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Introduction. Let the N -tuple of 3-vectors {xi(t) : i = 1, 2, . . . , N} describe,
relative to an inertial frame, the configuration of an N -particle system at time t.
To describe the dynamics of the system we would find it natural to introduce
the Lagrangian

L = 1
2

∑

i

miẋi · ẋi − U(x1,x2, . . . ,xN ) (1)

Suppose, however, we had elected to describe the particles in terms of their
Cartesian relationship to a reference point X(t) in arbitrarily prescribed motion:
xi = X + ri. We would then have

L = 1
2

∑

i

mi(Ẋ + ṙi) · (Ẋ + ṙi) − U(X + r)

= 1
2MẊ · Ẋ + Ẋ ·

∑

i

miṙi + 1
2

∑

i

miṙi · ṙi − U(X + r) (2)

in which the dynamical variables—formerly {x1,x2, . . . ,xN}, presently
{r1, r2, . . . , rN}—are still (as before, and not at all surprisingly) N in number.
The equations of motion now read

mir̈i = −miẌ −∇iU(X + r) (i = 1, 2, . . . , N) (3)

in which we interpret the first term on the right to be a “fictitious force term”,
an artifact of the circumstance that the origin of the X-centered r-frame is
(except when Ẍ = 0) non-inertial. None of which is in any respect problematic.
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Now—with an eye to the algebraic simplification of (2)—impose upon the
r-variables this constraint: ∑

i

miri = 0 (4.1)

Equivalently, associate X with the center of mass of the N -particle system:

X = 1
M

∑

i

mixi with M =
∑

i

mi (4.2)

Equation (2) can now be notated

L = 1
2MẊ · Ẋ + 1

2

∑

i

miṙi · ṙi − U(X + r) (5)

(note the disappearance of the cross-term), which on its face appears to refer to
a system with dynamical variables {X, r1, r2, . . . , rN} more numerous that the
variables of the system with which we started. And (5) gives rise to equations
of motion which are not only more numerous than but also inconsistent with
equations (3). What’s gone wrong?

In (4) we see that when we subjected the variables xi to a cross-term-killing
constraint we effectively promoted X to the status of a dynamical variable; it
is, according to (4.2), a variable—a collective variable—whose t-dependence
has now to be extracted from equations of motion, and can no longer be
said to be “arbitrarily prescribed.” But the Lagrangian (5) is heedless of this
circumstance, and gives rise to equations of motion the solutions of which will,
in general, stand in violation of (4.1).

To obtain correct results we might, for example, introduce

rN = 1
mN

N−1∑

1

miri and ṙN = 1
mN

N−1∑

1

miṙi

into (5) to obtain a Lagrangian of type L(Ẋ, ṙ1, . . . , ṙN−1,X, r1, . . . , rN−1), but
such a procedure bears the formal blemish of a discriminatory asymmetry not
natural to the physics of the situation. How to proceed more symmetrically?

In place of (5) write

L = 1
2MẊ · Ẋ + 1

2

∑

i

miṙi · ṙi − U(X + r) − g ·
∑

i

miri (6)

where g is a “Lagrange multiplier” which will be accorded the formal status of
a supernumerary dynamical variable. The resulting equations of motion read

MẌ = −∇U (7.1)
mir̈i = −∇iU − gmi (i = 1, 2, . . . , N) (7.2)

0 =
∑

imiri (7.3)
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where ∇ =
∑

i ∇i. These are N + 2 equations of motion in as many variables.
The last of these—the “gth Lagrange equation of motion” (7.3)—is simply the
constraint relation (4.1), and entails

∑
i mir̈i = 0. Adding equations (7.2)

together, and subtracting the result from (7.1), we obtain

g = Ẍ (8)

The equations of motion (7) reduce therefore to

MẌ = −∇U (9.1)
mi{r̈i + Ẍ} = −∇iU (i = 1, 2, . . . , N) (9.2)

which are attractively symmetric (no ri has been discriminated against), but
redundant: adding equations (9.2) together gives back (9.1). Equations (9.2) are
consistent with (3), of which they are a particularized instance. It is instructive
to note also that the introduction of (8) into (6) yields a Lagrangian which
is distinct from but (by Ẍ ·

∑
i miri = d

dt [Ẋ ·
∑

i miri] − Ẋ ·
∑

i miṙi) gauge
equivalent to the Lagrangian of (2).

A simple example: the one-dimensional A2 molecule. We look now to the
Lagrangian theory of what might be called “a one-dimensional A2 molecule.”
The constituent “atoms” reside at x1 and x2 > x1, and both have mass m.
The molecule itself therefore has mass M = 2m. We assume the molecule to
be bound together by a spring of natural length a and strength k, and to move
in an ambient potential U(x). In natural variables the Lagrangian reads

L = 1
2m(ẋ2

1 + ẋ2
2) − U(x1) − U(x2) − 1

2k[(x2 − x1) − a]2 (10)

The variables intuitively most natural to this simple system are the external
coordinate

X = 1
M

(mx1 + mx2) = 1
2 (x1 + x2)

and the internal coordinate 2s = x2 − x1, which describes the instantaneous
“length” of the molecule. Immediately

x1 = X − s

x2 = X + s

}
(11)

giving
L = m(Ẋ2 + ṡ2) − U(X − s) − U(X + s) − 1

2k(2s − a)2 (13)

It becomes analytically advantageous at this point to introduce the variable

q = 2s − a

which describes molecular length relative to the rest length of the molecule;
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then s = 1
2 (a + q) and we have

L = mẊ2 + 1
2{

1
2mq̇2 − 1

2Kq2} − U(X, q)

where K = 2k and

U(X, q) = U(X + s) + U(X − s)

= {U(X) + U ′(X)s + 1
2U ′′(X)s2 + . . .}

+ {U(X) − U ′(X)s + 1
2U ′′(X)s2 + . . .}

= 2U(X) + U ′′(X)s2 + . . .

We are led thus to write

L = {mẊ2 − 2U(X)} + 1
2{

1
2mq̇2 − 1

2Kq2} − Uinteraction(X, q) (14)

with
Uinteraction(X, q) = 1

4U ′′(X)(a2 + 2aq + q2) + . . .

= 1
2aU ′′(X) q + . . .

The operative assumption here is that the ambient potential changes little over
the dimension of the molecule. The striking absence of a U ′(X)-term is an
artifact of our assumption that m1 = m2 = m, and means that the interaction
is, in leading approximation, “tidal.” In this respect the physics of A2 molecules
is distinct from the physics of AB molecules. Looking now to the equations of
motion

mẌ = −U ′(X) − 1
2qaU ′′′(X) (15.1)

mq̈ + Kq = −aU ′′(X) (15.2)

we find it natural on physical grounds to abandon the 2nd term on the right side
of (15.1). Returning with X(t)—a solution of the equation thus obtained—to
(15.2), we have

mq̈ + Kq = F(t) with F(t) = −aU ′′(X(t)) (16)

Evidently the “tidal” term on the right side of (15.2) serves in effect to “force”
the internal oscillation of the molecule.

The reader who was awaiting the entry of relative variables r1 and r2

into the preceeding discussion will have been struck by their absence. Their
non-appearance can be attributed to the circumstance that the “asymmetry
problem” which motivated our initial discussion does not arise in the case
N = 2; it is “non-discriminatory” to speak of s = 1

2 (r2−r1). In this respect the
physics of An molecules (n > 2) is marginally more interesting. The physics
even of A2 molecules becomes markedly more interesting when we give up
the one-dimensionality or our problem, for then the molecule can be expected
to experience torques, and to “tumble” in ways responsive to the derivative
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structure of U(X); I shall, however, resist the temptation to enter into an
immediate discussion of the details.

A less simple example: the one-dimensional A3 molecule. We now assume
particles of identical mass m to reside at x1, x2 > x1 and x3 > x2 and to be
bound by springs identical to those encountered in the previous example. In
natural variables the Lagrangian (compare (10)) reads

L = 1
2m(ẋ2

1 + ẋ2
2 + ẋ2

3) − U(x1) − U(x2) − U(x3)

− 1
2k{[(x2 − x1) − a]2 + [(x3 − x2) − a]2} (17)

Direct appropriation of (6) gives rise for such a system to

L = 1
2MẊ2 + 1

2m(ṙ2
1 + ṙ2

2 + ṙ2
3) − U(X + r1) − U(X + r2) − U(X + r3)

− 1
2k[(r2 − r1) − a]2 − 1

2k[(r3 − r2) − a]2

− g · m(r1 + r2 + r3) (18)

where M = 3m is the mass of the A3 molecule, and where X = 1
3 (x1 +x2 +x3)

serves to locate its center of mass. Equations (9) acquire therefore this
particularized meaning:

MẌ = −U ′(X + r1) − U ′(X + r2) − U ′(X + r3) (19.1)

m(r̈1 + Ẍ) = −U ′(X + r1) + k[(r2 − r1) − a]

m(r̈2 + Ẍ) = −U ′(X + r2) − k[(r2 − r1) − a] + k[(r3 − r2) − a]

m(r̈3 + Ẍ) = −U ′(X + r3) − k[(r3 − r2) − a]





(19.2)

Looking first to (19.1), we observe that

RHS of (19.1) = −3U ′(X)− 1
mU ′′(X) ·

3∑

1

mri− 1
2mU ′′′(X) ·

3∑

1

mr2
i + . . . (20)

The second term on the right vanishes by definition of the center of mass.
It is interesting in this light to notice that the sum encountered in the third
term on the right serves to define the instantaneous moment of inertia relative
to the center of mass (i.e., the centered second moment of the molecular mass
distribution), and that the sums encountered in higher-order terms define
nameless higher moments of the mass distribution. Upon the abandonment
of all such negligible terms, (19.1) reduces to mẌ = −U ′(X): the center of
mass moves as a single atom would move in the ambient potential.

Looking now to (19.2), we are motivated by the structure of the spring
terms to introduce

q1 = (r2 − r1) − a

q2 = (r3 − r2) − a

}
(21)

Inversion of
q1 + a = −r1 + r2

q2 + a = − r2 + r3

0 = +r1 + r2 + r3
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gives r1 = − 1
3 (2q1 + q2) − a

r2 = + 1
3 ( q1 − q2)

r3 = + 1
3 ( q1 + 2q2) + a





(22)

and when we return with (21) and (22) to (18) we by computation1 obtain
(compare (14))

L = 3{ 1
2mẊ2 − U(X)} + { 1

3m(q̇2
1 + q̇1q̇2 + q̇2

2) − 1
2k(q2

1 + q2
2)}

− Uinteraction(X, q1, q2)
(23)

where

Uinteraction(X, q1, q2) = 1
2mU ′′(X) · m

[
2
9a2 + 2

9a(q2 − q1)

+ 2
3 (q2

1 + q1q2 + q2
2)

]
+ . . .

= 1
9 aU ′′(X) · (q2 − q1) + . . .

To better emphasize the essentials of the situation as it now stands, I write

L = Lcenter of mass(Ẋ, X) + Linternal(q̇,q) + Linteraction(X,q)

and assert (on the physical grounds to which I have already alluded, and to
a more careful discussion of which I promise to return) that Linteraction(X,q)
contributes essentially to the motion of the internal variables q, but inessentially
to the motion of X. We are led thus to the equations of motion

mẌ = −U ′(X) (24.1)
{

d

dt

∂

∂q̇i
− ∂

∂qi

}
L = 0 (i = 1, 2) (24.2)

where L = Linternal(q̇,q) + Linteraction(X(t),q). I have refrained from writing
out the detailed implications of (24.2) because those equations are not well-
adapted to analytical treatment. To obtain more workable equations we—very

1 The tedium of the computation is much reduced if one writes



r1

r2

r3



 = G




q1

q2

a



 and




ṙ1

ṙ2

ṙ3



 = G




q̇1

q̇2

0



 with G = 1
3




−2 −1 1
+1 −1 0

1 2 1





and notices that GTG = 1
9




6 3 −1
3 6 1

−1 1 2





for then (r2
1 + r2

2 + r2
3) and (ṙ2

1 + ṙ2
2 + ṙ2

3) become quite easy to evaluate.
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much in the spirit of standard small oscillation theory—subject Linternal(q̇,q)
to some preparatory massaging.

Writing

Linternal(q̇,q) = 1
6m

(
q̇1

q̇2

)T

M
(

q̇1

q̇2

)
− 1

2k

(
q1

q2

)T

K
(

q1

q2

)

with M =
(

2 1
1 2

)
K =

(
1 0
0 1

)

we introduce new variables (write q = RQ with R a rotation matrix: RTR = I)
to obtain

Linternal(Q̇,Q) = 1
6m

(
Q̇1

Q̇2

)T

RTM R
(

Q̇1

Q̇2

)
− 1

2k

(
Q1

Q2

)T

RTK R
(

Q1

Q2

)
(25)

and look to the simultaneous diagonalization of RTM R and RTK R. This,
of course, is standard “theory of small oscillations” methodology; the only
unusual circumstance is that here it is not be spring matrix K but the mass
matrix M which comes to us in initially non-diagonal form. Some preliminary
observations: from det(M−λI) = λ2 − 4λ+ 3 we conclude that the eigenvalues
of M can be described λ = 2 ± 1, and that our assignment, therefore, is to
discover the matrix

R =
(

cosϕ − sinϕ
sinϕ cosϕ

)

such that
RTM R =

(
1 0
0 3

)

Our assignment (to say the same thing another way) is to discover the ϕ such
that (

2 1
1 2

)
=

(
cos2 ϕ+ 3 sin2 ϕ −2 sinϕ cosϕ
−2 sinϕ cosϕ sin2 ϕ+ 3 cos2 ϕ

)

Immediately ϕ = −45◦, giving

R = 1√
2

(
1 1

−1 1

)
(26)

In any event—quite apart from the details of the argument which led us to
(26)—we have only to insert (26) into (25) to obtain

Linternal(Q̇,Q) = 1
6m(Q̇2

1 + 3Q̇2
2) − 1

2k(Q2
1 + Q2

1)

The modal motion of the free A3 molecule can therefore be described

Q̈i + ω2
i Qi = 0 (27)
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with
ω1 =

√
3k/m

ω2 =
√

k/m
(28)

For such a molecule (i.e., for a one-dimensional A3 molecule in the total absence
of an ambient potential) we have

X(t) = X0 + V0t

q1(t) = A1 cos(ω1t + δ1) + A2 cos(ω2t + δ2)
q2(t) = −A1 cos(ω1t + δ1) + A2 cos(ω2t + δ2)

so (recall (22)) in natural variables we have the following explicit description of
the free motion latent in the Lagrangian (17):

x1(t) = X(t) − 1
3A1 cos(ω1t + δ1) − A2 cos(ω2t + δ2)

x2(t) = X(t) + 2
3A1 cos(ω1t + δ1)

x3(t) = X(t) − 1
3A1 cos(ω1t + δ1) + A2 cos(ω2t + δ2)

(29)

These equations make clear the sense in which the “fast mode” (the mode under
the control of A1) is a “hip-swinging” mode, and the “slow mode” (controlled
by A2) is a “breather mode”—a dance in which m2 does not participate. So
much for the free motion of the system.

Now reinstate the ambient potential U(x). The motion X(t) of the center
of mass is now no longer uniform, but accelerated as described (in leading
approximation) by (24.1). Of more particular interest is the fact that

Linteraction = − 1
9aU ′′(X(t)) · (q1 − q2) = F(t) · Q1

where F(t) =
√

2
9 aU ′′(X(t)). The implication is that tidal forces couple (in

leading approximation) only to the fast mode. This I find somewhat counter-
intuitive, since it is the slow “breather” mode of the A3 molecule which most
resembles the solitary mode of the A2 molecule—a “breather” mode which, as
we know from previous work, does respond to tidal forces. From

Lmolecular(Q̇,Q, t) = 1
6m(Q̇2

1 + 3Q̇2
2) − 1

2k(Q2
1 + Q2

1) + F(t) · Q1

we obtain
Q̈1 + ω2

1Q1 = 3
mF(t)

Q̈2 + ω2
2Q2 = 0

(30)

which give back (27) in the absence of tidal forces.

Motion of a “struck” A3 molecule. In place of (17) we now have

L = 1
2m(ẋ2

1 + ẋ2
2 + ẋ2

3) − 1
2k{[(x2 − x1) − a]2 + [(x3 − x2) − a]2} − x1F (t)

—the inessential assumption here being that (since objects are most commonly
struck on their exposed surfaces) it is the end-particle m1 which has been
“struck.”


