) ≡ (p|ψ) is the Fourier transform of ψ(x) ≡ (x|ψ). And even more
to the point: the Wigner distribution enters at (33) into an equation which is
formally identical to the equation used to define the expectation value 〈A(x, p)〉
in classical (statistical) mechanics. But Pψ(x, p) possess also some “weird”
properties—properties which serve to encapsulate important respects in which
quantum statistics is non-standard, quantum mechanics non-classical

Pψ(x, p) is not precluded from assuming negative values
Pψ(x, p) is bounded : |Pψ(x, p)| ≤ 2/h

Pψ(x, p) = |ψ(x)|2· |ϕ(p)|2 is impossible

and for those reasons (particularly the former) is called a “quasi-distribution”
by some fastidious authors.

From the marginal moments {〈xn〉 : n = 0, 1, 2, . . .} it is possible (by the
classical technique already described) to reconstruct |ψ(x)|2 but not the wave
function ψ(x) itself , for the data set contains no phase information. A similar
remark pertains to the reconstruction of ϕ(p) from {〈pm〉 : m = 0, 1, 2, . . .}. But
ψ(x) and its “Wigner transform” Pψ(x, p) are equivalent objects in the sense
that they contain identical stores of information; from Pψ(x, p) it is possible
to recover ψ(x), by a technique which I learned from Mark Beck20 and will

19 Or perhaps from the hat of Leo Szilard; in a footnote Wigner reports that
“This expression was found by L. Szilard and the present author some years
ago for another purpose,” but cites no reference.

20 Private communication. Mark does not claim to have himself invented the
trick in question, but it was, so far as I am aware, unknown to the founding
fathers of this field.
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describe in a moment. The importance (for us) of this fact lies in the following
observation:

Momental data sufficient to determine Pψ(x, p) is sufficient also
to determine ψ(x), to with an unphysical over-all phase factor.

The construction of ψ(x) ←−−−−−
Wigner

Pψ(x, p) (Beck’s trick) proceeds as follows:

By Fourier transformation of (35) obtain∫
Pψ(x, p)e−2 i

�
pξ̂ dp =

∫
ψ∗(x + ξ) δ(ξ − ξ̂)ψ(x− ξ)dξ

= ψ∗(x + ξ̂) ψ(x− ξ̂)

Select a point a at which
∫
Pψ(a, p) dp = ψ∗(a) ψ(a) �= 0.21 Set ξ̂ = a − x to

obtain ∫
Pψ(x, p)e−2 i

�
p(a−x) dp = ψ∗(a) ψ(2x− a)

and by notational adjustment 2x− a 	→ x obtain

ψ(x) = [ψ∗(a)]–1 ·
∫

Pψ(x+a2 , p) e
i
�
p(x−a) dp (36)

↓

= [ψ∗(0)]–1 ·
∫

Pψ(x2 , p) e
i
�
px dp in the special case a = 0

where the prefactor is, in effect, a normalization constant, fixed to within an
arbitrary phase factor.

Returning to the question which originally motivated this discussion—
What least set of momental data is sufficient to determine the state of the
quantum system?—we are in position now to recognize that an answer was
implicit already in (34), which (taking advantage of the reality of the Wigner
distribution, and in order to regain contact with notations used by Moyal) I
find it convenient at this point to reexpress

Pψ(x, p) = 1
h2

∫∫
Mψ(α, β)e−

i
�
(αp+βx)dαdβ (38)

Mψ(α, β) ≡ (ψ|e i
�
(αp+β x)|ψ) = (ψ|E(α, β)|ψ) (39)

Evidently

E(α, β) =
∞∑
k=0

1
k!

(
i
�

)k{ k∑
n=0

Mk−n,nα
k−nβn

}
(40)

Mm,n ≡
∑

all orderings

m p -factors and n x-factors (41)

= sum of
(
m+n
n

)
terms altogether

21 Such a point is, by
∫
ψ∗(x) ψ(x) dx = 1, certain to exist. It is often most

convenient (but not always possible) to—with Beck—set a = 0.
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so it is the momental set {〈Mn,m 〉} that provides the answer to our question.

Looking now in more detail to the primitive operators Mm,n , the operators
of low order can be written

M0,0 = 1

M1,0 = p

M0,1 = x

M2,0 = pp

M1,1 = px + xp

M0,2 = xx

M3,0 = ppp

M2,1 = ppx + pxp + xpp

M1,2 = pxx + xpx + xxp

M0,3 = xxx

...

It is hardly surprising—yet not entirely obvious—that

1
number of termsMm,n ←−−−−−−−−

Weyl
pmxn (42)

I say “not entirely obvious” because by original definition A ←−−−−−
Weyl

A(x, p)

assumes A(x, p) to be Fourier transformable, which polynomials are not.22 I
digress now to indicate how by natural extension the Weyl transform acquires
its surprising robustness and utility.

Any operator presented in the form

A = sum of powers of x and p operators

can, by virtue of the fundamental commutation relation, be written in many
ways. In particular, any A can, by repeated use of xp = px+ i�1, be brought to
“px-ordered form” (else “xp-ordered form”) in which all p-operators stand left of
all x-operators (else the reverse). I find it convenient to write (idiosyncratically)

x
[
F (x, p)

]
p ≡ result of xp-ordered substitution into F (x, p)

p
[
F (x, p)

]
x ≡ result of px-ordered substitution into F (x, p)

}
(43)

22 On the other hand, that definition —(30)—is built upon an assertion

e
i
�
(αp+β x) ←−−−−−−−−

Weyl
e

i
�
(αp+βx)

from which (42) appears to follow as an immediate implication.
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and, inversely, to let Fxp(x, p) denote the function which yields F by xp-ordered
substitution:

F = x
[
Fxp(x, p)

]
p (44)

= p
[
Fpx(x, p)

]
x : reverse-ordered companion of the above

For example, if
F ≡ xpx = x2p− i�x = px2 + i�x

then
Fxp(x, p) = x2p− i�x but Fpx(x, p) = x2p + i�x

Some sense of (at least one source of) the frequently great computational utility
of “ordered display” can be gained from the observation that

(x|F|y) =
∫

(x|F|p)dp(p|y) : mixed representation trick

= 1√
h

∫
Fxp(x, p)e−

i
�
py dp (45)

=
∫

(x|p)dp(p|F|y)

= 1√
h

∫
e+

i
�
xpFpx(y, p) dp

One of the principal recommendations of Weyl’s procedure is that it lends itself
so efficiently to the analysis of operator ordering/re-ordering problems; if A and
B commute with their commutator (as, in particular, x and p do) then23

eA+B = e+
1
2 [A,B] · eB eA = e−

1
2 [A,B] · eA eB

which entail

e
i
�
(αp+βx) =



e+

1
2

i
�
αβ · e i

�
βx e

i
�
αp : xp-ordered display

e−
1
2

i
�
αβ · e i

�
αp e

i
�
βx : px-ordered display

(46)

Returning with this information to (30) we have

23 The following are among the most widely known of the identities which
issue from “Campbell-Baker-Hausdorff theory,” which originates in the pre-
quantum mechanical mathematical work of J. E. Campbell (), H. F. Baker
() and F. Hausdorff (), but attracted wide interest only after the
invention of quantum mechanics. For a good review and references to the
classical literature, see R. M. Wilcox, “Exponential operators and parameter
differentiation in quantum mechanics,” J. Math. Phys. 8, 962 (1967). Or “An
operator ordering technique with quantum mechanical applications” () in
my collected seminars.
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A(x, p) =
∫∫

a(α, β)e
i
�
(αp+βx)dαdβ

↑
| Weyl
↓

A =
∫∫

a(α, β)e
i
�
(αp+β x)dαdβ

=
∫∫

a(α, β)e+
1
2

i
�
αβ · e i

�
βx e

i
�
αpdαdβ

= x
[
exp

{
1
2

�

i
∂2

∂x∂p

}
A(x, p)

]
p

from which we learn that

Axp(x, p) = exp
{

+ 1
2

�

i
∂2

∂x∂p

}
A(x, p)

Apx(x, p) = exp
{
− 1

2
�

i
∂2

∂x∂p

}
A(x, p)


 (47)

Suppose (which is to revisit a previous example) we were to take A(x, p) = px2;
then (47) asserts

A(x, p) ≡ px2 −−−−−−−−→
Weyl

A = x2p− i�x

= p2x + i�x

while by explicit calculation we find

= xpx

= 1
3 (pxx + xpx + xxp) ≡ 1

3M1,2

Here we have brought patterned order and efficiency to a calculation which
formerly lacked those qualities, and have at the same time shown how the Weyl
correspondence comes to be applicable to polynomial expressions.

7. A shift of emphasis—from moments to their generating function. We began
with an interest—Ehrenfest’s interest—in (the quantum dynamical motion of)
only a pair of moments (〈x〉 and 〈p〉), but in consequence of the structure of
(2) found that a collateral interest in mixed moments of all orders was thrust
upon us. Here I explore implications of some commonplace wisdom:

When one has interest in properties of an infinite set of objects, it
is often simplest and most illuminating to look not to the objects
individually but to their generating function.

I look now, therefore, in closer detail to properties of a function which we have
already encountered—to what I call the “Moyal function”

Mψ(α, β) ≡ (ψ|e i
�
(αp+β x)|ψ) = (ψ|E(α, β)|ψ) (48)

= 〈E(α, β)〉 with E(α, β) unitary
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which was seen at (38) to be precisely the Fourier transform of the Wigner
distribution, and therefore to be (by performance of Beck’s trick) a repository
of all the information borne by |ψ).

To describe the motion of all mixed moments at once we examine the time
derivative of Mψ(α, β), which by (1) can be described

∂
∂tMψ(α, β) = 1

i� 〈 [E(α, β),H]〉 (49)

Proceeding on the assumption that

H←−−−−−
Weyl

H(x, p) =
∫∫

h(α̃, β̃)e
i
�
(α̃p+β̃x)dα̃dβ̃

we have
∂
∂tMψ(α, β) = 1

i�

∫∫
h(α̃, β̃)〈 [E(α, β),E(α̃, β̃)]〉dα̃dβ̃

But it is24 an implication of (46) that

[E(α, β),E(α̃, β̃)] = (eϑ − e−ϑ)︸ ︷︷ ︸ ·E(α + α̃, β + β̃) (50)

= 2i sinϑ : ϑ ≡ 1
2�

(αβ̃ − βα̃)

so we can write

∂
∂tMψ(α, β) = 2

�

∫∫
h(α̃, β̃) sin

(
αβ̃−βα̃

2�

)
·Mψ(α + α̃, β + β̃)dᾱdβ̄

= 2
�

∫∫
h(α̃− α, β̃ − β) sin

(
αβ̃−βα̃

2�

)
·Mψ(α̃, β̃)dα̃dβ̃

=
∫∫

T(α, β; α̃, β̃) ·Mψ(α̃, β̃)dα̃dβ̃ (51.1)

T(α, β; α̃, β̃) ≡ 2
�
h(α̃− α, β̃ − β) sin

(
αβ̃−βα̃

2�

)
(51.2)

Equation (51.1)—which formally resembles (and is ultimately equivalent to)
this formulation of Schrödinger equation

∂
∂t (x|ψ) =

∫
(x|H|x̃)dx̃(x̃|ψ)

—is, in effect, a giant system of coupled first-order differential equations in
the mixed moments of all orders; it asserts that the time derivatives of those
moments are linear combinations of their instantaneous values, and that it
is the responsibility of the Hamiltonian to answer the question “What linear
combinations?” and thus to distinguish one dynamical system from another.

24 See Chapter 3, p. 112 of quantum mechanics () for the detailed
argument.
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By Fourier transformation one at length24 recovers

∂
∂tPψ(x, p) = 2

�
sin

{
�

2

[(
∂
∂x

)
H

(
∂
∂p

)
P
−

(
∂
∂x

)
P

(
∂
∂p

)
H

]}
H(x, p)Pψ(x, p) (52)

=
{
∂H
∂x

∂
∂p − ∂H

∂p
∂
∂x

}
Pψ(x, p)︸ ︷︷ ︸ +“quantum corrections” of order O(�2)

Poisson bracket [H,Pψ]

which is the “phase space formulation of Schrödinger’s equation” in its most
frequently encountered form.

Equation (52) makes latent good sense in all cases H(x, p), and explicit
good sense in simple cases; for example: in the “photonic case” H = cp (see
again §3) one obtains

∂
∂tPψ(x, p) = −c ∂∂xPψ(x, p) (53.1)

while for an oscillator H = 1
2mp2 + 1

2mω2x2 we find

∂
∂tPψ(x, p) =

{
mω2x ∂

∂p − 1
mp ∂∂x

}
Pψ(x, p) (53.2)

↓
= − 1

mp ∂∂xPψ(x, p) in the “free particle limit” ω ↓ 0 (53.3)

I postpone discussion of the solutions of those equations (but draw immediate
attention to the fact that each of those cases is so quadratically simple that
“quantum corrections” are entirely absent). . . in order to draw attention to my
immediate point, which is that in each of those cases (51) is meaningless, for
the simple reason that none of those Hamiltonians is Fourier transformable; in
each case h(α, β) fails to exist. In a first effort to work around this problem,
let us back up to (49) and consider again the case H = cp: then

∂
∂tMψ(α, β) = c 1

i� 〈 [E(α, β), p ]〉 (54)

It is an implication of (50) that

[E(α, β), e
i
�
ᾱp ] =

∞∑
k=0

1
k!

(
i
�
ᾱ
)k[E(α, β), pk ] = 0 + ᾱ · i

�
[E(α, β), p ] + · · ·

= 2i sin
{−βᾱ

2�

}
E(α + ᾱ, β) = ᾱ ·

(
− i

�
β
)
E(α, β) + · · ·

from which we infer
[E(α, β), p ] = −βE(α, β) (55)

Returning with this information to (54) we have

∂
∂tMψ(α, β) = − 1

i�cβMψ(α, β) (56)

which can be cast in the form (51.1) with T(α, β; α̃, β̃) = − 1
i�cδ(α̃−α)δ(β̃−β)β̃.

The implication appears to be that we should in general expect T(α, β; α̃, β̃) to
have the character not of a function but of a distribution.
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It is in preparation for discussion of less trivial cases (free particle and
oscillator) that I digress now to explore some consequences of the identity (55),25

which can be written
E(α, β)p = (p− β1)E(α, β)

or again as the “shift rule” (most familiar in the case α = 0)

E(α, β)pE –1 (α, β) = (p− β1)

Immediately
E(α, β)pmE –1 (α, β) = (p− β1)m

or again
[E(α, β), pm ] = {(p− β1)m − pm}E(α, β)

which—because {etc.} introduces “dangling p-operators” except in the cases
m = 0 and m = 1—does, as it stands, not quite serve our purposes. It is,
however, an implication of (46) that(

�

i
∂
∂α

)m
E(α, β) = (p− 1

2β1)mE(α, β)

and therefore that(
�

i
∂
∂α − 1

2β
)m

E(α, β) = (p− β1)mE(α, β)(
�

i
∂
∂α + 1

2β
)m

E(α, β) = pmE(α, β)

So we obtain

[E(α, β), pm ] =
{(

�

i
∂
∂α − 1

2β
)m − (

�

i
∂
∂α + 1

2β
)m}

E(α, β) (57.1)

=




0 : m = 0

−βE(α, β) : m = 1

−2�

i β
∂
∂αE(α, β) : m = 2

...

and, by similar argument,26

[E(α, β), xn ] =
{(

�

i
∂
∂β + 1

2α
)n − (

�

i
∂
∂β − 1

2α
)n}

E(α, β) (57.2)

25 We want—minimally—to be in position to say useful things about the
commutators [E(α, β), p2 ] and [E(α, β), x2 ].

26 It is simpler to make substitions p 	→ +x, x 	→ −p, α 	→ +β, β 	→ −α
(which by design preserve both [x, p ] and the definition of E(α, β)) into the
results already in hand.
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Returning with this information to the case of an oscillator, we have

∂
∂tMψ(α, β) = 1

i�

〈
1

2m [E(α, β), p2 ] + 1
2mω2 [E(α, β), x2 ]

〉
= 1

i�

〈{
1

2m

(
− 2�

i β
∂
∂α

)
+ 1

2mω2
(

+ 2�

i α
∂
∂β

)}
E(α, β)

〉
=

{
1
mβ ∂

∂α −mω2α ∂
∂β

}
Mψ(α, β) (58.1)

↓
= 1

mβ ∂
∂αMψ(α, β) in the “free particle limit” (58.2)

Equations (56) and (58) are as simple as—and bear a striking resemblance to—
their Wignerian counterparts (53). But to render (58.2)—say—into the form
(51) we would have to set T(α, β; α̃, β̃) = − 1

mδ
′
(α̃−α)δ(β̃−β)β̃, in conformity

with our earlier conclusion concerning the generally distribution-like character
of the kernel T(α, β; α̃, β̃). The absence of �-factors on the right sides of (58) is
consonant with the absence of “quantum corrections” on the right sides of (53),
but makes a little surprising the (dimensionally enforced) 1/i� that appears on
the right side of (56). One could but I won’t. . .undertake now to describe the
analogs of (58) which arise from H(x, p) = 1

2mp2 +V (x) and from Hamiltonians
of still more general structure. Instead, I take this opportunity to underscore
what has been accomlished at (58.1). By explicit expansion of the expression
on the left we have

∂
∂tMψ(α, β) = ∂

∂t

{
〈1〉+ i

�

[
α〈p〉+ β〈x〉

]
+ 1

2

(
i
�

)2[
α2〈p2〉+ αβ〈px + xp〉+ β2〈x2〉

]
+ · · ·

}

while expansion of the expression on the right gives

{
1
mβ ∂

∂α −mω2α ∂
∂β

}
Mψ(α, β)

= i
�

[
1
mβ〈p〉 −mω2α〈x〉

]
+ 1

2

(
i
�

)2[ 1
m2αβ〈p2〉+

(
1
mβ2 −mω2α2

)
〈px + xp〉 −mω22αβ〈x2〉

]
+ · · ·

Term-by-term identification gives rise to a system of equations:

α1 : d
dt 〈p〉 = −mω2〈x〉

β1 : d
dt 〈x〉 = 1

m 〈p〉
α2 : d

dt 〈p
2〉 = −mω2〈xp + px〉

αβ : d
dt 〈xp + px〉 = 2

m 〈p
2〉 − 2mω2〈x2〉

β2 : d
dt 〈x

2〉 = 1
m 〈xp + px〉

...
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which in the “free particle limit” become

α1 : d
dt 〈p〉 = 0

β1 : d
dt 〈x〉 = 1

m 〈p〉
α2 : d

dt 〈p
2〉 = 0

αβ : d
dt 〈xp + px〉 = 2

m 〈p
2〉

β2 : d
dt 〈x

2〉 = 1
m 〈xp + px〉

...

These are precisely the results achieved in §2 by other means. It seems, on the
basis of such computation, fair to assert that equations of type (58) provide a
succinct expression of Ehrenfest’s theorem in its most general form.27

Let us agree, in the absence of any standard terminology, to call (52) the
“Wigner equation,” and its Fourier transform—the generalizations of (56)/(58)
—the “Moyal equation.” Evidently solution of Moyal’s equation—a single
partial differential equation—is equivalent to (though poses a very different
mathematical problem from) the solution of the coupled systems of ordinary
differential “moment equation” of the sort anticipated in §4 and encountered
just above.28 In the next section I look to the. . .

8. Solution of Moyal’s equation in some representative cases. Look first to the
“photonic system” H(x, p) = cp. Solutions of the Wigner equation (53.1) can
be described

Pψ(x, p; t) = exp
{
− ct ∂∂x

}
Pψ(x, p; 0)

= Pψ(x− ct, p; 0) (59.1)

while the associated Moyal equation (56) promptly yields

Mψ(α, β; t) = e
i
�
cβt ·Mψ(α, β; 0) (59.2)

27 It should in this connection be observed that the equations to which we have
been led, though rooted in formalism based upon the Weyl correspondence, have
in the end a stand-alone validity, and are therefore released from the criticism
that there exist plausible alternatives to Weyl’s rule (see again the paper by
J. L. Shewell to which I made reference in footnote 17), and that its adoption
is in some sense an arbitrary act. A similar remark pertains to other essential
features of the phase space formalism.

28 One is reminded in this connection of the partial differential wave equation
that arises by a “refinement procedure” from the system of ordinary differential
equations that describe the motion of a discrete lattice. And it becomes in this
light natural to ask: “Does Moyal’s equation admit of representation as the field
equation implicit in some Lagrange density? Does it provide, on other words,
an instance of a Lagrangian field theory?”
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These simple results are simply interrelated—if (compare (38))

Pψ(x, p; 0) = 1
h2

∫∫
Mψ(α, β; 0)e−

i
�
(αp+βx)dαdβ

then (59.2) immediately entails (59.1)—but cast no light on a fundamental
question which I must for the moment be content to set aside: What general
constraints/side conditions does theory impose upon the functions Pψ(x, p; 0)
and Mψ(α, β; 0)?

Looking next to the oscillator: equations (53.2) and (58.1), which have
already been remarked to “bear a striking resemblance to” one another, are in
fact structurally identical; whether one proceeds by notational adjustment

{x 	→ u, +p/mω 	→ v} from (53.2)
{α 	→ u,−β/mω 	→ v} from (58.1)

one obtains an equation of the form

∂
∂tF (u, v) = ω

{
u ∂
∂v − v ∂∂u

}
F (u, v)

The differential operator within braces is familiar from angular momentum
theory as the generator of rotation on the (u, v)-plane; immediately

F (u, v; t) = exp
{[
u ∂
∂v − v ∂∂u

]
ωt

}
F (u, v; 0)

= F (u cosωt− v sinωt, u sinωt + v cosωt; 0)

—the accuracy of which can be confirmed by quick calculation. So we have

Pψ(x, p; t) = Pψ(x cosωt−(p/mω) sinωt,mωx sinωt+p cosωt; 0) (60.1)

which, though entirely and accurately quantum mechanical in its meaning,
conforms well to the familiar classical fact that Hoscillator(x, p) generates
synchronous elliptical circulation on the phase plane. Similarly (or by Fourier
transformation)

Mψ(α, β; t) = Mψ(α cosωt+(β/mω) sinωt,−mωα sinωt+β cosωt; 0) (60.2)

according to which the circulation on the (α, β)-plane is relatively retrograde—
as one expects it to be.29 Information concerning the time-dependence of the
nth-order moments can now be extracted from〈

(αp + β x)n
〉
t
=

〈
([α cosωt+(β/mω) sinωt]p + [−mωα sinωt+β cosωt]x)n

〉
0

(61)

29 The simple source of that expectation:

If 〈x〉 =
∫

xP (x) dx then
∫

xP (x + a) dx = 〈x〉 − a : compare the signs!
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Evidently and remarkably, the nth-order moments move among themselves —
independently of any reference to the motion of moments of any other order.And
Fourier analysis of their motion will (consistently with a property of σ2

x(t)
reported in §5, and in consequence ultimately of De Moive’s theorem) reveal
terms of frequencies ω, 2ω, 3ω, . . . nω.

When one attempts to bring patterned computational order to the detailed
implications of (61)—which, I repeat, was obtained by solution of Moyal’s
equation in the oscillatory case—one is led spontaneously to the reinvention
of some standard apparatus. It is natural to attempt to display “synchronous
elliptical circulation on the phase plane” as simple phase advancement on
a suitably constructed complex plane—natural therefore to notice that the
dimensionless construction 1

�
(αp + β x) can be displayed

1
�
(αp + β x) = aaaa + bbbb

provided the dimensionless objects on the right are defined

a ≡ a1 + ia2 ≡
√

mω
2�

α + i 1√
2�mω

β

b ≡ a1 − ia2 ≡ a∗

aaa ≡ aaa1 + iaaa2 ≡ 1√
2�mω

p − i
√

mω
2�

x

bbb ≡ aaa1 − iaaa2 ≡ aaa+

The motion (elliptical circulation) of α and β

α 	−→ α cosωt + (β/mω) sinωt
β 	−→ −mωα sinωt + β cosωt

becomes in this notation very easy to describe

a 	−→ ae−iωt

and so also, therefore, does the motion of
〈
(αp + β x)n

〉
; we have

〈
(aaaa + bbbb)n

〉
t
=

〈
(ae−iωtaaa + be+iωtbbb)n

〉
0

(62)

which, by the way, shows very clearly where the higher frequency components
come from. But this is in (reassuring) fact very old news, for aaa and bbb are familiar
as the ↓ and ↑ “ladder operators” described by Dirac in §34 of his Principles of
Quantum Mechanics; they have the property that

[aaa, bbb ] = 1

and permit the oscillator Hamiltonian to be described

H = �ω
{
bbbaaa + 1

21
}
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Working in the Heisenberg picture, one therefore has

ȧaa = 1
i� [aaa,H ] = −iωaaa giving aaa(t) = e−iωtaaa(0)

bbb(t) = e+iωt bbb(0)

of which (?) can be considered a corollary. It is interesting to notice, pursuant
to a previous remark concerning higher frequency components, that if

A ≡ product of m bbb -factors and n aaa-factors in any order

then
Ȧ = i(m− n)ωA giving A(t) = ei(m−n)ωtA(0)

It is, in short, quite easy to obtain detailed information about how the motion
of all numbers of the type 〈A〉. But only exceptionally are such numbers of
direct physical interest, since only exceptionally is A hermitian (representative
of an observable), and the extraction of information concerning the motion of
(x , p)-moments can be algebraically quite tedious. Quantum opticians (among
others) have, however, stressed the general theoretical utility, in connection with
many of the questions that arise from the phase space formalism, of operators
imitative of aaa and bbb.

In the “free particle limit” equations (60) read

Pψ(x, p; t) = Pψ(x− 1
mpt, p; 0) (63.1)

Mψ(α, β; t) = Mψ(α + 1
mβt, β; 0) (63.2)

Verification that (63.1) does in fact satisfy the “free particle Wigner equation”
(53.3), and that (63.2) does satisfy the associated Moyal equation (58.2), is too
immediate to write out. From the latter one obtains (compare (61))〈

(αp + β x)n
〉
t
=

〈
([α + 1

mβt]p + β x)n
〉
0

(64)

which provides an elegantly succinct summary of material developed by clumbsy
means in §2. But the definitions of aaa and bbb become, in this limit, meaningless;
that fact touches obliquely on the reason that I found it simplest to treat the
oscillator first.

9. When is Pψ(x, p) a “possible” Wigner function? When, within standard
quantum mechanics, we write H|ψ) = i� ∂∂t |ψ) we usually—and when we write
〈A〉 = (ψ|A|ψ) we invariably—understand |ψ) to be subject to the side condition
(ψ|ψ) = 1. That condition is universal, rooted in the interpretive foundations
of the theory.30 My present objective—responsive to a question posed already
in connection with (59)—is to describe conditions which attach with similar

30 I will not concern myself here with the boundary, differentiability,
continuity, single-valuedness and other conditions which which in individual
problems attach typically and so consequentially to (for example) ψ(x) ≡ (x|ψ).
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universality to the functions Pψ(x, p) and Mψ(α, β), and which collectively serve
to distinguish admissible functions from “impossible” ones.

The issue is made relatively more interesting by the circumstance that the
Wigner distribution provides a representation of the “density matrix” ρρρ , and ρρρ
embodies a richer concept of “state” than does |ψ). In this sense: |ψ) refers to
the state of an individual system, while ρρρ refers to the state of a statistically
described ensemble of systems.31 We imagine it to be the case32 that systems
drawn from such an ensemble will be33

in state |ψ1) with probability p1

in state |ψ2) with probability p2

...
in state |ψk) with probability pk

...

Under such circumstances we expect to write

〈A〉 =
∑
k

pk(ψk|A|ψk) (65.1)

= ordinary mean of the quantum means

to describe the expected mean of a series of A-measurements. Exceptionally—
when all members of the ensemble are in the same state |ψ)—the “ordinary”
aspect of the averaging process is rendered moot, and we have

= 0 + 0 + · · ·+ 0 + (ψ|A|ψ) + 0 + · · · (65.2)

It is of this “pure case” (the alternative, and more general, case being the
“mixed case”) that quantum mechanics standardly speaks. Density matrix
theory springs from the elementary observation that (65.1) can be expressed

〈A〉 = trace Aρρρ (66)

ρρρ ≡
∑
k

|ψk)pk(ψk| (67)

pk are non-negative, subject to the constraint
∑

pk = 1

31 Commonly one omits all pedantic reference to an “ensemble,” and speaks
as though simply uncertain of what state the system is actually in; “It might
be in that state, but is more likely to be in this state. . . ”

32 But under what circumstances, and on what observational grounds, could
we establish it to be the case?

33 Found to be? How? Quantum mechanics itself keeps fuzzing up the idea at
issue, simple though it appears at first sight to be. And fuzzy language, though
difficult to avoid, only compounds the problem. It is for this reason that I
am inclined to take exception to the locution “measuring the quantum state”
(to be distinguished from “preparing the quantum state”?) which has recently
become fashionable, and is used even in the title of one of the publications cited
in footnote 15.



32 Status of Ehrenfest’s Theorem

from which (65.2) can be recovered as a specialized instance. The operator ρρρ
is hermitian;34 we are assured therefore that its eigenvalues ρk are real and
its eigenstates |ρk) orthogonal. It is, however, usually a mistake to confuse ρk
with pk, |ρk) with |ψk), the spectral representation ρρρ =

∑
|ρk)ρk(ρk| of ρρρ with

(67); those associations can be made if and only if the states |ψk) present in
the ensemble are orthogonal , which may be the case,35 and by many authors is
casually assumed to be the case,36 but in general such an assumption would do
violence to the physics.

Let us supppose—in order to keep the notation as simple as possible, and
the computation as explicitly detailed—that our ensemble contains a mixture
of only two states:

ρρρ = |ψ)p(ψ |+ |φ)q(φ| with p + q = 1

Operators of the construction Pψ ≡ |ψ)(ψ | are hermitian projection operators:
P2
ψ = Pψ. Specifically, Pψ projects |α) −→ (ψ|α) · |ψ) onto the one-dimensional

subspace (or “ray”) in state space which contains |ψ) as its normalized element.
Generally

trace (projection operator) = dimension of space onto which it projects

so the calculation trace Pψ =
∑

(n|ψ)(ψ|n) = (ψ|
{ ∑
|n)(n|

}
|ψ) = (ψ|ψ) = 1

yields a result which might, in fact, have been anticipated, and puts us in
position to write

ρρρ = pPψ + qPφ

↓
trace ρρρ = p + q = 1 : all cases (68)

More informatively,

ρρρ2 = p2 Pψ + q2 Pφ + pq(PψPφ + PφPψ)

↓
trace ρρρ2 = p2 + q2 + 2pq (ψ|φ)(φ|ψ)︸ ︷︷ ︸

0 ≤ (ψ|φ)(φ|ψ) ≤ 1 by Schwarz’ inequality

34 And therefore latently an “observable,” though originally intended to serve
quite a different theoretical function; ρρρ is associated with the state of the
ensemble, not with any device with which we may intend to probe the ensemble.
One can, however, readily imagine a quantum “theory of measurement with
devices of imperfect resolution” in which ρρρ -line constructs are associated with
devices rather than states.

35 And will be the case if the ensemble came into being by action of a
measurement device.

36 Such an assumption greatly simplifies certain arguments, but permits one
to establish only weak instances of the general propositions in question.
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But p2 + q2 = (p + q)2 − 2pq = 1 − 2pq, so if we write (ψ|φ)(φ|ψ) ≡ cos2 θ we
have

trace ρρρ2 = 1− 2pq sin2 θ ≤ 1
↓

= 1 if & only if



p = 1 & q = 0: the ensemble is pure; else
p = 0 & q = 1: the ensemble is again pure; else
sin θ = 0 : |ψ) ∼ |φ) so the ensemble is again pure

Evidently

ρρρ refers to a
{

pure
mixed

}
ensemble according as

{
trace ρρρ2 = 1
trace ρρρ2 < 1

}
(69)

It follows that in the pure case ρρρ is projective; one has

ρρρ2 = ρρρ ⇐⇒ trace ρρρ2 = 1 in the pure case (70)

but to write ρρρ2 < ρρρ in the mixed case is to write (some frequently encountered)
mathematical nonsense. The conclusions reached above hold generally (i.e.,
when the ensemble contains more than two states) but I will not linger to write
out the demonstrations. Instead I look (because the topic is so seldom treated)
to the spectral properties of ρρρ:

Notice first that every state |ρ) which stands ⊥ to the space spanned by |ψ)
and |φ) is killed by ρρρ—is, in other words, an eigenstate with zero eigenvalue:

ρρρ |ρ) = 0 if |ρ) ⊥ both |ψ) and |φ)

The problem before us is, therefore, actually only 2-dimensional. Relative to
some orthonormal basis {|1), |2)} in the 2-space spanned by |ψ) and |φ) we write

(
ψ1

ψ2

)
: coordinate representation of |ψ)(

φ1

φ2

)
: coordinate representation of |φ)

In that language the associated projection operators Pψ and Pφ acquire the
matrix representations

Pψ ≡
(
ψ1ψ

∗
1 ψ1ψ

∗
2

ψ2ψ
∗
1 ψ2ψ

∗
2

)
and Pφ ≡

(
φ1φ

∗
1 φ1φ

∗
2

φ2φ
∗
1 φ2φ

∗
2

)

giving ρρρ −→ R = pPψ + qPφ. Looking now to

det(R− ρI) = ρ2 − ρ · trace R + det R
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we have trace R = p + q = 1 and, by quick calculation,

det R = pq
{
ψ1ψ

∗
1φ2φ

∗
2 + ψ2ψ

∗
2φ1φ

∗
1 − ψ1φ

∗
1φ2ψ

∗
2 − ψ2φ

∗
2φ1ψ

∗
1

}
= pq

{
(ψ|ψ)(φ|φ)− (ψ|φ)(φ|ψ)

}
= pq sin2 θ

giving det(R− ρI) = ρ2 − ρ + pq sin2 θ. The eigenvalues of R can therefore be
described

ρ1

ρ2

}
= 1

2

{
1±

√
1− 4pq sin2 θ

}
(71.1)

= 1
2

{
(p + q)±

√
(p + q)2 − 4pq sin2 θ

}
(71.2)

= 1
2

{
(p + q)±

√
(p− q)2 + 4pq cos2 θ

}
(71.3)

Evidently

each eigenvalue is real and non-negative (72.1)
sum of eigenvalues = p + q = 1 (72.2)

I distinguish now several cases:

• If pq sin2 θ = 0 because p (else q) vanishes37—which is to say: if R is projective,
and the ensemble therefore pure—then (71.1) gives

ρ1 = 1 and ρ2 = 0

which conforms nicely to the general proposition that if P is projective ( P
2 = P )

then

det( P− λI )

= (1− λ)dimension of image space · (0− λ)dimension of its annihilated complement

In the case (p = 1 & q = 0) we obtain descriptions of the associated eigenvectors

R

(
ψ1

ψ2

)
= 1 ·

(
ψ1

ψ2

)
and R

(
+ψ∗

2

−ψ∗
1

)
= 0 ·

(
+ψ∗

2

−ψ∗
1

)

which are transparently orthonormal. Trivial adjustments yield statements
appropriate to the complementary case (p = 0 & q = 1).

• If pq �= 0 but |ψ) ⊥ |φ) then (71.3) gives

ρ1 = p and ρ2 = q

37 I dismiss as physically uninteresting the possibility sin θ = 0, since it has
been seen to lead to phony mixtures |φ) = ei(arbitrary phase)|ψ).
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And it is under such circumstances evident that

R

(
ψ1

ψ2

)
= p ·

(
ψ1

ψ2

)
and R

(
φ1

φ2

)
= q ·

(
φ1

φ2

)

• In the general case (pq �= 0 & (ψ|φ) �= 0) it becomes excessively tedious (even
in the 2-dimensional case) to write out explicit descriptions of the eigenvectors.
We are assured, however, that they exist, and are orthonormal, and that in
terms of them the density matrix acquires a spectral representation of the form

ρρρ = |ρ1)ρ1(ρ1|+ |ρ2)ρ2(ρ2|+
∞∑
k=3

|ρk)0(ρk| (73)

where
{
|ρk)

}
is some/any basis in that portion of state space which annihilated

by ρρρ, the space of states absent from the mixture to which ρρρ refers. But (73)
permits/invites reconceptualization of the mixture: we imagine ourselves to have
mixed states |ψ) and |φ) with probabilities p and q, but according to (73)
we might equally well38—in the sense that we would have obtained identical
physical results if we had—mixed states |ρ1) and |ρ2) with probabilities ρ1 and
ρ2. Equation (73) describes an “equivalent mixture” which was “present like a
spectre”39 in the original mixture, and which I will call the “ghost.” It is from
the ghost that we acquire access to the “arguments from orthonormality” which
are standard to the literature, but which at the beginning of this discussion36 I
was at pains to disallow; thus, taking

∑
to range over the ghost states present

in the mixture,

ρρρ =
∑
|ρk)ρk(ρk| =⇒ trace ρρρ =

∑
ρk = 1 (74.1)

↓
ρρρ2 =

∑
|ρk)ρ2

k(ρk| =⇒ trace ρρρ2 =
∑

ρ2
k ≤ 1 (74.2)

with equality if an only if the mixture is in fact pure. Consistently with the
latter claim: working from (71.1) we find

trace ρρρ2 =
{
ρ2
1 + ρ2

2 = 1− pq sin2 θ
}
≤ 1

which is precisely the result from which we extracted (69).

38 At least if this conjecture stands: Statements of the form (72) pertain
generally—no matter how many states we mix, in what proportions, and no
matter what may be the inner-product relationships among them. The point at
issue is of an entirely mathematical—not a physical—nature, and will clearly
require methods more powerful than the elementary methods that served me
in the 2-dimensional case.

39 Recall that the word “spectrum” derives historically from Newton’s claim
that colored light is “present like a spectre” in the mixture we call white light.



36 Status of Ehrenfest’s Theorem

We confront now this uncommon question: What mixtures are equivalent
in the sense that—and physically indistinguishable because—they share the same
ghost? We will suppose the states present in the mixture to span an
n-dimensional space; in its ghostly representation the density matrix then reads

ρρρ =
n∑
k=1

|ρk)ρk(ρk|

where by assumption none of the eigenvalues ρk vanishes. They are the roots,
therefore, of a polynomial of the form

n∏
k=1

(ρ− ρk) = ρn + c1ρ
n−1 + · · ·+ cn−1ρ + cn = 0

with c1 = −trace ρρρ = −1 and cn = (−)ndet ρρρ �= 0 (else 0 would join the set
of eigenvalues, and the dimension of the mixture would be reduced). Now let
{|ψ1), |ψ2), . . . , |ψn)} refer to any set of normalized states that span the mixture,
and form the complex numbers zjk ≡ (ψj |ψk) : j �= k, which are n(n − 1) in
number. Form

ρ̃ρρ ≡
n∑
k=1

|ψk)pk(ψk|

where the non-negative real numbers pk are subject to the constraint
∑

pk = 1.
Construct the associated characteristic polynomial

det (ρ 1− ρ̃ρρ) = ρn − ρn−1 + c̃2ρ
n−2 + · · ·+ c̃n−1ρ + c̃n

Specifically, we have where

c̃2 = c̃2(independent pi’s and zjk’s)
...

c̃n = c̃n(independent pi’s and zjk’s)

To achieve equivalence in the strong sense ρ̃ρρ = ρρρ it is necessary that ρ̃ρρ and ρρρ
have identical spectra; we are led therefore to these n− 1 conditions on a total
of (n− 1) + n(n− 1) = n2 − 1 variables:

c̃2(independent pi’s and zjk’s) = c2

c̃3(independent pi’s and zjk’s) = c3

...
c̃n(independent pi’s and zjk’s) = cn




(75)

In the case n = 2 these become a single condition on three variables:

p, z12 ≡ (ψ1|ψ2) & z21 ≡ (ψ2|ψ1)
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Specifically (see again the calculation that led to (71)), we have

p(1− p)
{
(ρ1 + ρ2)− z12z21

}
= ρ1ρ2

giving

p = 1
2

{
1±
√

1− 4K
}

with K ≡ ρ1ρ2

(ρ1 + ρ2)− z12z21
and (ρ1 + ρ2) = 1

= 1
2

{
(ρ1 + ρ2)±

√
(ρ1 + ρ2)− 4ρ1ρ2/(1− z12z21)

}
If in particular the selected states |ψ1) and |ψ2) happen to be orthogonal (if, in
other words, z21 ≡ z∗12 = 0) then we recover

p = ρ1 and q ≡ 1− p = ρ2

and have achieved “weak equivalence”

ρ̃ρρ = |ψ1)ρ1(ψ1|+ |ψ2)ρ2(ψ2| ∼ ρρρ = |ρ1)ρ1(ρ1|+ |ρ2)ρ2(ρ2|


