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CLASSICAL GAUGE FIELDS

Introduction. The theory of “gauge fields” (sometimes called “compensating
fields”1) is today universally recognized to constitute one of the supporting
pillars of fundamental physics, but it came into the world not with a
revolutionary bang but with a sickly whimper, and took a long time to find
suitable employment. It sprang from the brow of the youthful Hermann Weyl
(–), who is generally thought of as a mathematician, but for the
seminal importance of his contributions to general relativity and quantum
mechanics—and, more generally, to the “geometrization of physics”—must be
counted among the greatest physicists of the 20th Century. Weyl’s initial
motivation () was to loosen up the mathematical apparatus of general
relativity2 just enough to find a natural dwelling place for electromagnetism.
In  Fritz London suggested that Weyl’s idea rested more naturally upon
quantum mechanics (then fresh out of the egg!) than upon general relativity,
and in  Weyl published a revised elaboration of his original paper—the
classic “Elektron und Gravitation” to which I have already referred.3 The
influential Wolfgang Pauli became an ardent champion of the ideas put forward
by Weyl, and it was via Pauli (whose “Wellenmechanik” article in the Handbuch
der Physik () had made a profound impression upon him) that those ideas

1 See Section 21 in F. A. Kaempffer’s charmingly eccentric Concepts in
Quantum Mechanics ().

2 Recall that Einstein’s theory of gravitation had been completed only in
, and that its first observationial support was not forthcoming until .

3 The text, in English translation, can be found (together with historical
commentary) in Lochlainn O’Raufeartaugh’s splendid The Dawning of Gauge
Theory (), which should be consulted for a much more balanced account
of events than I can present here.
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came to the attention of C. N. Yang, in the early ’s. The attempt by Yang
& Mills () to construct a “gauge theory of nuclear forces” failed, for reasons
(it became clear in retrospect) having to do with the fact that the nuclear force is
too densely phenomenological—too far removed from fundamentals—to admit
of any elegantly simple theory. The Yang–Mills theory did serve to bring gauge
theory to the general attention of theorists, but several developments had to
transpire. . .
• attention had to shift from the interaction of nucleons to the physics interior

to nucleons (this development hinged upon the invention of the quark, by
Gell-Mann and Zweig in )
• the ideas had to come into place which made possible the development (by

Weinberg and Salam in ) of a unified theory of electromagnetic and
weak interactions4

. . .before it became evident (by the early ’s) how gauge field theory fit
within the Grand Scheme of Things.

The developments to which I have alluded, insofar as they refer to particle
physics, are profoundly quantum mechanical. But the associated gauge field
theory is, to a remarkable degree, susceptible to description in the language of
classical field theory, and it is to that language—to the physics of “classical
gauge fields”—that I here confine myself; �’s will intrude, but they will always
be “soft �’s,” inserted for dimensional reasons but stripped of their quantum
mechanical burden.

Basic objective of the theory, as standardly conceived. It is a familiar fact that
the physical output of quantum theory is phase insensitive—invariant, that is
to say, under

ψ −→ ψ ′ ≡ eiωψ (1)

We may attribute this circumstance to the reality of the Schrödinger Lagrangian

L = 1
2 i�(ψ∗

tψ − ψ∗ψt) + �
2

2m∇∇∇ψ
∗···∇∇∇ψ + ψ∗Uψ (2)

from which at (1–91) we extracted the Noetherean conservation law

∂
∂t (ψ

∗ψ) +∇∇∇···(probability current) = 0

If we adopt the polar representation ψ = R exp
{
i
�
S

}
then becomes5

L = R2
[
St + 1

2m∇∇∇S···∇∇∇S + U
]
+ �

2

2m∇∇∇R···∇∇∇R

which is manifestly invariant under this reformulation of (1):

S −→ S + constant (3)

4 For a good brief account of the developments to which I refer, see Chapter 1
in David Griffiths’ Introduction to Elementary Particles ().

5 See again (1–78).
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Dropping the final term in the preceding Lagrangian, we obtain precisely the
Lagrangian

L = R2
[
St + 1

2m∇∇∇S···∇∇∇S + U
]

(4)

which was seen at (1–108) to give rise to classical Hamilton-Jacobi theory; the
evident invariance of that theory under (3) can by

S =
∫
Ldt

be attributed to the well-known fact that the physical output from Lagrangian
mechanics is insensitive to gauge transformations

L −→ L+ d
dt (anything)

Pauli, in a paper6 which was influential in the history of thus subject, called
• physics-preserving transformations-by-multiplicative-adjustment (such as

our (1)) “gauge transformations of the 1st type,” and
• physics-preserving transformations-by-additive-adjustment (such as (3))

“gauge transformations of the 2nd type.”
In gauge field theory the two tend to be joined at the hip, and in casual usage
the term “gauge transformation” may refer to either.

Write (1) more carefully

ψ(x, t) −→ ψ ′(x, t) ≡ eiωψ(x, t) (5)

to emphasize the presumed
{
x, t

}
-independence of the phase factor, which we

have in mind when we refer to the“global”character of the gauge transformation.
The “local” analog of (5) reads

ψ(x, t) −→ ψ ′(x, t) ≡ eigΩ(x,t)ψ(x, t) (6)

—the point being that the phase factor is allowed now to vary from point to
point . Evidently ψ∗ψ is invariant under (6), but from

∂ψ(x, t) −→ ∂ψ ′(x, t) ≡ eigΩ(x,t)
{
∂ψ(x, t) + ig[∂Ω(x, t)]ψ

}
(7)

we see that the adjustment (5)−→(6) serves to disrupt the invariance of
expressions assembled from derivatives (unless ∂Ω = 0, which would take us
back to the global theory). Gauge field theory presents a general mechanism
for restoring gauge invariance to theories which the adjustment

global −→ local

6 “Relativistic theories of elementary particles,” Rev. Mod. Phys. 13, 203
(1941). See the text subsequent to equations (23) in Part I, Section 2.
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has served to disrupt. That mechanism, in its most frequently encountered (but,
as will emerge, not its simplest) manifestation, can be described as follows:7

step one Make everywhere the substitutional replacement

∂µ

↓
∂µ − igAµ

where Aµ(x) is a “gauge field” (“compensating field”), endowed with properties
soon to be specified. Consider (7) to have, in consequence, become

(∂µ − igAµ)ψ −→ (∂µ − igA′
µ)ψ ′ = eigΩ

{
(∂µ − igA′

µ)ψ + ig ∂Ω
∂xµψ

}
and step two assign to the “local gauge transformation” concept this
enlarged meaning

ψ −→ ψ ′ = eigΩ · ψ
Aµ −→ A′

µ = Aµ + ∂Ω
∂xµ

}
(8)

so as to achieve

Dµψ −→ D ′
µψ

′ = eigΩ·Dµψ (9)
Dµ ≡ ∂µ − igAµ (10)

which mimics the structure of the first of equations (8).

Given interest in a system L0(ϕ, ∂ϕ), step three look to the modified
system

L1(ϕ, ∂ϕ,A) ≡ L0(ϕ,Dϕ) (11)

which will be locally gauge invariant if the initial system was globally so.

To see how this works in a particular case, let us look to the relativistic
complex scalar field system (2–19)

L0(ψ,ψ∗, ∂ψ, ∂ψ∗) = �
2

2m

{
gαβψ∗

,αψ,β − κ
2ψ∗ψ

}
(12)

where I have set K = mc2/κ 2 = �
2/2m in order to achieve

[ψ∗ψ] = 1/(length)3

The invariance of L0 under the global gauge transformation (1) is manifest,
and was shown at (2–21) to entail conservation of the real-valued Noetherean
current

Qµ ≡ �

mg
µα

{
ψ∗
,αψ − ψ∗ψ,α

2i

}
(13)

7 Gauge field theory is not intrinsically/essentially relativistic, but it is (like
field theory generally) “relativistically predisposed,” and I find that it serves
expository simplicity to make use here of the notational conventions of relativity.
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where the �/m was introduced in order to achieve [Q] = 1/(area·time). To
achieve local phase invariance we look to the modified system

L1(ψ,ψ∗, ∂ψ, ∂ψ∗, A) = �
2

2m

{
gαβ(ψ∗

,α + igAαψ
∗)(ψ,β − igAβψ)− κ

2ψ∗ψ
}

= L0(ψ,ψ∗, ∂ψ, ∂ψ∗) + ig �
2

2m (ψ∗ψ,α − ψ∗
,αψ)Aα︸ ︷︷ ︸ +g2 �

2

2m (ψ∗ψ)AαA
α

g�QαA
α

Looking to the equations of motion, we find by calculation that{
∂ν

∂
∂ψ∗

,ν

− ∂
∂ψ∗

}
L = 0 becomes (gαβDαDβ + κ

2)ψ = 0 (14.1){
∂ν

∂
∂ψ,ν

− ∂
∂ψ

}
L = 0 gives the conjugated equation (14.2)

Finally—in what is perhaps the most amazingly productive step in the
entire procedure—we step four launch the gauge field into motion by
introducing some
• quadratic
• gauge-invariant, and (in relativistic field theory also)
• Lorentz-invariant

∂Aµ-dependence into the Lagrangian. To that end, we note that

Fµν ≡ ∂µAν − ∂νAµ is transparently gauge-invariant (15)

and that FαβF αβ answers to our other requirements; we look, therefore, to the
twice-modified system

L2(ψ,ψ∗, ∂ψ, ∂ψ∗, A, ∂A) = L0(ψ,ψ∗, ∂ψ, ∂ψ∗) (16.0)
+ Lint(ψ,ψ∗, ∂ψ, ∂ψ∗, A) + L(A, ∂A)

where the “interaction term”

Lint(ψ,ψ∗, ∂ψ, ∂ψ∗, A) = ig �
2

2m (ψ∗ψ,α − ψ∗
,αψ)Aα + g2 �

2

2m (ψ∗ψ)AαA
α (16.1)

was developed already at the top of the page, and where the “free gauge field”
will be governed by

L(A, ∂A) = 1
4FαβF

αβ (16.2)

= 1
4g

αρgβσ(Aβ,α −Aα,β)(Aσ,ρ −Aρ,σ)

= 1
2 (gαρgβσ − gασgβρ)Aα,βAρ,σ

Notice also that L(A, ∂A) is in fact Aµ-independent ; we have been forced to
omit an anticipated (κ 2AαA

α)-term for the simple but deeply consequential
reason that

AαA
α is not gauge-invariant
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Notice also that (16.2) requires [FαβF αβ ] = (energy density), which entails
[Aµ] =

√
energy/length. And this—if we are to achieve [gAµ] = 1/(length), as

required by the definition of Dµ—in turn entails

[g2] = 1/(energy·length) = [1/�c ] = 1/(electric charge)2

giving [g�c] = (electric charge). It is on this basis that we will adopt e ≡ g�c
as a suggestive notational device.

Working now from the twice-modified Lagrangian (16), we in place of (14.2)
obtain

∂µF
µν = ∂

∂Aµ
Lint(ψ,ψ∗, ∂ψ, ∂ψ∗, A)

= 1
cJ

ν (17)

with

Jν ≡ g�c
{
Qν + g �

m (ψ∗ψ)Aν
}

= jν + e2

mcψ
∗Aνψ (18.1)

jν ≡ eQν = J
∣∣∣
A→0

(18.2)

The gauge-invariance of Jν—required for the self-consistency of (17)—is not
obvious (certainly not “manifest”), but is readily established.

The field equation (14.1) can be written

gαβ
(

�

i ∂α − e
cAα

)(
�

i ∂β − e
cAβ

)
ψ = (mc)2ψ (19)

and in this form can be considered to have resulted by ordinary Schrödinger
quantization from a classical process of the form

gαβpαpβ = (mc)2

↓
gαβ(pα − e

cAα)(pβ − e
cAβ) = (mc)2


 (20)

Note also that

[jν ] = [Jν ] =
electrical charge

area ·time
= electrical current density

and that we are now in position to write

Lint = 1
cj

αAα + e2

2mc2 (ψ∗Aαψ)︸ ︷︷ ︸Aα

= 1
2 (Jα − jα)

= 1
c

1
2 (Jα + jα)Aα (21)
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Assuredly,

local gauge invariance =⇒ global gauge invariance

and from the manifest invariance of the twice-modified Lagrangian (16) under
the global instance

ψ −→ ψ ′ = e+iω · ψ
Aµ −→ A′

µ = Aµ

of (8)—which infinitesimally becomes

ψ −→ ψ + δψ with δψ = +iψ · δω
ψ∗ −→ ψ∗ + δψ∗ with δψ∗ = −iψ · δω
Aµ −→ Aµ + δAµ with δAµ = 0

—we are, by Noether’s theorem, led to the conservation of

−(e/�)
{
∂L

∂ψ,ν
(+iψ) + ∂L

∂ψ,ν
∗ (−iψ∗)

}
= jν − (e/�)

{
∂Lint

∂ψ,ν
(iψ)− ∂Lint

∂ψ,ν
∗ (iψ∗)

}
= jν + e2

mcψ
∗Aνψ

= J ν

(i.e., to ∂µJµ = 0) which at (17) was presented as an automatic consequence of
the antisymmetry of Fµν . Prior to introduction of the gauge field Aµ we had
∂µj

µ = 0. We can in this light understand the adjustment

jν(ψ,ψ∗, ∂ψ, ∂ψ∗) −→ J ν(ψ,ψ∗, ∂ψ, ∂ψ∗, A)

as a price paid in our effort

L0(ψ,ψ∗, ∂ψ, ∂ψ∗) −→ L2(ψ,ψ∗, ∂ψ, ∂ψ∗, A, ∂A)

to achieve local gauge invariance.

The effort to which I have just referred has yield up (amongst others) the
equations

Fµν = ∂µAν − ∂νAµ and ∂µF
µν = 1

cJ
ν

It has, in short, delivered Maxwellian electrodynamics to us on a platter. If we
were to “turn off” the ψ-field (or set the coupling constant e = 0) we would
retain free-field electrodynamics as a kind of residue—a gift, for having shopped
in the Gauge Store. The “compensating field” has been found in this instance
to lead a busy physical life of its own, even when it has nothing to compensate.
It was this development which first suggested that gauge field theory might, in
fact, be good for something.

We have been supplied, moreover, with a detailed account of how the
electromagnetic field Fµν and the ψ-field are coupled—a “theory of field
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interactions.” It was, in fact, a quest for a general theory of field interactions
which led Ronald Shaw—in / a graduate student of Abdus Salam at
Cambridge, working under the influence of Schwinger to the invention of gauge
field theory, independently of (and almost simultaneously with) Yang & Mills.8

The electromagnetic aspects of the theory to which we have been led do,
however, present one problematic (or at least surprising) aspect: the current
term J ν which “stimulates” the electromagnetic field was found at (18) to itself
depend upon the field (through the 4-potential Aµ). As we move farther into
our subject we will remain on the alert for developments which may serve to
clarify that circumstance.

Gauge theory of a non-relativistic classical particle. Gauge field theory was born
of general/special relativistic parents, and has spent its adult life married to
quantum mechanics. It may be well, therefore, to be reminded that the central
idea is so robust that it can flourish even when deprived of either or both
of those controlling influences. To illustrate the point, I look to the classical
Hamilton-Jacobi theory of a non-relativistic particle:

Assume the Hamiltonian to have the form H(ppp,xxx) = 1
2mppp···ppp + U(xxx). The

Hamilton-Jacobi equation then reads

1
2m∇∇∇S ···∇∇∇S + U(xxx) + St = 0 (22.1)

and9 when joined by its companion

Rt +∇∇∇···( 1
mR∇∇∇S) = 0 (22.2)

can be consider to derive from the Lagrangian

L0(S, ∂S,R) = R ·
{

1
2m

[
(∂xS)2 + (∂yS)2 + (∂zS)2

]
+ U + (∂tS)

}
(23)

This Lagrangian is manifestly invariant under the global gauge transformations

S −→ S′ = S + �ω

R −→ R′ = R

}
(24)

which—compare (5)—are, in Pauli’s terminology, “gauge transformations of the
2nd kind,” into which � has been introduced as a “soft constant of the action”
in order to preserve the dimensionlessness of ω. To achieve the

global gauge =⇒ local gauge

8 Relevant sections of Shaw’s thesis () are reprinted in O’Raifeartaigh.3
9 See again the discussion which culminated in (1–108).
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symmetry enhancement we adjust the design of the system

L0(S, ∂S,R)
↓

L0(S,DS,R) = R ·
{

1
2m

[
(∂xS + g�Cx)2 + (∂yS + g�Cy)2 + (∂zS + g�Cz)2

]
+ U + (∂tS + g�Ct)

}
≡ L1(S, ∂S,R,Cx, Cy, Cz, Ct) (25)

and—so as to achieve

∂xS
′ + g�C ′

x = ∂xS + g�Cx , etc.

—assign to the notion of a “local gauge transformation” an enlarged meaning

S −→ S′ = S + g�Ω(xxx, t)
R −→ R′ = R

Cx −→ C ′
x = Cx − ∂xΩ(xxx, t)

Cy −→ C ′
y = Cy − ∂yΩ(xxx, t)

Cz −→ C ′
z = Cz − ∂yΩ(xxx, t)

Ct −→ C ′
t = Ct − ∂t Ω(xxx, t)




(26)

which in the global case gΩ(xxx, t) = ω gives back essentially (24).

I turn now to remarks intended to help us mix some gauge-invariant
∂C-dependence into (25), and thus to lauch the gauge fields C into dynamical
motion. We proceed from the observation that the expressions10

1
c (∂tCx − ∂xCt ) 1

c (∂tCy − ∂yCt ) 1
c (∂tCz − ∂zCt )

(∂xCy − ∂yCx) (∂xCz − ∂zCx)
(∂yCz − ∂zCy)

are individually gauge-invariant (because the cross partials of Ω are equal). To
keep our theory from coming rotationally unstuck, we must require that

Cx

Cy

Cz


 transforms like ∇∇∇S; i.e., as a vector

Let us agree to write 
Cx

Cy

Cz


 ≡ −AAA and Ct ≡ cφ

10 Some “soft c” factors have been introduced so as to render all entries
co-dimensional.
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where a sign has been introduced to establish contact with pre-established
convention. The preceding tableau then becomes

(− 1
c∂tAAA−∇∇∇φ)x (− 1

c∂tAAA−∇∇∇φ)y (− 1
c∂tAAA−∇∇∇φ)z

+(∇∇∇×AAA)z −(∇∇∇×AAA)y
+(∇∇∇×AAA)x

which we will agree to abbreviate

(EEE )x (EEE )y (EEE )z
−(BBB )z +(BBB )y

−(BBB )x

The expressions EEE ···EEE, EEE ···BBB and BBB ···BBB are
• quadratic in ∂C
• gauge-invariant, and
• rotationally invariant

and candidates, therefore, for independent inclusion into the design of a
modified Lagrangian. Our most recent Lagrangian (25) can, in present notation,
be written11

L1 = R ·
{

1
2m

(
∇∇∇S − e

cAAA
)
···
(
∇∇∇S − e

cAAA
)

+ U + (∂tS + eφ)
}

(27)

and we are led by the preceding remarks to consider Lagrangians of the modified
form

L2(S, ∂S,R,AAA, φ, ∂AAA, ∂φ) = L1 + 1
2pEEE ···EEE + qEEE ···BBB + 1

2rBBB ···BBB (28)

= L1 + 1
2p( 1

c∂tAAA+∇∇∇φ)···( 1
c∂tAAA+∇∇∇φ)

− q ( 1
c∂tAAA+∇∇∇φ)···(∇∇∇×AAA)

+ 1
2 r (∇∇∇×AAA)···(∇∇∇×AAA)

Look to the associated field equations and conservation laws. From{
∂t
∂
∂Rt

+∇∇∇··· ∂
∂∇∇∇R −

∂
∂R

}
L2 = 0

we obtain12

1
2m

(
∇∇∇S − e

cAAA
)
···
(
∇∇∇S − e

cAAA
)

+ U + (∂tS + eφ) = 0 (28.1)

11 One needs to notice that the compensating fields C have—by contrivance—
the same physical dimension as the gauge fields formerly notated Aµ (to which
they are really identical), and that consequently it still makes sense to write
g� = e/c.

12 Compare this with the H = 1
2m (ppp− e

cAAA)···(ppp− e
cAAA) + eφ which appears, for

example, as (8–27) in Goldstein’s Classical Mechanics (2nd edition ). There
it arises from L = 1

2mẋxx···ẋxx + e
c ẋxx···AAA − eφ, which hinges on the observation that

the Lorentz force law FFF = e(EEE+ 1
c ẋxx×BBB) = e

{
−∇∇∇φ− 1

c
∂
∂tAAA+ 1

c ẋxx×∇∇∇×AAA
}

can
be obtained by Lagrange differentiation of U = e

(
φ − 1

cẋxx···AAA
)
. See Goldstein’s

§1–5 for details.
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while {
∂t
∂
∂St

+∇∇∇··· ∂
∂∇∇∇S −

∂
∂S

}
L2 = 0

gives
∂tR+∇∇∇··· 1

mR
(
∇∇∇S − e

cAAA
)

= 0 (28.2)

Interestingly, this last field equation displays the design of a continuity equation,
and is in fact precisely conservation law which by Noether’s theorem arises
as an expression of the global gauge invariance of the locally gauge-invariant
Lagrangian (27). A simple dimensional argument gives [R] = 1/(length)3, so if
we introduce the notations

ρ ≡ eR : charge density

JJJ ≡ e
mR

(
∇∇∇S − e

cAAA
)

: current density

}
(29)

then (28.2) can be read as a statement

∂tρ+∇∇∇···JJJ = 0 (30)

of charge conservation. Looking finally to the dynamics of the gauge fields:
from {

∂t
∂
∂φt

+∇∇∇··· ∂
∂∇∇∇φ −

∂
∂φ

}
L2 = 0

we obtain ∇∇∇···
{
p( 1
c∂tAAA +∇∇∇φ) − q∇∇∇ ×AAA

}
− eR = 0 which (recall that div curl

always vanishes) can be expressed −p∇∇∇···EEE = ρ, while

{
∂t
∂
∂Ax,t

+ ∂x
∂
∂Ax,x

+ ∂y
∂
∂Ax,y

+ ∂z
∂
∂Ax,z

− ∂
∂Ax

}
L2 = 0

is found after simplifications to yield the x-component of

p 1
c∂tEEE + q

(
1
c∂tBBB +∇∇∇×EEE

)
+ r∇∇∇×BBB = 1

cJJJ

But from the standing definitions

EEE ≡ − 1
c∂tAAA−∇∇∇φ and BBB ≡ ∇∇∇×AAA (31)

it follows automatically that

∇∇∇···BBB = 0
1
c∂tBBB +∇∇∇×EEE = 000

}
(32.1)

and from L2 we have obtained this additional information:

−p∇∇∇···EEE = ρ

p 1
c∂tEEE + r∇∇∇×BBB = 1

cJJJ

}
(32.2)
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Note that (32.2) renders ∂tρ+∇∇∇···JJJ = 0 automatic in all cases (as it must, since
the continuity equation derives from built-in global gauge invariance), and that
equations (32.2)

become precisely the sourcey Maxwell equations in the case r = −p = 1

But what heretofore neglected physical principle serves to enforce such
conditions? An answer emerges from study of the energy/momentum/angular
momentum properties of the gauged Hamilton-Jacobi field system.

By way of preparation, we look first to those properties as they refer to the
ungauged system L0 which provided our point of departure. A little exploratory
tinkering motivates these definitions:

E ≡ −
[{
Rt

∂
∂Rt

+ St
∂
∂St

}
L0 − L0

]
(33.10)

= R ·
{

1
2m

[
(∂xS)2 + (∂yS)2 + (∂zS)2

]
+ U

}
= R ·H(∇∇∇S,xxx) (33.11)

F x ≡ −
[{
Rt

∂
∂Rx

+ St
∂
∂Sx

}
L0

]
(33.20)

= −
[
R · 1

m (∂xS)
]
St, with F y and F z described similarly

= +
[
R · 1

m (∂xS)
]
·H(∇∇∇S,xxx) by the Hamilton-Jacobi equation

↓
FFF =

[
1
mR∇∇∇S

]
·H(∇∇∇S,xxx) (33.21)

Px ≡ +
[{
Rx

∂
∂Rt

+ Sx
∂
∂St

}
L0

]
(33.30)

= R · (∂xS), with Py and Pz described similarly
↓

PPP = R∇∇∇S (33.31)

T u
v ≡ +

[{
Rv

∂
∂Ru

+ Sv
∂
∂Su

}
L0 − δuvL0

]
:

{
u, v

}
∈

{
x, y, z

}
(33.40)

= R ·
[

1
mSuSv −Hδ

u
v

]
(33.41)

It is not difficult to establish that

∂
∂tE +∇∇∇···FFF = +R ∂

∂tU (34.1)
= 0 if U is t -independent

∂
∂tPx + ∂

∂xT x
x + ∂

∂yT y
x + ∂

∂zT z
x = −R ∂

∂xU : ditto with x → y,z (34.2)
= 0 if U is x-independent
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and from the manifest symmetry of T u
v it follows that angular momentum is

locally conserved at points where the “torque density” xxx × (−∇∇∇U) vanishes.
These are physically satisfying results, but my main point has been to identify
the contrasting signs which enter most sensibly into the preceding definitions.

Preserving those sign conventions, we look now to the energy/momentum
desnities/fluxes which arise from

Lfree gauge field = 1
2p( 1

c∂tAAA+∇∇∇φ)···( 1
c∂tAAA+∇∇∇φ) + 1

2 r (∇∇∇×AAA)···(∇∇∇×AAA)
= 1

2pEEE ···EEE + 1
2rBBB ···BBB (35)

where the originally conjectured q -term, since it made no contribution to the
field equations (32.2), has been dropped, and where it is for present
computational purposes most efficient to write

Lfree gauge field = −pEEE ···


 1
cAx,t + φ,x
1
cAy,t + φ,y
1
cAz,t + φ,z


 + rBBB ···


Az,y −Ay,z

Ax,z −Az,x

Ay,x −Ax,y




Looking first to the energy density of the free gauge field system, we find

Ẽ ≡ −
[{
φ,t

∂
∂φ,t

+Ax,t
∂
∂Ax,t

+Ay,t
∂
∂Ay,t

+Az,t
∂
∂Az,t

}
−1

]
Lgauge

= −
[
− p 1

cAAAt ···EEE − 1
2pEEE ···EEE − 1

2rBBB ···BBB
]

= − 1
2pEEE ···EEE + 1

2rBBB ···BBB︸ ︷︷ ︸− pEEE ···∇∇∇φ︸ ︷︷ ︸ by − 1
c∂tAAA = EEE +∇∇∇φ (36.1)

Egauge
|— gauge-dependent term, soon discarded

and notice that E � 0 requires p < 0 and r > 0. Without loss of generality
(since the numerical part of p can be absorbed into the definition of e) we

Set p = −1

whereupon (32.2) become

∇∇∇···EEE = ρ

r∇∇∇×BBB = 1
c
{
JJJ + 1

c∂tEEE
}

}
(32.2′)

For the components of energy flux we have

F̃ x ≡ −
[
φ,t

∂
∂φ,x

+Ax,t
∂
∂Ax,x

+Ay,t
∂
∂Ay,x

+Az,t
∂
∂Az,x

]
Lgauge

= −
[
φtEx + rAy,tBz − rAz,tBy

]
, with F̃ y and F̃ z described similarly

↓
F̃FF = −

[
r(∂tAAA)×BBB + EEE ∂tφ

]
= rc(EEE ×BBB)︸ ︷︷ ︸ +

{
rc∇∇∇φ×BBB −EEE ∂tφ

}︸ ︷︷ ︸ (36.2)

FFFgauge
|— gauge-dependent term, soon discarded



14 Classical gauge fields

The “gauge-dependent terms” which enter additively into equations (36) cannot
participate in the physical output of the theory, but from results already in hand
it follows readily that

∂
∂t (EEE ···∇∇∇φ) +∇∇∇···

{
rc∇∇∇φ×BBB −EEE ∂tφ

}
= −

{
JJJ ···∇∇∇+ ρ∂t

}
φ (37)

= 0 in the absence of sources

so those terms can be discarded on grounds that they make no contribution to
the total energy resident in the gauge field system. Notice that r remains still
indeterminate.

Looking next to the components of momentum density in the free gauge
field system, we have

P̃ x ≡
[
φ,x

∂
∂φ,t

+Ax,x
∂
∂Ax,t

+Ay,x
∂
∂Ay,t

+Az,x
∂
∂Az,t

]
Lgauge

= 1
c
[
EEE ···(∂xAAA)

]
, with P̃ y and P̃ z described similarly

which (by a seldom-encountered but easily established identity) yields

P̃PP = 1
c


EEE ···(∂xAAA)
EEE ···(∂yAAA)
EEE ···(∂zAAA)


 = 1

cEEE×(∇∇∇×AAA) + 1
c (EEE ···∇∇∇)AAA

= 1
cEEE×BBB︸ ︷︷ ︸ +gauge-dependent term

PPPgauge (38.1)

Looking finally to the components of the 3× 3 stress tensor (i.e., of momentum
flux), we use

T̃ u
v =

[
φ,v

∂
∂φ,u

+Ax,v
∂
∂Ax,u

+Ay,v
∂
∂Ay,u

+Az,v
∂
∂Az,u

− δuv
]
Lgauge

and writing

‖T̃ u
v‖ =





 T̃ x

x

T̃ y
x

T̃ z
x





 T̃ x

y

T̃ y
y

T̃ z
y





 T̃ x

z

T̃ y
z

T̃ z
z







compute


 T̃ x

x

T̃ y
x

T̃ z
x


 = EEE (∂xφ) + r(∂xAAA)×BBB +

{
1
2 EEE ···EEE − 1

2rBBB ···BBB
} 

 1
0
0


 , etc.

which (by a seldom-encountered and not-so-easily established population of
identities—see below) yields
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= −EEEEx − rBBBBx +
{

1
2 EEE ···EEE + 1

2rBBB ···BBB
} 

 1
0
0




− 1
cEEE(∂tAx)− r(BBB×∇∇∇)Ax

=


 T x

x

T y
x

T z
x




gauge

+
{
− 1
cEEE(∂tAx)− r(BBB×∇∇∇)Ax

}︸ ︷︷ ︸ (38.2)

gauge-dependent term

with 
 T x

x

T y
x

T z
x




gauge

≡


−ExEx − rBxBx +

{
1
2 EEE ···EEE + 1

2rBBB ···BBB
}

−EyEx − rByBx

−EzEx − rBzBx




But—looking now more closely to the gauge-dependent terms—we find

∂
∂t

{
1
c (EEE ···∇∇∇)Ax

}
+∇∇∇···

{
− 1
cEEE(∂tAx)− r(BBB×∇∇∇)Ax

}
=

{
− 1
cjjj + r∇∇∇×BBB

}
···∇Ax + 1

cEEE ···∇∇∇(∂tAx)
− 1
cEEE ···∇∇∇(∂tAx)− 1

cρ(∂tAx)− r∇∇∇···(BBB×∇∇∇)Ax

= − 1
c
{
JJJ ···∇∇∇+ ρ∂t

}
Ax + r

{
∇∇∇×BBB ···∇ −∇∇∇···(BBB×∇∇∇)

}︸ ︷︷ ︸Ax

0, by quick demonstration
= 0 in the absence of sources (39)

This result supplies the familiar grounds on which we will abandon the
gauge-sensitive terms. Postponing discussion of the results now in hand. . .

I digress now to establish the identity




[
(∂xAAA)×BBB

]
x[

(∂xAAA)×BBB
]
y[

(∂xAAA)×BBB
]
z


 =


−BxBx +BBB ···BBB
−ByBx

−BzBx


−


 (BBB×∇∇∇)xAx

(BBB×∇∇∇)yAx

(BBB×∇∇∇)zAx


 (40)

used in the argument which led to (38.2). By way of preparation, we note that

BBB×BBB = BBB×(∇∇∇×AAA) = 000 ⇒



ByAy,x −ByAy,x = BzAx,z −BzAz,x

BzAz,y −BzAy,z = BxAy,x −BxAx,y

BxAx,z −BxAz,x = ByAz,y −ByAy,z

and that

BBB ···BBB = Bx(Az,y −Az,y) +By(Ax,z −Az,x) +Bz(Ay,x −Ax,y)
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Drawing without specific comment upon those facts, we have[
(∂xAAA)×BBB

]
x

= BzAy,x −ByAz,x

= −BxBx +BBB ···BBB +
{
BzAy,x −ByAz,x −ByBy −BzBz

}{
etc.

}
= BzAy,x −ByAz,x −ByAx,z +ByAz,x −BzAy,x +BzAx,y

= −ByAx,z +BzAx,y

= −(BBB×∇∇∇)xAx[
(∂xAAA)×BBB

]
y

= BxAz,x −BzAx,x

= −ByBx +
{
BxAz,x −BzAx,x +By(Az,y −Ay,z)

}{
etc.

}
= BxAz,x −BzAx,x +Bx(Ax,z −Az,x)
= −BzAx,x +BxAx,z

= −(BBB×∇∇∇)yAx[
(∂xAAA)×BBB

]
z

= ByAx,x −BxAy,x

= −BzBx +
{
ByAx,x −BxAy,x +Bz(Az,y −Ay,z)

}{
etc.

}
= ByAx,x −BxAy,x +Bx(Ay,x −Ax,y)
= −BxAx,y +ByAx,x

= −(BBB×∇∇∇)zAx

which serve to establish the identity in question. Companion identities are
obtained by cyclic permutation on

{
x, y, z

}
.

The results recently acquired are summarized in the following display:


E Px Py Pz

Fx T x
x T x

y T x
z

Fy T y
x T y

y T y
z

Fz T z
x T z

y T z
z


 =


 E 1

c (EEE×BBB)T

rcEEE×BBB T


 (41)

where E ≡ 1
2 (E2 + rB2) and

T ≡


 E− ExEx − rBxBx − ExEy − rBxBy − ExEz − rBxBz

− EyEx − rByBx E− EyEy − rByBy − EyEz − rByBz

− EzEx − rBzBx − EzEy − rBzBy E− EzEz − rBzBz




These results (except, perhaps, for the intrusion of the r-factors, concerning
which I will have more to say in a moment) are of precisely the design supplied
by Maxwellian electrodynamics.13 The symmetry T

T = T of the “stress tensor”
is manifest (no Belinfante symmetrization was required after abandonment of
the gauge-sensitive terms), and has been shown to assure angular momentum
conservation in the free gauge field system.

13 See D. Griffiths’ Introduction to Electrodynamics () §7.5; classical
electrodynamics (), p. 300.
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We have been led from the non-relativistic classical mechanics written into
the non-relativistic Hamilton-Jacobi Lagrangian (23) to the two-parameter class
of gauge field theories implicit in the locally gauge-invariant Lagrangian (28)
(from which we may consider the physically inconsequential q -term to have
been dropped). A physical consideration (E � 0) has led us to require

p < 0 < r

but has placed no restrictions upon the numerical values of p and r; we found
it convenient at one point to set p = −1, but were certainly under no obligation
to do so. Suppose we set p = −s (with s > 0) and rewrite (32) as follows:

∇∇∇··· [BBB/c] = 0
∇∇∇×EEE = −∂t[BBB/c]
∇∇∇···EEE = 1

ε [ερ/s]
∇∇∇×[BBB/c] = s

rc2ε [εJJJ/s] + s
rc2 ∂tEE

E

= µ[εJJJ/s] + µε∂tEEE with c2µε ≡ s/r = −p/r




(42)

Notational adjustments

[BBB/c] −→ BBB, [ερ/s] −→ ρ, [εJJJ/s] −→ JJJ

lead then to “Maxwell equations” identical to those presented by Griffiths13 at
the beginning of his §7.3.3. In short: gauge theory has led us to a population
of field theories, any one of which we are prepared by our experience to call
“Maxwellian electrodynamics in an isotropic homogeneous medium.” Each of
those theories has a “relativistic look about it,” but only one is relativistic in
the Einsteinian sense—namely the one which results when (in effect) one sets

−p = r = 1 and c = the observed constant of Nature

In that case (35) reads

Lfree gauge field = − 1
2 ( 1
c∂tAAA+∇∇∇φ)···( 1

c∂tAAA+∇∇∇φ) + 1
2 (∇∇∇×AAA)···(∇∇∇×AAA)

= − 1
2 (EEE ···EEE −BBB ···BBB) (43)

which is familiar14 as a Lorentz invariant

= − 1
4F

αβFβα

associated with the electromagnetic field in vacuuo. The take-home lesson:
gauge theory is “relativistically predisposed,” but does not force relativity upon
us.

14 See p. 256 in the notes just cited.
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The discussion subsequent to (35) was off-puttingly dense. I might have
made it less so by using sprinkled “it can be shown”s to surpress details (which
I included because they frequently take surprising turns), but it seems well
to recognize why the discussion was so cluttered: it was, in substantial part,
because we worked non-relativistically—deprived of the organizing principles
and unifying simplifications inherent in special relativity.

The strategy by which we have achieved

global gauge =⇒ local gauge

has “summoned electrodynamics into being,” and has at the same time lent
specific structure to the particle–field interaction. These concluding remarks are
intended to expose more clearly some details associated with the latter aspect
of our subject. Recall that at (33), working from the ungauged Lagrangian L0,
we extracted definitions

E = R · 1
2m∇∇∇S ···∇∇∇S ≡ RH and FFF = 1

mE∇∇∇S =
(

1
mR∇∇∇S

)
H

and found

Et +∇∇∇···FFF =
{
Rt +∇∇∇···

(
1
mR∇∇∇S

)}︸ ︷︷ ︸H + 1
mR

{
∇∇∇S ···∇∇∇St +∇∇∇S ···∇∇∇H

}︸ ︷︷ ︸
0 0

= 0 by the ungauged Hamilton-Jacobi equations (22)

To discover the effect of turning on the gauge field we return to (33.10) and
(33.20), make the replacement L0 → L1, and find

E → E′ = R ·H ′

FFF→ FFF ′ =
[

1
mR

(
∇∇∇S − e

cAAA
)]
·H ′

}
(44)

with H ′ ≡ 1
2m

(
∇∇∇S − e

cAAA
)
···
(
∇∇∇S − e

cAAA
)

+ eφ.15 We obtain

E′
t +∇∇∇···FFF ′ =

{
Rt +∇∇∇···

[
1
mR

(
∇∇∇S− ecAAA

)]}︸ ︷︷ ︸H ′ +R
{
H ′
t +

[
1
mR

(
∇∇∇S− ecAAA

)]
···∇∇∇H ′}

0 by (28.2)
= R

{
1
m

(
∇∇∇S − e

cAAA
)
···
(
∇∇∇St − e

cAAAt

)
+ eφt

}
−

[
1
mR

(
∇∇∇S− ecAAA

)]
···∇∇∇St

= − emR
(
∇∇∇S − e

cAAA
)
··· 1cAAAt + eRφt

= 1
c JJJ ···EEE + (JJJ ···∇∇∇+ ρ∂t)φ (45)

On the other hand, for the gauge field we found the energy density and flux to
be given by

Ẽ = 1
2 (EEE ···EEE + rBBB ···BBB) + gauge term

F̃FF = rcEEE×BBB + gauge term

15 I have found it convenient, for the purposes of this discussion to turn the
impressed potential U off; i.e., to assume that our Hamilton-Jacobi theory refers
to the motion of particles which—except for gauge field effects—move freely.
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It follows readily from the field equations (32) that

∂
∂t

[
1
2 (EEE ···EEE + rBBB ···BBB)

]
+∇∇∇···

[
rcEEE×BBB

]
= − 1

c JJJ ···EEE (46.1)

while we established at (37) that

∂
∂t

[
gauge term

]
+∇∇∇···

[
gauge term] = −(JJJ ···∇∇∇+ ρ∂t)φ (46.2)

From (45/46) we obtain

∂
∂t

[
E′ + Ẽ

]
+∇∇∇···

[
FFF ′ + F̃FF

]
= 0 (47)

which attributes detailed local balance to the energy exchange between the
matter field and the gauge field. Three similar results, established by similar
means, pertain to local momentum balance.16

Note finally that our final (locally gauge-invariant) Lagrangian (28) can be
developed (compare (16))

Lfree Hamilton-Jacobi + Linteraction + Lfree gauge field

where Lfree Hamilton-Jacobi is just the L0 which at (23) provided our point of
departure, Lfree gauge field = − 1

2 (EEE ···EEE−rBBB ···BBB) is (35) with p = −1, and, reading
from (27),

Linteraction = − 1
c
e
mR

(
∇∇∇S − e

cAAA
)
···AAA−R 1

2m

(e
c
)2
AAA···AAA+ eRφ

= ρφ− 1
c
(
JJJ +R e2

2mcAAA
)
···AAA

= ρφ− 1
c

1
2

(
JJJ + jjj

)
···AAA (48)

jjj ≡ e
mR∇∇∇S = JJJ

∣∣∣
AAA→000

(49)

Equation (48) mimics the design of an equation to which we were led when
looking to the gauge theory of a relativistic complex scalar field. The agreement
(48)↔ (21) becomes in fact precise when one writes17

‖Jµ‖ ≡
(
cρ
JJJ

)
and ‖Aµ‖ =

(
φ
AAA

)
(50)

and uses the Lorentz metric to lower an index. Equation (48) also conforms to
the result achieved when one takes the non-relativistic Schrödinger Lagrangian
(1–76) as a point of departure.18 Pretty clearly: neither relativity, nor quantum

16 Compare (327) on p. 312 of classical electrodynamics (); the
argument there is relativistic, and therefore simpler/briefer.

17 See classical electrodynamics (), pp. 161 & 373.
18 See classical field theory (), 188–193.
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mechanics, nor complex-valuedness are essential to the success of the gauge field
program. Which was the point at issue—now demonstrated by example.19

“Minimal coupling” and the physical significance of current. We consider those
subjects in reverse order, taking as our point of departure this question: How
does electrical current—so “real” it can be measured with an ammeter—come
to be represented in theory by an expression which is (on its face) not even
gauge-invariant? To expose the points at issue in their simplest and most
essential terms I look to the relativistic classical mechanics of a particle.

Let xµ(τ), uµ(τ) ≡ d
dτ x

µ(τ) and aµ(τ) ≡ d
dτ u

µ(τ) refer the position (with
respect to an intertial frame), 4-velocity and 4-acceleration of a mass point m.
From the definition of proper time τ it follows that (u, u) ≡ gαβu

αuβ = c2, and
therefore that (a, u) = 0; i.e., that a ⊥ u in the Lorentzian sense. Minkowski’s
equation of motion reads maµ = Kµ. Necessarily, (K,u) = 0: Minkowski forces
Kµ are necessarily velocity-dependent. In the simplest case Kµ will depend
linearly upon 4-velocity: Kµ ∼ Fµνuν . From Kµuµ = 0 (all u) it follows
that necessarily Fµν is antisymmetric. We are led thus to consider relativistic
systems of the especially simple design

maµ = e
cF

µν(x)uν (51)

where [eFµν ] = (force) and e is a coupling constant. Passing now from the
Minkowskian to the Lagrangian side of the street20. . .

The simplest way to build velocity-dependence into a Lagrangian is to write

L = 1
2mgαβu

αuβ + e
cAα(x)uα (52)

19 I find the example to be of some intrinsic interest. The possibility of a
“gauged Hamilton-Jacobi theory” has been known to me since the spring of
, when I wrote the material which appears on pp. 489–502 of classical
mechanics (–), but I had forgotten until this minute that I had ever
actually written about the subject; my field theory books provide only the rough
seminar notes presented under the title “A sense in which classical mechanics
quantizes itself” () and bound as an appendix to classical field theory
(). Freshly emerged now from such a writing experience, I am filled
with a renewed sense of what a wonderous activity-organizer is the Lagrangian
formalism! It asks you to do some occasionally intricate things. . .which,
however, seem preordained always to work out. I am impressed also by how
awkward life can become when relativity is removed from one’s toolbox.

20 This is less easily accomplished than might be supposed, for the constraint
(u, u) = c2 must be folded into the meaning of the variational process δ

∫
Ldτ .

Various techniques for accomplishing that objective are described in the
iintroductory sections of relativistic dynamics (). But the following
discussion leads to equations of motion for which compliance with the constraint
becomes—as it happens—automatic, and it is this lucky circumstance which
permits us to set such subtleties aside.
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We are led then to equations of the motion of the form{
d
dτ

∂
∂uµ

− ∂
∂xµ

}
L = maµ + e

cAµ,α(x)uα − e
cAα,µ(x)uα = 0

which can be written

maµ = e
cF

µν(x)uν with Fµν = ∂µAν − ∂νAµ (53)

These equations—which we may interpret to refer to the relativistic motion of
a charged mass point in the presence of an impressed electromagnetic field—are
invariant under

Aµ −→ Aµ + ∂µΩ (54.1)

but derive from a Lagrangian which is not gauge-invariant:

L −→ L+ offending term

offending term = e
cu

α∂αΩ = d
dτ

[e
c Ω(x)

]
Notice, however, that we have only to assign an expanded meaning

Aµ −→ Aµ + ∂µΩ �



Aµ −→ Aµ + ∂µΩ(x)

L −→ L− d
dτ

[e
c Ω(x)

] (54.2)

to the notion of a “gauge transformation” to acquire gauge-invariance of the
Lagrangian, whence of all that follows from the Lagrangian. To illustrate the
point:

Working from (52), we find the momentum conjugate to xµ to be given by

pµ = ∂L
∂uµ

= muµ + e
cAµ (55)

which
• is not gauge-invariant under the interpretation (54.1), but
• is gauge-invariant under the expanded interpretation (54.2).

To say the same thing another way: gauge transformations, under the restricted
interpretation (54.1), send

L −→ L + e
cu

α∂αΩ
pµ −→ pµ + e

c∂µΩ

}
(56.1)

but under the expanded interpretation (54.2) send

L −→
{
L − d

dτ

[e
c Ω(x)

]}
+ e
cu

α∂αΩ = L

pµ −→
{
pµ − ∂

∂uµ
d
dτ

[e
c Ω(x)

]}
+ e
c∂µΩ = pµ

}
(56.2)
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Passing now to the Hamiltonian formalism, we find that

H(p, x) = pαu
α − L(x, u) with u �→ 1

m

[
p− e

cA
]

(57)

gives

= 1
2mg

αβ
[
pα − e

cAα

][
pβ − e

cAβ

]
(58)

The resulting canonical equations

uµ = + ∂H
∂pµ

= 1
mg

µα
[
pα − e

cAα

]
d
dτ pµ = − ∂H

∂xµ = 1
mg

αβ
[
pα − e

cAα

]e
cAβ,µ

are readily seen to reproduce (53).21 The gauge transformation properties of the
Hamiltonian are somewhat subtle, and to sort them out I need to distinguish
“L-gauge” (L −→ L + uα∂αΛ(x)) from “A-gauge” (Aµ −→ Aµu + ∂αΩ(x)).
The former causes the H(p, x) of (57) to go over into

[pα + ∂αΛ]uα − [L+ uα∂αΛ] with u �→ 1
m

(
[p− ∂Λ]− e

cA
)

In short (note the cancellation): L-gauge causes

H(p, x) −→ H(p− ∂Λ, x)

while reading from (58) we see that that A-gauge causes

H(p, x) −→ H(p− e
c∂Ω, x)

These elementary remarks expose in new light the central idea of gauge field
theory: use one gauge type to cancel the effect of the other , by setting Λ = −ecΩ.

Electrical “current” enters the discussion as a by-product of steps we take
in order to promote the Aµ-field—heretofore considered to have been externally
impressed/prescribed—to the status of a dynamical field in its own right . From
the A-gauge-invariant antisymmetric tensor field Fµν on can—using gµν and
εµνρσ as “glue”—construct a total of three Lorentz invariants:

Fµ
νF

ν
µ , Fµ

νG
ν
µ , and Gµ

νG
ν
µ with Gµν ≡ 1

2εµνρσF
ρσ

which in index-free notation can be described

trFF, trFG, and trGG

21 . . . and can be considered to arise as “meta-Lagrange equations”{
d
dτ

∂
∂ṗµ
− ∂
∂pµ

}
L = 0 and

{
d
dτ

∂
∂uµ

− ∂
∂xµ

}
L = 0

from the “meta-Lagrangian”

L ≡ pαu
α −H(p, x)
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But it is not difficult to show22 that

trGG ∼ trF F and trFG ∼ ∂µ
[
εµνρσAν(∂ρAσ − ∂σAρ)

]
So trF F and trGG contribute identically (apart from a trivial factor) when
introduced into a Lagrangian, while trFG contributes only an inconsequential
gauge term. We are led, therefore, to examine

L2 = 1
2mgαβu

αuβ + e
cAα(x)uα + 1

4FαβF
αβ (59)

= 1
2mgαβu

αuβ + e
cAα(x)uα + 1

2 (gαρgβσ − gασgβρ)Aα,βAρ,σ

From {
∂µ

∂
∂Aν,µ

− ∂
∂Aν

}
L2 = ∂µ(Aν,µ −Aµ,ν)− ∂L

∂Aν
= 0

we obtain

∂µF
µν = 1

cJ
ν (60)

with

Jν ≡ ∂L
∂Aν

= euν (61.1)

= e
m

[
pν − e

cA
ν
]

(61.2)

The expression on the right in (61.1) is—by every interpretation—manifestly
gauge-invariant, and conforms precisely to what, on physical grounds, we expect
of the “4-current of a charged mass point.” The expression of the right in (6.12)
is, on the other hand, gauge-invariant only under the expanded interpretation
(54.2), and it is under the latter interpretation that the Lagrangian of (59)
becomes gauge-invariant. The notation (61.1) permits the interaction term
present in (59) to be described

Linteraction = 1
cJ

αAα(x) (62)

This is the term which appears, on its face, to mess up gauge-invariance,
but which becomes gauge-invariant in the expanded sense; it was precisely
the gauge-failure of Linteraction that the L-gauge of the overall Lagrangian was
tailored to correct.

Passing from (59) to the equivalent Hamiltonian formalism, one has

H(p, x) = 1
2mg

αβ
[
pα − e

cAα

][
pβ − e

cAβ

]
− 1

4FαβF
αβ (63)

= 1
2mg

αβ
[
pα − e

cAα

][
pβ − e

cAβ

]
− 1

2 (gαρgβσ − gασgβρ)Aα,βAρ,σ

In this formalism the extended gauge transformation (54.2) lurks behind the
scenery, and presents this face:

Aµ −→ Aµ + ∂µΩ(x)
pµ −→ pµ − e

c∂µΩ(x)

}
(64)

22 See classical electrodynamics (), p. 298.
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The invariance of (63) under (64) is manifest. As was noted already in the
discussion subsequent to (58), the canonical equations implicit in (63) reproduce
our initial description (53) of the dynamics of the charged particle. But what
of the dynamics of the gauge field? Yielding unthinkingly to entrenched habit,
we construct{

∂µ
∂
∂Aν,µ

− ∂
∂Aν

}
H = −∂µ(Aν,µ −Aµ,ν)− ∂H

∂Aν
= 0

which does indeed give back (60/61):

∂µF
µν = − ∂H

∂Aν
= e
mc

[
pν − e

cA
ν
]

= 1
cJ

ν

I say “unthinkingly” because we have no secure reason to take the Lagrange
derivative of a Hamiltonian! It would, I think, be better form to construct the
“meta-Lagrangian”

L(p, x, •, u, A, ∂A) = pαu
α −

{
1

2mg
αβ

[
pα − e

cAα

][
pβ − e

cAβ

]
− 1

4FαβF
αβ

}
and recover the canonical equations as “meta-Lagrange equations,” but we
would come out in the same place.21

The Hamiltonian (63) can be developed

H = 1
2mg

αβpαpβ −Hint − 1
4FαβF

αβ

Hint ≡ e
c

1
m

[
pα − e

cA
α
]
Aα + 1

2m

(e
c
)2
AαAα

= 1
cJ

αAα + e2

2mc2A
αAα (65)

though to do so entails a term-by-term sacrifice of manifest gauge-invariance.
If we borrow notation from (18.1), writing Jν ≡ jν − e2

mcA
ν , then we have

= 1
c

1
2 (Jα+jα)Aα (66)

jα ≡ e
mpα = Jα

∣∣∣
A→0

which mimics (21) and (48). Notice, however, this curious circumstance: the
second term on the right side of (65)—which at (21) read e2

2mc2 (ψ∗Aαψ)Aα,
and at (48) read e2

2mc2RAAA···AAA—displays now no reference to the particle; only
the e2 reveals the “interactive” nature of the term, which we might otherwise
be tempted to classify as a “mass term” present in the design of Hfree gauge field.

What have we learned?

People sometimes point to (62)—i.e., to terms of the design JJJ···AAA, which in
Lagrangian formalism serve to describe the interaction of charged matter with
the electromagnetic field—as the defining symptom of “minimal coupling.” But
more standardly, the term is taken23 to refer to the characteristic matter-field

23 See, for example, M. E. Peskin & D. V. Schroeder, An Introduction to
Quantum Field Theory (), p. 78.
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interaction which arises from pursuit of the gauge field program; i.e., which
springs spontaneously from p −→ p− (e/c)A (or again: from ∂ −→ D).

Gauge field theory usually has a quantum mechanical objective, and for
that reason is strongly Hamiltonian in spirit, though presented as an exercise
in Lagrangian field theory.24 In the examples we have studied we have been
led at (21/48/66) to interaction terms which are “of a type,” but more compli-
cated than is suggested by the more purely Lagrangian model (62). We have
learned, however, that the isolation of “interaction terms” Lint typically violates
the “principle of manifest gauge-invariance,” and thus runs counter to the
essential spirit of gauge field theory; it is better to allow the interaction to
remain implicit, as (for example) it did when at (19) and (17) we wrote

gαβ
(

�

i ∂α − e
cAα

)(
�

i ∂β − e
cAβ

)
ψ = (mc)2ψ

∂µ(∂µAν − ∂νAµ) = 1
cJ

ν

with Jν = e
[
− i �

2mg
να

(
ψ∗
,αψ − ψ∗ψ,α

)
+ e

mc

(
ψ∗ψ

)
Aν

]
.

Gauge field theory standardly takes a “field theory of matter” as its point
of departure, but we have learned that the gauge field concept is so primitive
that one can abandon the initial field theory : we achieved success when we
proceeded from the Lagrangian mechanics of a single relativistic particle. . . and
might (with some loss of simplicity) have abandoned the relativity; the resulting
theory would have captured the simple essence of our “gauged Hamilton-Jacobi
theory.”

We have learned that the gauge-invariance of the currents that arise from
gauge field theory is invariably present but covert . Our particulate model
supplied

Jµ = e
m

[
pµ − e

cA
µ
]

= euµ

which suggests that the complexity of the expressions that serve, in various
contexts, to define Jµ can be attributed to the familiar complexity of the
relationship between “velocity” (a physical observable, at least in particle
mechanics) and “conjugate momentum” (a theoretical construct).

In the beginning was a decision—a decision to “allow the phase factor vary
from point to point”—which may at the time have seemed willful, arbitrary,
justifiable only by the illuminating results to which it could be shown to lead.
Our particulate model has allowed that decision to be replaced by a formal act
which I find much more natural: require of the formulæ of (meta-)Lagrangian
dynamics that they be manifestly invariant under arbitrary gauge-adjustments

L −→ L+ ∂αΛα

I shall on another occasion describe how gauge field theory might procede from
such a starting point (that effort will require only rearrangement of what I have

24 Both remarks, by the way, pertain also to our “gauged Hamilton-Jacobi
theory.”
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already written, and some shifted emphasis), but turn now to more pressing
matters.

Gauged Dirac theory. We take now as our point of departure the Lagrangian

L0(ψ, ψ̃, ∂ψ, ∂ψ̃ ) = �c
[

1
2 i

{
ψ̃γγγαψ,α − ψ̃,αγγγαψ

}
− κ ψ̃ψ

]
(67)

which was seen at (2–56) to yield the Dirac equations(
γγγ µ∂µ + iκ

)
ψ = 0 and its adjoint (68)

From the manifest global phase-invariance of L0—infinitesimally: from the
invariance of L0 under

ψ −→ ψ + δωψ with δωψ = +iψ · δω
ψ̃ −→ ψ̃ + δωψ̃ with δωψ̃ = −iψ̃ · δω

—we obtain the conservation law

∂µQ
µ = 0 (69.1)

Qµ ≡ − 1
�

{
∂L0

∂ψ,µ
(iψ) + ∂L0

∂ψ̃,µ
(−iψ̃ )

}
= c ψ̃γγγ µψ (69.2)

where an �-factor has been introduced so as to achieve25

[Qµ] =
1

area ·time
= number flux

Our objective is to achieve local phase invariance. Familiar steps lead us,
therefore, to construction of the system

L2(ψ, ψ̃, ∂ψ, ∂ψ̃, A, ∂A) = L0(ψ, ψ̃, [∂ − i e�cA]ψ, [∂ + i e
�cA]ψ̃ ) + 1

4F
αβFαβ

= �c
[

1
2 i

{
ψ̃γγγα(ψ,α − i e�cAαψ)− (ψ̃,α + i e

�cAαψ̃ )γγγαψ
}
− κ ψ̃ψ

]
+ 1

4F
αβFαβ

= L0(ψ, ψ̃, ∂ψ, ∂ψ̃ ) + 1
cJ

αAα + 1
4F

αβFαβ (70)

where the gauge-invariant antisymmetric tensor field Fµν retains its former
definition (15) and where

Jµ ≡ eQµ (71)

25 Notice now much simpler (69.2) is than were its non-relativistic/relativistic
scalar counterparts (1–87) and (3–13). That simplicity can be attributed to
the circumstance that L0 is linear in the derivatives of the complex field. It
is, therefore, a simplicity not special to the Dirac theory, but shared by all
canonically formulated theories. . . of which the Dirac theory provides merely
the simplest instance.
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Only once before—at (61.1) and (62), in connection with our particulate model
—have we encountered formulæ so simple as those which serve here to describe
Jµ and Linteraction; we note in particular that the distinction between Jµ and
jµ does not force itself upon our attention in Dirac theory.

The field equations which arise from the twice-modified (i.e., from the
“gauged and launched”) Lagrangian (70) read

[
γγγ µ(∂µ − i e�cAµ) + iκ

]
ψ = 0 and its adjoint

∂µF
µν = 1

cJ
ν

}
(72.1)

with Fµν ≡ ∂µAν − ∂νAµ (72.2)

The “synchronized local gauge transformation” with respect to which the theory
is—by design—invariant can in present notation be described

ψ −→ ψ ′ = eigΩ(x) · ψ
Aµ −→ A′

µ = Aµ + ∂µΩ(x)

}
(73)

with g = e/�c. Those statements were contrived to entail

(∂µ − igAµ)ψ −→ eigΩ(x) · (∂µ − igAµ)ψ (74)

and it is, to reiterate, that contrivance—first encountered at (9)—which lies at
the heart of guage field theory.

Mathematical interlude: non-Abelian gauge groups. The operations “multiply
by a phase factor”—which when ψ is an N -component complex field have this
explicit meaning:



ψ1

ψ2

...
ψN


 −→



eiω 0 . . . 0
0 eiω . . . 0
...

...
. . .

...
0 0 . . . eiω






ψ1

ψ2

...
ψN




—clearly possess the group property. The abstract group in question is U(1),
of which the 1× 1 unitary matrices UUU(ω) ≡ ‖eiω‖ = eiωIII provide the simplest
representation. It becomes natural in this light to write



ψ1

ψ2

...
ψN


 −→



U1

1 U1
2 . . . U1

N

U2
1 U2

2 . . . U2
N

...
...

. . .
...

UN
1 UN

2 . . . UN
N






ψ1

ψ2

...
ψN


 ≡ UUU



ψ1

ψ2

...
ψN




and to admit the possibility that UUU might be an element of the group U(N)
of N ×N unitary matrices. This is the idea which Yang & Mills () were,
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for their own good reasons,26 the first to explore. . .with results which first
alerted physicists to the possibility that gauge field theory might be put to
more informative uses that the “elegant re-invention of electrodynamics.” My
objective here will to assemble the mathematical material we will need to pursue
that idea.

From the unitarity of UUU it follows that (detUUU)∗(detUUU) = 1, and therefore
that

detUUU = eiϑ

Write UUU = eiHHH and observe that UUU will be unitarity UUU† = UUU –1 if and only if HHH
is hermitian. A general identity supplies detUUU = exp

{
i(trHHH)

}
, from which we

infer that ϑ = trHHH. If UUU is unitary then so is SSS ≡ e−iωUUU , and detSSS = ei(ϑ−Nω),
where N refers to the dimension of UUU . We have only to set ω = ϑ/N to render
SSS unimodular ; i.e., to achieve detSSS = 1. Unimodularity is preserved under
multiplication: the N × N matrices SSS are elements of a subgroup (denoted
SU(N) and called the “special unitary group”) of U(N). One writes

U(N) = U(1)⊗ SU(N)

to signify that every element of U(N) can be written

UUU = eiω · SSS with
{
eiω ∈ U(N)
SSS ∈ SU(N)

Matrices SSS ∈ SU(N) can be written

SSS = eiHHH where HHH is a traceless hermitian matrix

The most general such matrix HHH can be displayed

HHH =




d1 a1 + ib1 a2 + ib2 . . .
a1 − ib1 d2 aN +ibN . . .
a2 − ib2 aN−ibN d3 . . .

...
...

...
. . .


 with d1 + d2 + · · ·+ dN = 0

and contains N2 − 1 adjustable constants. The set of such matrices is closed
under addition and multiplication by real numbers, so can be considered to
comprise a real vector space VN of N ≡ N2 − 1 dimensions. Select any basis{
hhh1, hhh2, . . . , hhhN

}
in VN. The general element of VN can then be developed

HHH = H1hhh1 +H2hhh2 + · · ·+HNhhhN

Bases can, of course, be selected in limitlessly many ways, but some algebraic
“principles of selection” will soon emerge.

26 Those reasons are evident already in the title of their paper: “Conservation
of isotopic spin and isotopic gauge invariance,” Phys. Rev. 96, 191 (1954).
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Look to the case N = 2. Pauli (see again (2–54)) would in that case have
us write

HHH = H1σσσ1 +H2σσσ2 +H3σσσ3 =
(

H3 H1 − iH2

H1 + iH2 −H3

)
(75)

for the reason that the σσσ-matrices thus defined are endowed with some especially
attractive/useful algebraic properties:

σσσ1σσσ1 = σσσ2σσσ2 = σσσ3σσσ3 = III ≡
(

1 0
0 1

)
(76.1)

σσσ1σσσ2 = i σσσ3 = −σσσ2σσσ1

σσσ2σσσ3 = i σσσ1 = −σσσ3σσσ2

σσσ3σσσ1 = i σσσ2 = −σσσ1σσσ3


 (76.2)

[σσσ1, σσσ2] = 2i σσσ3

[σσσ2, σσσ3] = 2i σσσ1

[σσσ3, σσσ1] = 2i σσσ2


 (76.3)

Look similarly to the case N = 3. Gell-Mann27 found it convenient to write

HHH = H1λλλ1 +H2λλλ2 +H3λλλ3 +H4λλλ4 +H5λλλ5 +H6λλλ6 +H7λλλ7 +H8λλλ8

=



H3 + 1√

3
H8 H1 − iH2 H4 − iH5

H1 + iH2 −H3 + 1√
3
H8 H6 − iH7

H4 + iH5 H6 + iH7 − 2√
3
H8


 (77)

with algebraic consequences so relatively complicated that I will postpone
discussion of them until it has become clearer what it is that we want to know.28

Our interest in the multiplicative—as opposed to the merely additive—
properties of the basic matrices hhha comes to the fore when they are pressed into
service as the “generators” of finite transformations, in the sense

SSS ≡ eiHHH = lim
m→∞

[
III + 1

m (iHHH )
]m

Certainly we would develop a lively interest in algebra if we set out to obtain a
closed-form evaluation of

∑
1
n! (iHHH )n. But it is from another (simpler) quarter

that our algebraic interest actually springs:

27 M. Gell-Mann & Y. Ne’eman, The Eightfold Way (), p. 49; see also
p. 502 in Peskin & Schroeder,23 and classical gauge fields (), p. 44.

28 In the meantime, see Appendix A.3 in M. Kaku, Quantum Field Theory:
A Modern Introduction ().
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Generally, the elements of SU(N) fail to commute (which is all one means
when one says of SU(N) that it is—in contrast to the “Abelian” group U(1)
—“non-Abelian”): SSS1SSS2 �= SSS2SSS1. One has29

SSS1SSS2 = eiHHH1eiHHH2

= ei(HHH1+HHH2)− 1
2 [HHH1,HHH2]+higher order nested commutators

= SSS2SSS1 if and only if [HHH1,HHH2] = 000

It was Sophus Lie who first appreciated that the “group multiplication table”
(which would supply the evaluation of SSS1SSS2 in all instances) is latent in the
commutation properties of the generators. And, moreover, that one can in all
cases expect to obtain relations of the form

[generator, generator] = linear combination of generators (78)

which stands as the defining characteristic of the theory of Lie algebras. In the
present context (78) becomes

[hhhp, hhhq] = i

N∑
r=1

cp
r
qhhhr (79)

The i reflects the elementary circumstance that

[hermitian,hermitian] = traceless antihermitian
= i (traceless hermitian)

and the real numbers cprq are the structure constants characteristic of the group.
At (76.3) we have already encountered a particular instance of (79).

The structure constants are not freely assignable, but subject to certain
constraints. From the antisymmetry of the commutator it follows, for example,
that

cp
r
q = −cqrp (80.1)

while from Jacobi’s identity, written [hhhp, [hhhq, hhhn]]− [hhhq, [hhhp, hhhn]] = [[hhhp, hhhq], hhhn],
we obtain

cp
m
k cq

k
n − cqmk cp

k
n = cp

r
q · crmn (80.2)

which can be written
CpCq − CqCp = icp

r
qCr (81)

Evidently the imaginary N×N matrices Cr ≡ ‖icrmn‖ (r = 1, 2, . . . ,N ) provide
a representation (the so-called “adjoint representation”) of the algebra from

29 I borrow here from what is called “Campbell-Baker-Hausdorff theory.” See
classical mechanics (), p. 285 and references cited there. But we need
not venture into that intricate topic to understand the simple point at issue.
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which they sprang.30 Look, for example, to the group SU(2): we are led from
the structure constants implicit in (76.3) to the matrices

C1 =


 0 0 0

0 0 −2i
0 +2i 0


 , C2 =


 0 0 +2i

0 0 0
−2i 0 0


 , C3 =


 0 −2i 0

+2i 0 0
0 0 0




Calculation confirms that these matrices do in fact satisfy the commutation
relations (76.3), even though the set

{
C1,C2,C3

}
is not multiplicatively closed

and therefore cannot possibly satisfy (76.1/2).

The N×N matrix

k ≡ ‖kpq‖ with kpq ≡ tr CpCq (82)

is transparently real and symmetric. Proceeding in the assumption that
det k �= 0, I write k

–1 ≡ ‖kpq‖ and will assign to k the role of “gauge metric;”
i.e., I will use kpq and kpq to raise and lower indices. In the case SU(2) we
compute

k =


 tr C1C1 tr C1C2 tr C1C3

tr C2C1 tr C2C2 tr C2C3

tr C3C1 tr C3C2 tr C3C3


 =


 8 0 0

0 8 0
0 0 8




The results just obtained can be interpreted to state that the traceless hermitian
3×3 matrices Ep ≡ 1√

8
Cp are tracewise orthonormal, and are special to the Pauli

basis; with respect to that basis one has kpq = 8δpq.

We will have need of a result which can be stated

Cpsq is totally antisymmetric (83.1)

and which I digress now to establish. We have

Cpsq = ksr · Cprq = Cs
u
v Cr

v
u · Cprq︸ ︷︷ ︸

= Cp
v
wCq

w
u − CqvwCpwu by (80.2)

= Cs
u
vCp

v
wCq

w
u + Cv

u
sCu

w
pCw

v
q by (80.1)

=
{

sum or terms each of which is invariant
under cyclic permutation on

{
spq

}
from which we conclude that Cpsq = Csqp = Cqps. But Cpsq = −Cqsp. This
establishes (83.1), from which it follows as a useful corollary that

Cpsr = −Cprs which is to say: (k Cp)T = −(k Cp) (83.2)

30 For discussion which digs deeper into the relevant group theory, see §5.6 in
H. Bacry, Lectures on Group Theory and Particle Theory ().



32 Classical gauge fields

Finally a word about notation: one designs notation so as to be in position
to say simple things simply, to highlight essentials while not masking critical
distinctions. In classical non-Abelian gauge theory only simple things are going
on (some linear algebra, some elementary calculus), but they are going on in
potentially confusing constellation. To write gauge field theory in explicit detail
would bring into play such blizzard of indices (of diverse ranges and meanings)
as to make it very difficult to gain a sense of what is going on. But to surpress
such detail—to adopt the scrubbed notation standard to publication in the
field—is to risk losing a vivid sense of what the marks on the page specifically
mean. My purpose here is to point out that classical mathematics does supply
a tool which in this instance permits one to strike a happy medium; the tool
has a name, but it is a name seldom encountered in the gauge field theoretic
literature.

Suppose, by way of introduction, that we have interest in a pair of
3-vectors xxx and yyy, which we propose first to subject independently to linear
transformations, and then to rotationally intermix; we might write31

xxx −→ Axxx

yyy −→ B yyy

}
−→

{
cos θ · Axxx− sin θ · B yyy
sin θ · Axxx+ cos θ · B yyy

But if we “stack” the 3-vectors (forming a 6-vector) we acquire this alternative
means of displaying the same information:(

xxx
yyy

)
−→

(
A O

O B

) (
xxx
yyy

)
−→

(
cos θ · I − sin θ · I
sin θ · I cos θ · I

) (
A O

O B

) (
xxx
yyy

)

The “Kronecker product” (sometimes called the “direct product”) of
• an m× n matrix A onto
• a p× q matrix B

is the mp× nq matrix defined32

A⊗ B ≡ ‖aij B‖ (84)

In that notation, the “matrices with matrix-valued elements” encountered in
my example can be described

(
cos θ − sin θ
sin θ cos θ

)
⊗


 1 0 0

0 1 0
0 0 1




31 For the purposes of this discussion I revert to my former practice of writing
vectors in boldface, matrices in blackboard doubleface.

32 The alternative definition A ⊗ B ≡ ‖A bij‖ gives rise to a “mirror image”
of the standard theory. Good discussions can be found in E. P. Wigner, Group
Theory and its Application to the Quantum Theory of Atomic Spectra (),
Chapter 2; P. Lancaster, Theory of Matrices (), §8.2; Richard Bellman,
Introduction to Matrix Analysis (2nd edition ), Chapter 12, §§5–13.
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and

(
1 0
0 0

)
⊗


 a11 a12 a13

a21 a22 a23

a31 a32 a33


 +

(
0 0
0 1

)
⊗


 b11 b12 b13
b21 b22 b23
b31 b32 b33




Manipulation of expressions involving Kronecker products is accomplished by
appeal to general statements such as the following:

k(A⊗ B) = (kA)⊗ B = A⊗ (kB) (85.1)

(A + B)⊗ C = A⊗ C + B⊗ C

A⊗ (B + C) = A⊗ B + A⊗ C

}
(85.2)

A⊗ (B⊗ C) = (A⊗ B)⊗ C ≡ A⊗ B⊗ C (85.3)

(A⊗ B)T = A
T ⊗ B

T (85.4)

tr(A⊗ B) = trA · trB (85.5)

—all of which are valid except when meaningless.33 Less obviously (but often
very usefully)

(A⊗ B)(C⊗ D) = AC⊗ BD if
{

A and C are m×m
B and D are n× n (85.6)

from which one can extract34

A⊗ B = (A⊗ In)(Im⊗ B) (85.7)

det(A⊗ B) = (det A)n(det B)m (85.8)

(A⊗ B) –1 = A
–1 ⊗ B

–1 (85.9)

Here I have used Im to designate the m×m identity matrix, and below use IIIm
for that same purpose (though when the dimension is obvious from the context
I allow myself to omit the subscript).

Dirac theory with local SU(2) gauge invariance. I look now to the historic first
instance of a “non-Abelian gauge field theory”—the theory put forward by
Yang & Mills (though presented here as an exercise in classical field theory).
We select Dirac theory as our starting point because it is, in many respects,
“simplest possible.” And we select SU(2) as our non-Abelian gauge group for
that same reason (Yang & Mills had their own—more pressingly physical—
reasons for both selections).

33 Recall that one cannot add matrices unless they are co-dimensional, and
does not speak of the trace of a matrix unless it is square.

34 See Lancaster32 for the detailed arguments.
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Our first assignment step zero is to construct a variant of the Dirac
theory which exhibits global SU(2) invariance. To that end we “stack” two
copies of the familiar Dirac theory: we assemble an 8-component complex field

ψ =
(
ψ1

ψ2

)
with ψa =



ψa1
ψa2
ψa3
ψa4


 : a = 1, 2 (86)

(for lack of standard terminology I will call the superscripts “gauge indices” and
the subscripts “Dirac indices”) and require that it satisfy the field equations(

ΓΓΓµ∂µ + iκκκ
)
ψ = 0 and adjoint (87)

where

ΓΓΓµ ≡ III2 ⊗ γγγµ and κκκ ≡
(

κ1 0
0 κ2

)
⊗ III4 (88)

The field equations arise from

L0(ψ, ψ̃, ∂ψ, ∂ψ̃ ) = �c
[

1
2 i

{
ψ̃ΓΓΓ αψ,α − ψ̃,αΓΓΓ αψ

}
− ψ̃κκκ ψ

]
(89)

which—because the matrices ΓΓΓµ and κκκ share the block structure


• • • • 0 0 0 0
• • • • 0 0 0 0
• • • • 0 0 0 0
• • • • 0 0 0 0
0 0 0 0 • • • •
0 0 0 0 • • • •
0 0 0 0 • • • •
0 0 0 0 • • • •




—is just the sum of the Dirac Lagrangians which separately regulate the
(presently) uncoupled motion of ψ1 and ψ2.

The 8 × 8 matrices SSS ≡ sss ⊗ III4 mimic the multiplicative properties of the
2× 2 unimodular unitary matrices sss

SSS2SSS1 = (sss2 ⊗ III4)(sss1 ⊗ III4)
= sss2sss1 ⊗ III4 by (85.6)

and are readily seen to be themselves unimodular and unitary.35 Corresponding
to the “Pauli decomposition”

sss = sµσσσµ

we have
SSS = sµΣΣΣµ with ΣΣΣµ ≡ σσσµ ⊗ III4 (90)

35 Use (85.4), (85.8) and (85.9).
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Specifically

ΣΣΣ0 ≡
(
III 000
000 III

)
, ΣΣΣ1 ≡

(
000 III
III 000

)
, ΣΣΣ2 ≡

(
000 −iii
iii 000

)
, ΣΣΣ3 ≡

(
III 000
000 −III

)
where the sub-matrices are 4 × 4. Note particularly that ΣΣΣ1 and ΣΣΣ2 have the
reverse of the block structure pictured above.

From the reversed block structure just mentioned it follows that the
Lagrangian (89) will be (manifestly) invariant under ψ −→ SSSψ if and only
if κ1 = κ2, which we will assume.36 SU(2) is a 3-parameter group, so from
the global SU(2)-invariance of L0—just established— follow three conservation
laws. Infinitesimally, we have

ψ −→ ψ+ δψ

δψ = iΣΣΣ1ψ · δω1 + iΣΣΣ2ψ · δω2 + iΣΣΣ3ψ · δω3

and so are led by Noether to the statements (compare (69))

∂µQ
µ
r = 0 with Qµ

r ≡ 1
2c

{
ψ̃ΓΓΓµΣΣΣrψ + conjugate

}
: r = 1, 2, 3

Letting the ΣΣΣ-matrices, as described above, act upon
(
ψ1

ψ2

)
we obtain

ΣΣΣ1

(
ψ1

ψ2

)
=

(
ψ2

ψ1

)
, ΣΣΣ2

(
ψ1

ψ2

)
= −i

(
ψ2

−ψ1

)
, ΣΣΣ3

(
ψ1

ψ2

)
=

(
ψ1

−ψ2

)
which yield these more explicit descriptions of the conserved currents Qµ

r :

Qµ
1 = 1

2c
(
ψ̃1γγγ µψ2 + ψ̃2γγγ µψ1

)
(91.1)

Qµ
2 = −i 12c

(
ψ̃1γγγ µψ2 − ψ̃2γγγ µψ1

)
(91.2)

Qµ
3 = 1

2c
(
ψ̃1γγγ µψ1 − ψ̃2γγγ µψ2

)
(91.3)

The twinned Dirac Lagrangian L0 is also (manifestly) U(1)-invariant, which
leads to conservation of

Qµ
0 = 1

2c
(
ψ̃1γγγ µψ1 + ψ̃2γγγ µψ2

)
(91.0)

which is the anticipated twinned instance of (69.2).37

36 At this point Yang & Mills, following in the footsteps of the inventors of the
isotopic spin concept (Heisenberg, Wigner and others, in the late ’s), were
content to draw upon the physical circumstance that the proton and neutron
masses are nearly the same:

mp = 938.280 MeV/c2 while mn = 939.573 MeV/c2

37 The quartet of conservation laws (90) are structurally reminiscent of a
quartet encountered in connection with the classical mechanics of an isotropic
2-dimensional oscillator. Nor is that formal connection surprising: here SU(2)
is an explicitly imposed symmetry; there it is a “hidden symmetry.” See the
discussion surrounding equation (162) in my “Ellipsometry” ().
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Our objective is to achieve local SU(2) invariance, and we confront at the
outset the familiar problem that

ψ −→ ψ ′ = SSS(x)ψ induces ψ,µ −→ ψ ′
,µ = SSS(x)ψ,µ + SSS,µ(x)ψ

It is to escape the force of the elementary circumstance that ψ and ψ,µ transform
by different rules that step one we make what we have learned to call
the “minimal coupling substitution”38

∂∂∂µ

↓
DDDµ = ∂∂∂µ − igAAAµ with g ≡ e/�c (92)

and step two concoct AAAµ → AAA′
µ so as to achieve (DDDµψ)′ = SSS(x)(DDDµψ).

From [
(∂∂∂µ − igAAA′

µ)SSS = SSS∂∂∂µ + SSS,µ − igAAA′
µSSS

]
= SSS(∂∂∂µ − igAAAµ)

we are led thus to this enlarged interpretation

ψ −→ ψ ′ = SSS ψ

AAAµ −→ AAA′
µ = SSSAAAµSSS

–1 + i 1
g SSS,µSSS

–1

}
(93)

of what we shall understand the phrase “local SU(2) gauge transformation” to
mean.

Equation (93) describes the non-Abelian counterpart to (73), and the
points of similarity/difference stand out even more clearly when we write

SSS = eigΩΩΩ : ΩΩΩ traceless hermitian

Whereas the Aµ −→ A′
µ = Aµ +∂µΩ encountered in the Abelian case U(1) had

the form of a
derivative-dependent shift

its non-Abelian counterpart in (93) has the form

similarity transformation + derivative-dependent shift

It is non-commutivity ([SSS,AAAµ] �= 000) which prevents the SSS from slipping past the
AAAµ and cancelling the SSS –1; i.e., which accounts for the survival of the similarity
transformation as a characteristic component of non-Abelian gauge.

Differentiation of the unitarity condition SSSSSS† = III supplies the information
that iSSS,µSSS –1 is invariably hermitian. And, of course, SSSAAAµSSS

–1 is (traceless)
hermitian if AAAµ is. We therefore assume the gauge matrices AAAµ to be hermitian,
and observe it to be an implication of (93) that

AAAµ −→ AAA′
µ preserves hermiticity

The matrices SSS are, however, not just any old unimodular unitary 8×8 matrices;
they possess the specialized structure SSS ≡ sss ⊗ III4, reflecting the fact that
our interest at the moment lies not in SU(8) but in SU(2). We impute that

38 It is fussy of me to write ∂∂∂µ (meaning III∂µ) in place more simply of ∂µ, but
it offends my eye to “add a scalar to a matrix.”
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structure also to the hermitian matrices AAAµ, writing

AAAµ ≡ aaaµ⊗ III4 with aaaµ 2× 2 hermitian

From the unimodularity of SSS = eigΩΩΩ we know that (as previously remarked)
ΩΩΩ is necessarily traceless, and can therefore be developed

ΩΩΩ = Ω1ΣΣΣ1 + Ω2ΣΣΣ2 + Ω3ΣΣΣ3

But we might expect to have to write

AAAµ = A0
µΣΣΣ0 +A1

µΣΣΣ1 +A2
µΣΣΣ2 +A3

µΣΣΣ3

I will argue that the 0 term can be abandoned; i.e., that one can without loss of
generality assume the gauge matrices AAAµ to be traceless. The argument proceeds
in two steps, of which the first, unfortunately, is a bit intricate: we demonstrate
that the traceless assumption—if made—is transformationally stable. Certainly
it is the case39 that if AAAµ is traceless then so is SSSAAAµSSS

–1. But how to show that
SSS,µSSS

–1 is traceless? I quote two general identities40

eigΩΩΩAAAe−igΩΩΩ =
{
eigΩΩΩ,AAA

}
≡ AAA+ ig[ΩΩΩ,AAA ] + 1

2! (ig)
2[ΩΩΩ, [ΩΩΩ,AAA ] ] + · · · (94.1)

∂eigΩΩΩ

∂x
· e−igΩΩΩ =

{
eigΩΩΩ − III

ΩΩΩ
, ∂∂xΩΩΩ

}
= ig ∂

∂xΩΩΩ + 1
2! (ig)

2[ΩΩΩ, ∂∂xΩΩΩ] + 1
3! (ig)

3[ΩΩΩ, [ΩΩΩ, ∂∂xΩΩΩ]] + · · · (94.2)

but have immediate need only of the second. Clearly ∂
∂xΩΩΩ is traceless if ΩΩΩ is.

But it was remarked already in connection with (79) that

[hermitian,hermitian] = i (traceless hermitian)

so each of the nested commutators presented on the right side of (94.2) are in
fact traceless. This establishes the point at issue: if AAAµ is traceless then so,
according to (93), is AAA′

µ. Completion of the argument must await one further
development:

Given our initial interest in the Dirac Lagrangian (which at (89) we
duplicated, in order to get this show on the road), we step three look
to the modified system

L1(ψ, ψ̃, ∂ψ, ∂ψ̃, A1, A2, A3) = L0(ψ, ψ̃,Dψ, D̃ψ̃)

39 Use tr(AB) = tr(BA).
40 See, for example, §4 in R. M. Wilcox, “Exponential operators & parameter

differentiation in quantum physics,” J. Math. Phys. 8, 962 (1967). The
identities in question are attributed by W. Magnus (in “On the exponential
solution of differential equations for a linear operator,” Comm. Pure & Appl.
Math. 7, 649 (1954)) to F. Hausdorff (). In (93.1) one is free to install
subscripts on all the AAA’s, while in (93.2) one can assign any meaning to the
parameter x.
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In more explicit detail we have

L1 = �c
[

1
2 i

{
ψ̃γγγα(ψ,α − i e�cAAAαψ)− (ψ̃,α + i e

�c ψ̃AAAα)γγγαψ
}
− κ ψ̃ψ

]
= �c

[
1
2 i

{
ψ̃γγγα

[
ψ,α − i e�c (A

0
αΣΣΣ0 +Ap

αΣΣΣp)ψ
]

−
[
ψ̃,α + i e

�c ψ̃(A0
αΣΣΣ0 +Ap

αΣΣΣp )
]
γγγαψ

}
− κ ψ̃ψ

] (95)

We observe that an A0
µΣΣΣ0 term, if assumed to be present in the composition

of AAAµ, would (since ΣΣΣ0 = III8 commutes with everything) simply replicate the
adjustment we would make—and did make at (70)—if we were trying to achieve
U(1) gauge invariance. We will agree to abandon the hypothetical 0 term
on grounds that it is passive with respect to SU(2), and that its discovered
predisposition is to talk about something (electrodynamics) other than the
subject that presently interests us.

So we have

AAAµ(x) = A1
µ(x)ΣΣΣ1 +A2

µ(x)ΣΣΣ2 +A3
µ(x)ΣΣΣ3 (96)

and at this point make the acquaintance of the three “gauge fields”—one for
each generator—called into being by the imposition of local SU(3) invariance.
It is important to notice that the gauge fields Ap

µ(x) are necessarily real-valued
vector fields, and that they arise as “coordinates” of the more fundamental
objects AAAµ(x): select a different basis (in the space of traceless hermitian 2× 2
matrices) and be led from the same AAAµ(x) to a different trio of gauge fields.
The matrix-valued gauge field AAAµ(x) cannot be accorded “physical immediacy”
because susceptible to gauge, and its coordinates have an even more tenuous
claim to reality.

We have now on-stage a total of twelve real-number-valued fields

A1
0(x) A1

1(x) A1
2(x) A1

3(x)

A2
0(x) A2

1(x) A2
2(x) A2

3(x)

A3
0(x) A3

1(x) A3
2(x) A3

3(x)

(97)

Lorentz transformations linearly recombine the columns; gauge transformations
linearly recombine the rows. It is instructive to inquire into details of the latter
process. To that end: observe in connection with (94.1), which presents a “Lie
series” (i.e., a series of nested commutators) on its right hand side, that

[ΩΩΩ,AAA ] = ΩpAq[ΣΣΣp,ΣΣΣq ] with
3∑

p,q=1

here as henceforth understood

= ΩpAq icp
r
q ΣΣΣr (98.1)

and that from the SU(2) commutation relations (76.3) one has, in the Pauli
basis,

cp
r
q = 2 sgn

(
123
pqr

)
(98.2)
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which, by the way, conforms nicely to (83.1).41 Returning with (98.2) to (98.1),
we obtain

[ΩΩΩ,AAA ] = 2i (GΩ× GA )r ΣΣΣr

=





 0 −2iΩ3 2iΩ2

2iΩ3 0 −2iΩ1

−2iΩ2 2iΩ1 0





A1

A2

A3





···


ΣΣΣ1

ΣΣΣ2

ΣΣΣ3




︸ ︷︷ ︸
Z

= (Z GA )rΣΣΣr

[ΩΩΩ, [ΩΩΩ,AAA ]] = (Z2 GA )rΣΣΣr

...

Returning with this information to (94) we find that the second half of (93) can
be rendered

GAµ −→ GA′
µ = eigZ GAµ − eigZ − I

igZ

GΩ,µ (99.1)

Looking now with one eye to the definition of Z and with the other to the
equations which (just prior to (82)) served to define

{
C1,C2,C3

}
, we see that

Z = Ω1
C1 + Ω2

C2 + Ω3
C3 (100)

and notice, moreover, that

igZ = g


 0 2Ω3 −2Ω2

−2Ω3 0 2Ω1

2Ω2 −2Ω1 0


 is real antisymmetric

so
R(x) ≡ eigZ(x) is a rotation matrix, an element of O(3)

In this notation (99.1) can be rendered

GAµ −→ GA ′
µ = R GAµ − R− I

log R

GΩ,µ (99.2)

Equations (99) say the same thing, the latter being a “coordinatized” version
of the former. Note the natural occurance of the adjoint representation at (98).

We have now step four to prepare to lauch the gauge matrix AAAµ

(equivalently: the gauge fields Ap
µ : p = 1, 2, 3 ) into dynamical motion. To that

41 One should resist the temptation to write cp
r
q = 2εpqr, for although the

equation is numerically correct in the Pauli basis it is transformationally screwy:
it presents r on the left but r on the right, and would come unstuck if one were
to abandon the Pauli basis in favor of some arbitrary alternative.
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end, taking (15) as our model, we examine the gauge transformation properties
of

fffµν = ∂µAAAν − ∂νAAAµ

From (93) we obtain

∂µAAAν −→ ∂µAAA
′
ν = SSS,µAAAνSSS

–1 + SSS(∂µAAAν)SSS –1 + SSSAAAν(SSS –1),µ
+ i 1

g SSS,νµSSS
–1 + i 1

g SSS,ν(SSS
–1),µ

But ∂µ(SSSSSS –1) = 000 supplies (SSS –1),µ = −SSS –1SSS,µSSS
–1 so

= SSS(∂µAAAν)SSS –1

+ SSS,µAAAνSSS
–1− SSSAAAνSSS

–1SSS,µSSS
–1+ i 1

g SSS,µνSSS
–1− i 1

g SSS,νSSS
–1SSS,µSSS

–1

gives
fffµν −→ fff ′

µν = SSSfffµνSSS
–1 +

{
unwelcome term

}
with {

unwelcome term
}

= (SSS,µAAAνSSS
–1 − SSS,νAAAµSSS

–1)

+ (SSSAAAµSSS
–1SSS,νSSS

–1 − SSSAAAνSSS
–1SSS,µSSS

–1)
+ i 1

g (SSS,µSSS –1SSS,νSSS
–1 − SSS,νSSS –1SSS,µSSS

–1)

The non-commutivity responsible for the existence of the “unwelcome term”
is responsible also for the existence of a second µν-antisymmetric construct—
namely the commutator [AAAµ,AAAν ], which is found by straightforward calculation
to transform

[AAAµ,AAAν ] −→ [AAA′
µ,AAA

′
ν ] = SSS [AAAµ,AAAν ]SSS –1 − i 1

g
{
same unwelcome term

}
The pretty implication is that

FFFµν ≡ (∂µAAAν − ∂νAAAµ)− ig (AAAµAAAν −AAAνAAAµ) (101)

gauge-transforms by simple similarity transformation (since the “unwelcome
terms” cancel):

FFFµν −→ FFF ′
µν = SSSFFFµνSSS

–1 (102.1)

Which (to say the same thing another way) means that if we write FFFµν = F p
µνΣΣΣp

and assemble

GFµν ≡


F 1

µν

F 2
µν

F 3
µν


 = ( GAβ,α − GAα,β) + 2g GAα× GAβ (103)

then we have
GFµν −→ GF ′

µν = RGFµν (102.2)

Comparison of (102.1) and (102.2) presents an instance of the well-known
connection between SU(2) and O(3).
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To kill the subscripts we proceed now in imitation of (16.2), constructing

FFFαβFFF
αβ

which is Lorentz invariant, and responds to gauge transformations by similarity
transformation. From this result it follows that
• the eigenvalues of the 8 × 8 matrix FFF 2 ≡ FFFαβFFF

αβ are gauge-invariant;
equivalently
• the coefficients in det(FFF 2 − λIII) are gauge-invariant; equivalently42

• the traces of integral powers of FFF 2 are gauge-invariant.
Proceeding in imitation of our experience in simpler situations (but from no
higher necessity43) we construct

Lfree gauge field(AAA, ∂AAA) = 1
4 tr

{
FFFαβFFF

αβ}
= 1

4g
αρgβσF p

αβF
q
ρσtr

{
ΣΣΣpΣΣΣq

}
But

tr
{
ΣΣΣpΣΣΣq

}
= tr

{
(σσσp⊗ III4)(σσσq⊗ III4)

}
by (88)

= tr
{
(σσσpσσσq⊗ III4)

}
by (85.6)

= 4 tr
{
σσσpσσσq

}
by (85.5)

= 8 δpq by (76)
= kpq by (82)

So we have44

Lfree gauge field(AAA, ∂AAA) = 1
4g

αρgβσkpqF
p
αβF

q
ρσ (104)

↑
F p
αβ ≡ Ap

β,α −A
p
α,β + gcu

p
vA

u
αA

v
β (105)

and from {
∂µ

∂
∂Ar

ν,µ

− ∂
∂Ar

ν

}
Lfree gauge field = 0

42 See p. 13 of “Some applications of an elegant formula due to V. F. Ivanoff”
in collected seminars (/).

43 It would be interesting on some future occasion to evaluate det(FFF 2 − λIII),
to see what expressions tr(FFF 2n) actually contribute to the coefficients, and to
see whether incorporation of such higher-order terms into the Lagrangian leads
to a useful generalization of standard theory. . . else to identify the principle
which forces their exclusion.

44 It should be noticed that (104) presents not only terms of the type (∂A)2

first encountered at (16.2), but also terms of the types A2∂A and A4; we
can anticipate that the free gauge field equations will be non-linear . Notice
also that expressions of the design gαβκ

2
pqA

p
αA

q
β—analogs of the gαβκ

2AαAβ

contemplated earlier—are Lorentz-invariant but not gauge-invariant; it becomes
therefore impossible to assign “mass” to the gauge fields in any straightforward,
gauge-symmetric way.
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compute

∂µF
µν
r = 1

cs
ν
r

sνr ≡ c ∂
∂Ar

ν

Lfree gauge field = gcF να
p cr

p
qA

q
α


 (106.1)

of which
∂µ GF

µν = 1
cGs

ν

Gs ν ≡ 2gc GAα× GF να

}
(106.2)

provides a more picturesque account (but an account available only within the
SU(2) theory, and then only if we have elected to work in the Pauli basis).
As yet a third alternative we have this basis-independent representation of free
motion of the gauge field system:

∂µFFF
µν = 1

csss
ν

sssν ≡ igc[FFF να,AAAα ]

}
(106.3)

Equations (106) become meaningful/informative only after one has
imported—“by hand,” as it were—from (105/3/1) the definition of F µν

r else
GF µν else FFF µν . There is, however, a way to circumvent this formal blemish (if
such it be): borrowing a trick from the theory of Procca fields,45 let us, in place
of (104), write

Lfree gauge = 1
2

{
F αβ
p

[
Ap
β,α −A

p
α,β + gcu

p
vA

u
αA

v
β

]
− 1

2F
αβ
p F p

αβ

}
(107)

and agree to construe Aµ
p and Fµν

p = −F νµ
p to be independent fields. We then

have a pair of Lagrange equations

{
∂µ

∂
∂F r

ρσ,µ

− ∂
∂F r

ρσ

}
Lfree gauge = 0{

∂µ
∂
∂Ar

ν,µ

− ∂
∂Ar

ν

}
Lfree gauge = 0

The former yields (105) as a field equation, while the later reproduces (106.1).

The free motion of the gauge field system is, according to (106), described
by a coupled system of non-linear partial differential equations. The system
is—owing to the presence of the current-like s-term on the right hand side—
“self-excited.” That the latter phenomenon is an artifact of non-commutivity
(i.e., of the non-Abelian character of the gauge group) is most vividly evident
in (106.3).

45 See again (1–31).
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To describe, finally, the dynamics of the full locally SU(2)-invariant Dirac
theory we assemble

L2 = �c
[

1
2 i

{
ψ̃ΓΓΓ α[

ψ,α − igAp
αΣΣΣpψ

]
−

[
ψ̃,α + ig ψ̃Ap

αΣΣΣp

]
ΓΓΓ αψ

}
− κ ψ̃ψ

]
+ Lfree gauge (108)

and from {
∂µ

∂

∂ψ̃,µ
− ∂

∂ψ̃

}
L2 = 0 and its adjoint{

∂µ
∂
∂F r

ρσ,µ

− ∂
∂F r

ρσ

}
L2 = 0{

∂µ
∂
∂Ar

ν,µ

− ∂
∂Ar

ν

}
L2 = 0

obtain (compare (72))[
ΓΓΓ µ(∂∂∂µ − igAAAµ) + iκIII

]
ψ = 0 and its adjoint

F p
µν = ∂µA

p
ν − ∂νAp

µ + gcu
p
vA

u
µA

v
ν

∂µF
µν
p = 1

c (J
ν
p + sνp)


 (109)

where sνp are the self-interaction currents first encountered at (106), and where
the currents Jνp can in terms of the fluxes introduced at (91) be described

Jνp ≡ eQν
p with e ≡ g�c

= ec1
2

{
ψ̃ΓΓΓ νΣΣΣpψ + ψ̃ΣΣΣpΓΓΓ

νψ
}

(110)

The global SU(2)-invariance of the Lagrangian L0 from which we started led
to ∂νJνp = 0, but with the adjustment L0 → L2 those conservation laws have
been lost; in their place one has

∂νJ
ν
p = 0 with Jνp ≡ Jνp + sνp (111.1)

which can be read as an immediate consequence of the antisymmetry of Fµν
p ,

and speak to the conservation of

Jp =
∫

J0
p dx

1dx2dx3 (111.2)

At (110) we set g = e
�c to maximize the “electromagnetic appearance” of our

results, but abandon any notion that e may have something to do with electric
charge: e is a new kind of coupling constant—“SU(2)-charge.” Notice that
e serves to describe also the strength of the self -interaction, which (as was
previously remarked) is a symptom of the non-Abelian character of the gauge
group. Gauge theory—conceived by Shaw8 to be a theory of field interactions—
has become now a theory also of intricately structured self -interactions.
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Dirac theory with local SU(N) gauge invariance. The hard work lies now behind
us; we have now only to retrace the argument of the preceding section and to
make adjustments at those few points where we drew on properties specific to
SU(2). We begin (compare (86)) by preparing the canvas; i.e., by assembling
the 4N -component complex field

ψ =



ψ1

ψ2

...
ψN


 with ψa =



ψa1
ψa2
ψa3
ψa4


 : a = 1, 2, . . . , N (112.1)

and by writing

L0(ψ, ψ̃, ∂ψ, ∂ψ̃ ) = �c
[

1
2 i

{
ψ̃ΓΓΓ αψ,α − ψ̃,αΓΓΓ αψ

}
− ψ̃κκκ ψ

]
(112.2)

with

ΓΓΓµ ≡ IIIN ⊗ γγγ µ and κκκ ≡




κ1 0 . . . 0
0 κ2 . . . 0
...

...
. . .

...
0 0 . . . κN


⊗ III4 (112.3)

From the block design of those matrices it follows that the component fields ψa

are uncoupled in (112.2), which could be written

L0(ψ, ψ̃, ∂ψ, ∂ψ̃;κκκ ) =
N∑

a=1

L0(ψa, ψ̃a, ∂ψa, ∂ψ̃a; κa)

Let sss be N × N , unimodular and unitary; the matrices sss comprise the
“natural elements” of SU(N), while the matrices SSS ≡ sss ⊗ III4 give rise to a
4N -dimensional unimodular unitary representation of SU(N). One can always
write

sss = eihhh where hhh is N ×N traceless hermitian (112.1)

Write
hhh = h1σσσ1 + h2σσσ2 + · · ·hNσσσN : N ≡ N2 − 1 (112.2)

where
{
σσσp : p = 1, 2, . . . ,N

}
refer now to an arbitrary basis in the vector space

VN of such (N -dimensional traceless hermitian) matrices. Necessarily there
exist real structure constants cprq such that

[σσσp, σσσq] = icp
r
qσσσr (112.3)

and from which we construct the N × N matrices Cr ≡ ‖icrmn‖ which were
seen at (81) to provide the “adjoint representation” of (112.3):

[Cp,Cq] = icp
r
qCr (113)



Dirac theory with local SU(N) gauge invariance 45

We agree to use

kpq = tr CpCq : elements of k ≡ ‖kpq‖ (114)

and the elements kpq of k
–1 to lower/raise “gauge indices.”

Ascend now from N to 4N dimensions, it follows straightforwardly from
SSS ≡ sss⊗ III4 and properties of the Kronecker product that

SSS = eiHHH with HHH = h1ΣΣΣ1 + h2ΣΣΣ2 + · · ·hNΣΣΣN (115.1)

where
ΣΣΣp ≡ σσσp ⊗ III4 is 4N × 4N traceless hermitian (115.2)

The structure constants still serve

[ΣΣΣp,ΣΣΣq] = icp
r
qΣΣΣr (115.3)

Look now to the response of L0 to ψ −→ SSSψ: we have

S̃SSΓΓΓµSSS = ( s̃ss⊗ III4)(IIIN ⊗ γγγ µ)(sss⊗ III4) = s̃sssss⊗ γγγ µ = (IIIN ⊗ γγγ µ) = ΓΓΓµ

but (by the same line of reasoning)

S̃SSκκκSSS = κκκ if and only if all the κa are set equal

This we do, rendering L0 “globally SU(N)-invariant by design,” and Noether
hands us a collection of N ≡ N2 − 1 conservation laws

∂µQ
µ
r = 0 with Qµ

r ≡ 1
2cψ̃(ΓΓΓµΣΣΣr + ΣΣΣrΓΓΓ

µ)ψ : r = 1, 2, . . . ,N (116.1)

which are of a design encountered most recently at (110). We note in passing
that the manifest global U(1)-symmetry of the theory leads a conservation law
of similar design:

∂µQ
µ
0 = 0 with Qµ

0 ≡ 1
2cψ̃(ΓΓΓµΣΣΣ0 + ΣΣΣ0ΓΓΓ

µ)ψ (116.0)

where ΣΣΣ0 is but a fancy way of saying IIIN .46

To achieve invariance under local SU(N)—of which

ψ −→ ψ ′ =SSS(x)ψ (117.1)
SSS(x) = eigΩΩΩ(x) : ΩΩΩ(x) = Ωr(x)ΣΣΣr traceless hermitian

46 Note that we are now not in position to write equations so explicit as (91),
since those reflect special properties of a specific basis (the Pauli basis).



46 Classical gauge fields

is the initial/defining symptom— we make the “minimal coupling” adjustment

L0(ψ, ψ̃, ∂ψ, ∂ψ̃ )
↓

L1 =L0(ψ, ψ̃,Dψ,Dψ̃ )

= �c
[

1
2 i

{
ψ̃ΓΓΓ α(ψ,α − igAAAαψ)− (ψ̃,α + ig ψ̃AAAα)ΓΓΓ αψ

}
− ψ̃κκκ ψ

]
and expand the meaning of (117.1) to include (compare (8) and (93))

AAAµ −→ AAAµ
′ = SSSAAAµSSS

–1 + i 1
g SSS,µSSS

–1 (117.2)

so as to achieve
Dµψ −→ (Dµψ) ′ = SSS (Dµψ) (117.3)

“Gauge fields”—the N-tuple of vector fields Ar
µ(x)—enter the discussion when

we allow ourselves to write
AAAµ(x) = Ar

µ(x)ΣΣΣr (118)

and are evidently basis-contingent constructs.

It is as a step preparatory to launching the gauge fields into dynamical
motion that—appropriating the intricate argument which led us to (101), an
argument which is seen to be not at all specific to SU(2), or to the selection of
any specific basis (though with the loss of (98.2) we lose the possibility of using
the cross product to express our results, as we did at (103) and (106.2))—we
construct

FFFµν =F r
µνΣΣΣr ≡ (∂µAAAν − ∂νAAAµ)− ig (AAAµAAAν −AAAνAAAµ) (119.1)
F r
µν = (∂µA

r
ν − ∂νAr

µ) + gcp
r
qA

p
µA

q
ν (119.2)

—the point being that FFFµν responds to gauge transformation (117.2) by the
very simple rule

FFFµν −→ FFF ′
µν = SSSFFFµνSSS

–1 (120.1)

We are placed thus in position to assemble an L2 formally identical47 to
(108), and obtain coupled field equations formally identical to (109).

In a more complete account of this subject it would become natural at this
point to inquire into
• the construction of the stress-energy tensor of the gauged theory, and

details of energy-momentum trade-off between the ψ-field and the gauge
fields;
• Belinfante symmetrization of the stress-energy tensor (if required);
• spin of the gauge field system;
• motion of the center of mass of the gauge field system.

And, of course, it would be instructive to collect illustrative solutions of the
field equations. I prefer, however, to look to other matters:

47 I say “formally identical” because the implicit
∑

p in (108) ran on
{
1, 2, 3

}
,

but runs in the general case on
{
1, 2, . . . ,N

}
. Moreover, the ΣΣΣp in (108) are

taken to refer specifically to the Pauli basis in V3, but refer now to an arbitrary
basis in VN.
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The argument which gave (102.2) leads in the more general case to the
conclusion that (120.1) can be expressed

GFµν −→ GF ′
µν = RGFµν (120.2)

where

GFµν ≡



F 1
µν

F 2
µν

...
FN
µν


 and R ≡ eigZ(x) with Z ≡ Ωr

Cr

We know from (83.2) that

the real matrix iZ is k-antisymmetric: (iZ)T = −(iZ)

and from this it follows that

the real matrix R ≡ eigZ is k-orthogonal: R
T
k R = k

If, in particular, the basis matrices
{
Cr

}
are, by contrived pre-arrangement,

tracewise orthonormal then k = IN , and R becomes an element of the rotation
group O(N). But

SU(N) is an N ≡ (N2 − 1)-parameter group, while
O(N) is an 1

2N(N− 1) = 1
2 (N2 − 1)(N2 − 2)-parameter group

and from data tabulated below

N N ≡ (N2 − 1) 1
2N(N− 1)

2 3 3
3 8 28
4 15 105
...

...
...

we infer on numerological grounds that the correspondence

SSS = exp
{
igΩpΣΣΣp

}
∈ SU(N) ←→ R = exp

{
igΩp

Cp

}
∈ O(N)

which (familiarly) serves to associate elements of SU(2) with elements of O(3),
can in more general cases N > 2 serve only to associate elements of SU(N)
with elements of a subgroup of O(N). We note in passing that there do, however,
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exist other cases in which N(N) is at least triangular :

22 − 1 = 3 = ∆(2) where ∆(n) ≡
n∑

k=1

k is the nth triangular number
42 − 1 = 15 = ∆(5)

112 − 1 = 120 = ∆(15)
232 − 1 = 528 = ∆(32)
642 − 1 = 4095 = ∆(90)

1342 − 1 = 17955 = ∆(189)
3732 − 1 = 139128 = ∆(527)

...

and since O(n) is a ∆(n − 1)-parameter group it is at least conceivable that
an association of (say) the form SU(4) ←→ O(6) is possible. Relatedly, the
theory of Clifford algebras inspires interest in numbers of the form 2p − 1, and
Ramanujan has observed that in three and only three cases is such a number
triangular. Each of those cases appears (boldface) in the preceding list; the
p = 2 and p = 4 are of well-established physical importance (Pauli algebra,
Dirac algebra) and it seems to me plausible that the final case p = 12 may also
possess latent physical significance. But it is difficult to manage an algebra
with 4095 ΣΣΣ -matrices, and my occasional efforts to develop that hunch have
thus far been fruitless. Returning now to less speculative matters. . .

Bringing (120.1) to the field equation ∂µF
µν
p = 1

cJ
ν
p we infer that the

conserved net current JJJ
ν ≡ JpνΣΣΣp responds to local gauge transformation by

the complicated rule

JJJ
ν −→ JJJ

′ν = SSS,µSSS
–1 · FFF ′µν + SSS JJJ

νSSS –1 + FFF ′µν · SSS(SSS –1),µ
= SSS JJJ

νSSS –1 + [SSS,µSSS –1, FFF ′µν ] (121.1)

Its response to global gauge transformation is, however, simple: the commutator
drops away (because SSS,µ = 000), leaving

JJJ
ν −→ JJJ

′ν = SSS JJJ
νSSS –1 (121.21)

which can be written
GJ ν −→ GJ ′ν = RGJ ν (121.22)

It was this circumstance (together with the circumstance that in SU(2) theory
the 3× 3 matrix R ∈ O(3)) which led Yang & Mills to the satisfying conclusion
that “total isotopic spin” GJ ≡

∫
GJ0dx1dx2dx3 is a vector , which responds to

(global) gauge transformation by “rotation in isotopic spin space.”

It is (recall (110)) through

JJJ = ec1
2

{
ψ̃ΓΓΓ νΣΣΣpψ + ψ̃ΣΣΣpΓΓΓ νψ

}
ΣΣΣp (122)

that the gauge fields sense the presence of the Dirac field ψ. The right side of
the preceding equation is easily seen to be basis-independent, but I have been
unable to discover any natural way to formulate (122) which does not make
incidental reference to a basis. . .which strikes me as curious.
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General observations, and some topics which might be included in a more
comprehensive account of gauge field theory. In the preceding discussion we
took “stacked copies of the Dirac equation” as our point of departure. We could
instead have taken “stacked copies of the Klein-Gordon equation” or “stacked
copies of the Procca equation”. . . and—particularly if we worked in canonical
formalism—would be led to results formally identical (or nearly so) to the results
now in hand (though the specific meaning of the ΓΓΓ -matrices would vary from
case to case).48

Elementary calculus supplies the statement

(∂µ∂ν − ∂ν∂µ)(any nice function) = 0

which we abbreviate (∂µ∂ν − ∂ν∂µ) = 0. But from the definition (10)

Dµ ≡ ∂µ − igAµ(x)

it follows on the other hand that

DµDν −DνDµ = −ig(Aν,µ −Aµ,ν)

while in the non-Abelian case

DDDµ ≡ ∂∂∂µ − igAAAµ(x)

we obtain

DDDµDDDν −DDDνDDDµ = −ig
{
(AAAν,µ −AAAµ,ν)− ig[AAAµ,AAAν ]

}
= −igFFFµν by (119.1) (123)

We are not yet in position to comment on the deeper significance of this striking
result, except to remark that it makes transparently clear how FFFµν acquired its
especially simple gauge transformation properties: it inherited them from DDDµ.

In Maxwellian electrodynamics we learn that it is from the sourceless
equations

∇∇∇···BBB = 0 and ∇∇∇×EEE + ∂0BBB = 000 (124.1)

—which is to say: from

∂µG
µν = 0 with Gµν ≡ 1

2εµναβF
αβ (124.2)

which can be expressed alternatively as a quartet of “windmill sum” relations

εµναβ∂νFαβ = 0 (124.3)

—that we acquire license to write

Fµν = ∂µAν − ∂νAµ (125)

48 Could we proceed similarly from “stacked copies of the Hamilton-Jacobi
equation” or “stacked copies of the relativistic free particle equation,” and
thus produce non-Abelian generalizations of the theories developed on pp. 8–
20 and pp. 20–26? Multi-component field systems are commonplace in field
theory, but what might be the physical interpretation of “stacked copies of the
classical mechanics of a particle”? Could such formalism be associated with the
classical physics of particles with internal degrees of freedom (“spin”)? These
are questions to which I hope to return on another occasion.
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And that when one does write (125) then equations (124) become automatic.
In non-Abelian gauge field theory (“generalized electrodynamics”) one has only
to introduce (123) into the following instance

[DDDν , [DDDα,DDDβ ]] + [DDDα, [DDDβ ,DDDν ]] + [DDDβ , [DDDν ,DDDα]] = 000

of Jacobi’s identity to obtain

[DDDν , FFFαβ ] + [DDDα, FFF βν ] + [DDDβ , FFF να] = 000 (126)

or (more compactly)

εµναβ [DDDν , FFFαβ ] = εµναβ [∂∂∂ν , FFFαβ ]− igεµναβ [AAAν , FFFαβ ] = 000

In the Abelian (i.e., in the Maxwellian) case the second term on the right drops
away, and the surviving first term, when allowed to operate on the function
1, gives back (124.3). It will appreciated that equations (126) are not field
equations but identities, satisfied in every instance and necessarily by FFFµν

(which is to say: by AAAµ) in consequence of the manner in which those objects
were defined. Equations (126) play within gauge field theory a role analogous
(and abstractly identical) to the roll played by the so-called “Bianchi identities”
in general relativity.49

It can be argued that the exterior calculus provides the language of choice
for developing formal (and some computational) properties of the theory of
Abelian gauge fields (Maxwellian electrodynamics).50 The question arises:
can a “generalized exterior calculus” be devised which serves equally well to
illuminate the essentials of non-Abelian gauge field theory?

Maxwellian electrodynamics is well-known to be invariant with respect to
“duality rotation”—an internal symmetry of which

EEE −→ EEE ′ = EEE cos θ +BBB sin θ

BBB −→ BBB ′ = BBB cos θ −EEE sin θ

captures the simplified essence.51 Can a similar symmetry be identified in the
non-Abelian case?

It was a U(1)⊗ SU(2) gauge theory which Glashow-Weinberg and Salam
used in the late ’s to achieve unification of the electromagnetic and weak
interactions (see Quigg’s Chapter 6), a SU(3) gauge theory which (at about the

49 See Michio Kaku, Quantum Field Theory: A Modern Introduction (),
p. 297; M. E. Peskin & D. V. Schroeder, An Introduction to Quantum Field
Theory (), p. 500 and/or the index of any good general relativity text.

50 See my “Electrodynamical applications of the exterior calculus,” ().
51 See §7 in the material just cited; also pp. 327–331 in electrodynamics

() and p. 51 in Chris Quigg’s Gauge Theories of the Strong, Weak, and
Electromagnetic Interactions ().
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same time) called colored quarks into being and resulted in the creation of QCD
(quantum chromodynamics; see Quigg’s Chapter 8), and the so-called Standard
Model—which unites the whole shebang and accounts satisfactorally for most
of the observational evidence—is a U(1) ⊗ SU(2) ⊗ SU(3) gauge theory. It
would be interesting—but a major undertaking—to trace the classical outlines52

of that work. One would come away from such an exercise with a sense of
how one finds “wiggle-room” within the fairly rigid framework provided by the
gauge field idea. . . and of what contortions Nature herself appears to require;
more particularly, one would acquire a sense of how difficult it is to endow
gauge fields with mass, and of how wonderfully ingenious (if in some respects
still unsatisfactory) has been the effort to do so (Quigg’s Chapter 5). But for
discussion of those topics I must—for now—be content to refer my readers to
the abundant literature.53

52 By “classical outlines” I mean “up to the point of quantization.” It is, of
course, quantization which lends physical significance the theory. But it opens
a can of mathematical worms which have no place in an account of the elements
of classical field theory.

53 I have made references to Quigg,51 who is often especially clear, and
supplies good bibliographic information, but one should also consult Chapter 11
in Griffiths4 and relevant paragraphs in (say) Kaku and Peskin & Schroeder49.
The literature is, as I say, vast; for a random taste of its riches see the essay
“Secret symmetry: an introduction to spontaneous symmetry breakdown and
gauge fields” in S. Coleman, Aspects of Symmetry ().
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