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ANALYTICAL DYNAMICS OF FIELDS

Introduction. Somewhat idiosyncratically, I like to distinguish the “classical
mechanics” of particles from what (until about the time of the appearance—
in —of E. T. Whittaker’s Treatise on the Analytical Dynamics of
particles and Rigid Bodies) used to be called “analytical mechanics.” I take
the former to embrace all that can be said, by whatever formal means, about
the dynamics of particulate systems of all descriptions, but understand the
latter terminology to refer specifically to the resources latent in the Lagrangian
formalism, in the Hamiltonian formalism, in the Hamilton-Jacobi formalism, in
their less-well-known companion formalisms (such, for example, as the Appell
formalism) and their associated variational principles. Since it is easy to think of
systems—particularly, but not exclusively, dissipative systems—to which none
of the formalisms just ennumerated usefully pertain, it is clear that “analytical
mechanics” is by nature a sub-division of a broader discipline. Remarkably, it
is (or appears to be) within the confines of that sub-discipline that God prefers
to frame His most fundamental utterances.

When one turns from the mechanics of spatially localized systems to the
mechanics of distributed systems—i.e., from the dynamics of particles to the
dynamics of fields—one encounters a similar situation. To think generally of
“field theory” is to think of a subject so broad as to embrace all aspects of the
motion of fluids, of elastic solids, of electromagnetic and gravitational fields,
all—surprisingly—of the quantum mechanics of particles (at least formally),
and of much else besides. Within that broad field lives the subject to which my
chapter title refers.

Our strategy will be to look to a graded sequence of particulate systems,
the limiting member of which will, by design, have in fact the character of a
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field. By tracking the analytical mechanics of the individual members of the
sequence we shall obtain the analytical mechanics of its limiting member—the
“analytical mechanics of a field.” The results thus achieved will be so strikingly
simple as to admit readily and unproblematically of generalization. This mode
of proceeding will, by the way, yield a general-purpose field-theoretic language
which is automatically consonant with the analytical mechanics of particles, and
is therefore preadapted to the discussion of particles and fields in interaction.

Dynamics of one-dimensional crystals. Take N identical particles of mass m,
and N + 1 identical springs of strength k, and form the “crystal” illustrated in
the first of the following figures. The terminal springs are attached to “walls”
which stand a distance � from one another, so when the system is at rest each
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Figure 1: Equilibrium configuration of an N -particle crystal with
clamped boundaries.

spring has length a = �/(N + 1). The system derives its “one-dimensionality”
not so much from the linearity of its design as from the explicit stipulation
that transverse motion will be disallowed . The allowed motion is longitudinal,
which by natural orientation of a Cartesian coordinate system means “along
the x-axis.” If we associate the origin of the x-axis with the anchor point on
the left, then we can write xn = na to describe the location of the nth “atom”
in a crystal at rest. Our dynamical assignment is to develop the functions xn(t)
(n = 1, 2, . . . , N) which describe the successive locations of the constituent
atoms in a crystal not at rest.

To that end, let us (see the following figure) introduce “excursion variables”
ϕn by means of the equations xn = na+ ϕn. Evidently ϕn serves to describe

�

x3 = 3a+ ϕ3
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Figure 2: Use of excursion variables to describe the instantaneous
configuration of a crystal not at rest.

the location of the nth atom relative to its equilibrium position. It is in precisely
the spirit of the familiar “theory of small oscillations” that, in our effort to
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comprehend the motion of the crystal, we agree to look to the time-dependence
of the variables ϕn.

We invested energy in the formation of our crystal; the interconnecting
springs are, after all, stretched (else compressed) in the general case. Energy
over and above that “ground state energy” must be invested if we wish to set
the crystal in motion. That energy can evidently be described E = T +U with

T = 1
2m

{
ϕ̇2

1 + ϕ̇2
2 + · · ·+ ϕ̇2

N−1 + ϕ̇2
N

}
(1)

U = 1
2 k

{
ϕ2

1 + (ϕ2 − ϕ1)
2 + · · ·+ (ϕN − ϕN−1)

2 + ϕ2
N

}
(2)

Forming the Lagrangian L = T − U and working from{
d

dt

∂

∂ϕ̇n
− ∂

∂ϕn

}
L = 0 n = 1, 2, . . . , N (3)

we readily obtain the following explicit equations of motion:

mϕ̈1 = −k( + 2ϕ1 − ϕ2 )
mϕ̈2 = −k(−ϕ1 + 2ϕ2 − ϕ3 )

...
mϕ̈n = −k(−ϕn−1 + 2ϕn − ϕn+1) n = 2, 3, . . . , N − 1

...
mϕ̈N = −k(−ϕN−1 + 2ϕN )




(4)

These comprise a coupled system of N 2nd-order ordinary differential equations
in N variables. Equations (4) are notable in particular for their linearity , which
we might emphasize by writing

ϕ̈ + Sϕ = 0 (5)

where

ϕ ≡




ϕ1

ϕ2

ϕ3
...

ϕN


 and S has the structure S ≡ Ω2




a b
b a b

b a b
. . . . . . . . .

b a b
b a




with Ω2 = k/m, a = 2 and b = −1. The design of the S matrix (in which
all unreported matrix elements are zero) pretty clearly and directly mimics the
physical design of the crystal itself.

We have now before us a physical system with a long and important history,
an interesting brief account of which can be found in the opening sections of
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L. Brillouin’s classic Wave Propagation in Periodic Structures (). The first
chapter in that history was written by Newton himself, who used a
one-dimensional crystal to model an air column in his pioneering attempt to
compute the velocity of sound. The system continues to serve as a point of
entry into the study of real crystals (solid state physics), of the vibration of
molecules, of transmission lines and of much else. And the system gives rise
to an analytical problem of rich methodological interest. It is to aspects of the
latter that I am motivated now to give brief attention.

Suppose we return to (5) with the assumption that the atoms oscillate with
possibly distinct amplitudes An but in perfect synchrony:

ϕϕϕ(t) = AAAeiωt

Immediately
(S− ω2

I )AAA = 000

Evidently ω2 must be set equal to one or another of the eigenvalues of S, i.e.
to one or another of the zeroes of the characteristic polynomial

det(S− λI) = s0 + s1λ+ s2λ
2 + · · ·+ sNλ

N

and AAA must be proportional to the corresponding eigenvector. Familiarly, the
real symmetry of S is by itself sufficient to insure (i) the reality of the eigenvalues
λ1, λ2, . . . , λN and (ii) the orthogonality of the eigenvectors: AAAm···AAAn = 0 if
m �= n which (after normalization) can be notated AAAm···AAAn = δmn. This is
valuable information, but not in itself sufficient to provide explicit descriptions
of the eigenvalues/vectors. It is, in particular, not in itself sufficient to establish
that all eigenvalues are necessarily non-negative. Proceeding therefore (for the
moment) formally, we note that the linearity of the equations of motion (5)
carries with it a “principle of superposition,” and are led to write

ϕϕϕ(t) =
N∑
n=1

αnAAAne
+iωnt +

N∑
n=1

βnAAAne
−iωnt

= superposition of “normal modes”

with ωn =
√
λn. The complex numbers αn and βn are fixed by imposition of

the requirements that ϕϕϕ(t) be real and that it conform to the prescribed initial
data ϕϕϕ(0) and ϕ̇ϕϕ(0); the orthonormality of the eigenvectors greatly simplifies
the computational labor at this point.

The program sketched above is in fact not at all specific to crystals, but
pertains generally to the “theory of small oscillations,” i.e., to the classical
motion of all particulate systems as they jiggle harmonically about points of
stable equilibrium. And it admits of a great variety of alternative formulations,
the relative utility of which depends upon particular features of the system in
hand, and the nature of the questions uppermost in one’s mind. Of these, I
must be content here to sketch only one:1

1 For a fairly elaborate review of the formal possiblities, see Chapters I and
II of my Classical Theory of Fields ().
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Proceeding very much in the spirit of Hamilton, let us agree to promote ϕ̇ϕϕ
to the status of an independent variable, writing ϕ̇ϕϕ ≡ χχχ. In place of (5) we can
then write

Φ̇ΦΦ = WΦΦΦ (6)

with

ΦΦΦ =
(
ϕϕϕ
χχχ

)
and W =

(
O I

−S O

)
Whereas (5) is a coupled system of N differential equations of 2nd order, (6) is a
2n-fold system of 1st order, as admits therefore immediately of formal solution:

ΦΦΦ(t) = eWtΦΦΦ(0)

The problem at this point is to assign explicit meaning to the matrix eWt. It is
sometimes possible to gain useful information directly from the expansion

eWt =
∞∑
n=0

1
n! (Wt)n

but I propose to sketch an alternative mode of approach. By the Cauchy integral
theorem

1
2πi

∮
C

1
z−W eztdz = eWt

where C is any closed contour which envelops the singularity (simple pole) at
z = W . We therefore expect to have

eWt = − 1
2πi

∮
C

R(z)eztdz with R(z) ≡ (W− zI )–1

where C is any contour which envelops the spectrum of W—the set of z-values
at which W − zI fails to be invertible. Such z-values are, of course, precisely
the eigenvalues of W. This mode of proceeding becomes useful when one is in
position to produce an explicit description of (W−zI )–1 in which the eigenvalues
stand nakedly exposed, and can be further refined when one possesses also
explicit descriptions of the associated eigenvectors.

Passage to the continuous limit by “refinement of the lattice.” Suppose we had
physical interest in the propagation of weak compressional waves along a wire.
It is known that wires are composed of atoms, and plausible that the wire might
successfully be modeled by a lattice of the design considered in the preceeding
section. But it seems extravagant to invoke “atomicity” in the description of
a system which to eye and instrument appears to be so continuous. We are
motivated to seek a dynamical formalism which conforms more naturally to
the macroscopic physics of the wire-as-we-perceive-it—a field theory of wires
which operates in the smooth approximation. Such a theory (which has formal/
practical interest vastly deeper, it goes without saying, than the “physics of
wires”) can be constructed as follows:
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We embed the physical lattice within a population of similarly-structured
but merely “mental” lattices. All members of the population have the same
total length � and the same total mass M ; the number N of constituent “atoms”
is, however, considered to increase without bound, with the result that both
the lattice constant a and the atomic mass m drop asymptotically (i.e., in the
“continuous limit”) to zero. The scheme, which I call “refinement of the lattice,”

Limiting procedure a ↓ 0

Figure 3: Simple essentials of the “lattice refinement” procedure.

is illustrated in the preceding figure. Taking the lattice constant to be our
control parameter, we have

N(a) =
�

a
− 1 =

�

a

(
1− a

�

)
−→ �

a

m(a) =
M

N(a)
=

M

�
a

(
1− a

�

)–1

−→ µa


 for a� �

where µ = M/� defines the linear mass density of the system.

As a ↓ 0 the position xn = na of the nth atom squeezes (for all n) ever
closer to the left end of the lattice. Evidently our former practice—the ordinal
enumeration of the constituent elements of our N -particle system—must be
abandoned in the continuous limit. To circumvent this problem, we agree to
write ϕ(x) to describe the displacement (from equilibrium) of the mass element
which at equilibrium resides at x (0 ≤ x ≤ �). Where formerly we wrote ϕn to
describe the displacement of the nth atom we would now write ϕ(xn); evidently
it is still possible but now no longer essential that x range on a discrete set.
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In this modified notation we might, by (4), write

ϕ̈(x) =
k

m(a)
{
ϕ(x+ a)− 2ϕ(x) + ϕ(x− a)

}
: x = x2, x3, . . . , xN−1

to describe the motion of the typical (i.e., non-terminal) element of a discrete
lattice (or “crystal”). But this equation is beautifully adapted to the formal
needs of our projected “passage to the continuous limit.” For we can write

ϕ̈(x) =
k

m(a)
a2·

{
ϕ(x+a)−ϕ(x)

a − ϕ(x)−ϕ(x−a)
a

a

}
︸ ︷︷ ︸

becomes ∂
2ϕ
∂x2 as a ↓ 0

and to achieve a sensible result have only to require that

lim
a↓0

ka2

m(a)
∼ lim
a↓0

ka

µ
= a non-zero constant, call it c2

where c has necessarily the dimensionality of a “velocity” (but is not, at this
point, to be associated with the “speed of light”). Evidently “regraduation of
the spring constant” is a forced attribute of the lattice refinement procedure;
we must have

k(a) =
c2µ

a

(
1 + inconsequential terms of order

a

�

)
(7)

according to which the inter-atomic springs become necessarily stronger and
stronger as the lattice refinement process proceeds: k(a) −→ ∞ as a ↓ 0. This
surprising development can be made intuitively intelligible by the following line
of argument: Springs compose by the “law of capacitors;” for springs k1 and k2

connected in series one has

1
keffective

=
1
k1

+
1
k2

so if one considers a spring K of length � to have been assembled by connecting
in series N + 1 identical springs k(a) of length a = �/(N + 1) one has

1
K

= N
1

k(a)
with N =

�

a

(
1− a

�

)
giving

k(a) = NK =
K�

a

(
1− a

�

)
To recover (7) we have only to set K = c2µ/�, which we imagine to be a constant
of the refinement process —the same in the limiting case of a compressional wire
(or “string”) as for the discrete crystal from which we started. Since � and
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µ have already been assumed to be constants of the refinement process, this
amounts to a stipulation that c2 be such a constant.

Thus is the large system (4) of coupled ordinary differential equations of
motion seen “in the continuous limit” to go over into a single partial differential
equation of motion:

1
c2
∂2ϕ

∂ t2
− ∂2ϕ

∂x2
= 0 (8)

This, of course, is precisely the familiar “wave equation,” of which the following
are frequently-used notational variants:{

1
c2

∂2

∂ t2
− ∂2

∂x2

}
ϕ(x, t) = 0{(

1
c

∂

∂ t

)2

−
(
∂

∂x

)2}
ϕ = 0

{
1

c2
∂2
t − ∂2

x

}
ϕ = 0

1

c2
ϕtt − ϕxx = 0

We will encounter wave equations of many types and structures before we are
done, but when one speaks of the wave equation one invariably has in mind
either (8) or its higher-dimensional generalization{

1

c2
∂2
t −∇2

}
ϕ = 0

The wave equation has been demonstrated to arise in what might be called
the “continuous approximation” from the theory of simple crystals, but it plays
a fundamental role also in contexts—electrodynamics, for example—where no
“underlying atomicity” is, so far as we are aware, present in the physics. We
have learned to read in the ∂2

t ϕ -term an echo of the fact that, according to
Newton, acceleration is the kinematic variable under the direct control of F/m,
and to read in the ∂2

xϕ -term an allusion to the fact harmonic nearest-neighbor
interactions dominate the physics of crystals.2 It is tempting to suppose that the
essentials of this insight pertain to all natural occurances of the wave equation,
and it becomes interesting in this light to recall that it is ultimately from the
wave equation that we acquire an interest in the Lorentz group—an interest,
that is to say, in special relativity.

Wave functions, and their relation to solutions of the lattice equations. When
Newton looked to the physics of one-dimensional crystals to model the acoustic

2 Interaction with next nearest neighbors would introduce ∂4
x -terms into the

associated wave equation. Generally, increased non-locality entails radically
increased complication of the associated field theory. For an account of the
details see C. Barnes, “The dynamics of flylines and other classical strings”
(Reed College, ), which won for its author the APS’s Apker Award.
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vibrations of an air column, it was because he lacked access to a well-developed
theory of partial differential equations; he found it easier to contemplate the
implications of (4) than to write and study (8). We, however, are in the reverse
situation. Though to do so has somewhat the nature of a digression, I look
now to some of the most elementary implications of (8). I proceed in special
reference to this question: To what extent do solutions of the wave equation
(8) serve to clarify—and to what extent to misrepresent—the physics of real
crystals (a �= 0)?

Let us agree henceforth to use the term “wave function” to denote any
solution of the wave equation (8), which we notate ϕ = 0 with

≡ 1
c2 ∂

2
t − ∂2

x =
(

1
c∂t + ∂x

) (
1
c∂t − ∂x

)
(9)

Clearly (
1
c∂t + ∂x

)
f = 0 ←→ f = f(x− ct)(

1
c∂t − ∂x

)
g = 0 ←→ g = g (x+ ct)

where f(·) and g(·) are any differentiable functions of a single variable. It is
therefore plausible (also true!) that the most general wave function can be
described

ϕ(x, t) = f(x− ct) + g(x+ ct) (10)
= right-running waveform + left-running waveform

The representation (10) is, it should be noted, preserved under superposition.
But it will, in general, not be directly evident to the casual eye of the person
who is simply watching the motion of ϕ. When right and left-running waves
collide they do so non-interactively—by simple superposition—and emerge from
their encounter unscathed/unaltered. But in typical applications f(·) and g(·)
will “sense each other’s structure” (i.e., be structurally correlated) in forced
consequence of imposed boundary conditions. Thus

ϕ(0, t) = 0 (all t)

entails g(x) = −f(−x), while the additional requirement

ϕ(�, t) = 0 (all t)

would force f(·) to be periodic: f(x) = f(x+ 2�) for all x.
Implicit already in some preceeding remarks is the important fact that from

the linearity of the wave equation it follows that wave functions are subject to
a principle of superposition:

wave function + wave function = wave function

We stand therefore in position to consider representations of the form

complicated wave function =
∑

simple wave functions
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as Fourier (who in point of historical fact worked in—among others—precisely
this physical context) was among the first to appreciate. Following now in
Fourier’s footsteps, we find it natural to write

f(x) =
∫ ∞

∞
F (k)eikxdk and g(x) =

∫ ∞

∞
G(k)eikxdk

giving

f(x− ct) =
∫ ∞

∞
F (k)eik(x−ct)dk (11.1)

= F (k)-weighted superposition of right-running harmonic waves

g(x− ct) =
∫ ∞

∞
G(k)eik(x+ct)dk (11.2)

= G(k)-weighted superposition of left-running harmonic waves

The harmonic waves encountered above are “simple wave functions” in the sense
that they spring to our attention when we define

phase = kx− ωt

and ask: Under what condition is ei (phase) a wave function? Immediately
ω2 − c2k2 = 0, which entails

ω(k) = ±ck

From
d
dt (phase) = kẋ− ω = 0

we obtain
ẋ = phase velocity = ω/k = ±c

The “rigidity” of f(x − ct) is traced thus to the k-independence of the phase
velocities of the “harmonic wave functions” from which, according to (11.1), it
can be considered to have been assembled; the Fourier components of f(x− ct)
move in synchrony, and the wave is said therefore to be “non-dispersive.”

Impose now the boundary conditions ϕ(0, t) = ϕ(�, t) = 0 (all t) natural to
the physics of our original crystal. Spatial periodicity is then, as we have seen,
enforced, and we are led at length to wave functions of the form

ϕ(x, t) =
∞∑
n=1

An sin knx · eiωnt (12)

= weighted superposition of harmonic standing waves

where

kn = nπ/� and ωn = ckn

= nω0 with ω0 = πc/� : n = 1, 2, . . .
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We have recovered the musical physics of a clamped string—familiar to every
first-year student as it was familiar in its essentials already to Pythagoras by
about  b.c. Several points, however, deserve comment:

Pretty clearly, the “harmonic standing waves” described above are the
direct continuous-limit analogs of the harmonic “normal modes” of a crystal,
and they are orthonormal in this analog

(2/�)
∫ �

0

sin kmx · sin knxdx = δmn

of the statement AAAm···AAAn = δmn. But while the vibrational frequencies natural
to a string are easy to describe and infinite in number

ωn = nω0 with n = 1, 2, . . .

the frequencies natural to a crystal are difficult to describe (zeros of a high
order polynomial) and finite in number. The spatial form of a standing wave is
similarly easy to describe: it is sinusoidal, with

internodal distance = 1
2 wavelength = 1

n�

while the shape of a crystaline normal mode (eigenvector of a large matrix)
is relatively difficult to describe. When—reversing Newton’s procedure—one
looks to the physics of strings to gain insight into the physics of crystals, one
gains ease of analysis, but confronts this question: To what extent does the
physics of strings speak reliably—and to what extent does it misrepresent—the
physics of crystals?

For the same reason that one can draw sine waves on a screen only if the
wavelength significantly exceeds the pixel size, we expect a crystal to be capable
of supporting only those wave forms for which

internodal distance� lattice constant

Since for an N -atom crystal of length � the lattice constant a = �/(N + 1), we
have

internodal distance

{
> a for n = 1, 2, . . . , N
= a for n = N
< a for n = N + 1, N + 2, . . .

and find it natural to associate only the leading N string modes—those with
frequencies

ω ≤ ωcutoff = Nω0

—with the modes of a crystal, and to dismiss the higher-frequency modes as
artifacts. How accurate is that association? Intuitively we expect it to be most
reliable—both spatially and temporally—when ω � ωcutoff, and to become
increasingly deceptive as ω ↑ ωcutoff. A proper answer requires, however, that
we do precisely what we have been at pains thus far to avoid—that we actually
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carry to completion the program sketched on page 4. This can, in fact, be
done,3 and yields

ωexact
n = ω0 ·

2
π

(N + 1) sin
[

n

N + 1
π

2

]
: N = 1, 2, . . . , N

Evidently ωn(crystal) < ωn(associated string) in all cases, and

ωn(crystal) ∼ ωn(associated string) only for n� N

as illustrated in the accompanying figure. Pretty evidently, wave motion on a

increasing n

ωcutoff

N

Figure 4: Natural frequencies of a crystal compared with those of
the associated clamped string.

crystal is dispersive, and becomes (as on a string) non-dispersive only in the
low-frequency limit.

If our interest attached actually to the physics of discrete N -body systems,
then the moral implicit in preceeding remarks would be clear: field-theoretic

3 See pp. 67–68 of U. Grenander & G. Szegö, Toeplitz Forms and Their
Applications (), who exploit the fact that the S-matrix in (5) is of such
specialized structure as to comprise an instance of a “Toeplitz matrix,” about
which much is known. Related material can also be found in §3 of E. Montroll,
“Markoff Chains, Wiener Integrals, and Quantum Theory,” Comm. Pure &
Appl. Math. 5, 415 (1952). For more immediately physical discussion see
W. Thompson, Theory of Vibrations with Applications (), which is the
source of the result quoted on p. 50 of R. Blevins, Formulas for Natural
Frequency and Mode Shape () and reproduced here.
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methods may be latently a source of striking analytic power, but must be used
with cautious circumspection. In fact our interest attaches primarily to those
“field-theoretic methods” themselves. For us, crystals are mere workshops, of
interest primarily for such clues as they may provide concerning how we, as
field-theorists, should be conducting our affairs. And so they will function in
the discussion to which we now turn.

Lagrangian formulation of the wave equation. The equations of motion (4) of
our one-dimensional crystal were at (3) obtained from a Lagrangian

L =
N∑
1

1
2mϕ̇2

n − 1
2kϕ

2
1 −

N−1∑
1

1
2k(ϕn+1 − ϕn)2 − 1

2kϕ
2
N (13)

which in notation adapted to the realities of the a-parameterized refinement
process reads

L =
N∑
1

1
2µaϕ̇

2(xn)− 1
2
c2µ
a ϕ2(a)−

N−1∑
1

1
2
c2µ
a [ϕ(xn + a)− ϕ(xn)]

2− 1
2
c2µ
a ϕ2(�−a)

or again (which is for our purposes more useful)

L =
N∑
1

1
2µaϕ̇

2(xn)−
N−1∑

1

1
2µc

2a

[
ϕ(xn + a)− ϕ(xn)

a

]2

− 1
2µc

2 · 1
aϕ

2(a)− 1
2µc

2 · 1
aϕ

2(�− a)

In the continuous limit a ↓ 0 the dangling terms vanish in consequence of the
conditions ϕ(0) = ϕ(�) = 0, and the sums become integrals; we obtain

L =
∫ �

0

1
2µc

2

{
1
c2

(
∂ϕ

∂ t

)2

−
(
∂ϕ

∂x

)2
}
dx

It becomes natural in this light to write

L =
∫ �

0

Ldx (14)

with
L = 1

2µc
2
{

1
c2ϕ

2
t − ϕ2

x

}
(15)

and to call L the “Lagrangian density .” Since µ signifies mass density, µc2 has
the physical dimensionality of an energy density, and we have

[L] = energy/length = energy density

We stand now in position (i) to trace the crystaline Lagrangian (13) to
its continuous limit (14), and (ii) to trace the associated system (4) of coupled
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equations of motion to its continuous limit (8). It becomes natural at this point
to ask: Can the field equation (8) be obtained directly from the Lagrangian
density (15)? A little experimentation leads to the observation that

1
c2ϕtt − ϕxx = 0 can be formulated

{
∂

∂t

∂

∂ϕt
+

∂

∂x

∂

∂ϕx

}
L = 0

Moreover, we could in fact (since the Lagrange density of (15) displays no
explicit ϕ-dependence) write{

∂

∂t

∂

∂ϕt
+

∂

∂x

∂

∂ϕx︸ ︷︷ ︸−
∂

∂ϕ

}
L = 0 (16)

one such term for each independent variable

if we wanted to maximize formal resemblance to the Lagrange equation{
d

dt

∂

∂ϕ̇
− ∂

∂ϕ

}
L = 0

familiar from particle mechanics (in which context t is the solitary independent
variable).

It is interesting to note that by nothing more complicated than a sign
change (L = T − U −→ E = T + U) we obtain this description

E =
∫ �

0

Edx with E = 1
2µc

2
{

1
c2ϕ

2
t + ϕ2

x

}
(17)

of the energy resident on our vibrating string. That (global) energy conservation

Ė = 0

is an implication of the field equation (i.e., of the equation of motion) can be
established as follows:

Ė = µc2
∫ �

0

{
1
c2ϕtϕtt + ϕxϕxt

}
dx

But by assumption ϕ satisfies 1
c2ϕtt − ϕxx = 0, so

= µc2
∫ �

0

{ϕtϕxx + ϕxϕxt} dx

= µc2
∫ �

0

∂

∂x
(ϕtϕx) dx

= µc2 ϕtϕx

∣∣∣∣�
0

= 0 since ϕ(0, t) = ϕ(�, t) = 0 (all t) entails ϕt(0, t) = ϕt(�, t) = 0
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Later we will be in position to discuss the deeper origins of a large population
of statements of which energy conservation is but an illustrative example.

Field-theoretic formulation of Hamilton’s principle. In the classical mechanics of
particles it is possible to dismiss the statement

δ

∫
Ldt = 0 ⇐⇒

{
d

dt

∂

∂q̇i
− ∂

∂qi

}
L = 0 : i = 1, 2, . . . , n

as but an elegant curiosity, for one enters into discussion of Hamilton’s principle
already in full command—thanks via Lagrange to Newton—of the equations
of motion. The history of field theory supplies, however, no “Newton”—no
ready-made general formulation of the equations of motion. In field theory it
is, as will emerge, a generalization of Hamilton’s principle which steps into the
breech. The elegantly simple statement δS = 0 acquires in field theory a force
and a degree of practical utility far beyond anything for which our pre-field-
theoretic experience has prepared us. It becomes the central unifying principle
of our subject—its workhorse.

Our objective here will be to establish the sense in which

δS = 0 =⇒ field equations

but before we play chess we must put the pieces on the board. We begin
by noticing that while a single field ϕ(x, t) served to describe the longitudinal
vibration of a clamped string, two fields—call them ϕ1(x, t) and ϕ2(x, t)—would
be required to describe the transverse vibration of such a system. And if our
string had non-vanishing cross section we might find it necessary4 to introduce
yet another field ϕ3(x, t) to describe its torsional motion. Evidently a (finite)
set of field functions

ϕ1(x, t), ϕ2(x, t), . . . , ϕN (x, t)

will in the general case be required to describe the state of a distributed system,
and these will, in the general case, be dimensionally diverse.5

Our string field ϕ was a t-dependent structure defined on a line, but in
general our field systems ϕ1, ϕ2, . . . , ϕN (collectively denoted ϕ) will reside
on manifolds of several dimensions. We write x1, x2, . . . , xn (collectively xxx) to
refer to some specified coordinatization of the manifold. Typically we will have
n = 3 and x1, x2, x3 will refer to a Cartesian coordinate system, but by no
means—consider the field that lives on a torus—will that be universally the
case.

4 See in this connection §6.1 “Generation of torsional waves by bow-friction
forces” in L. Cremer, The Physics of the Violin ().

5 In the preceeding example ϕ, ϕ1 and ϕ2 refer to spatial displacements, and
have therefore the dimensionality of length, while the angular variable ϕ3 is
dimensionless.
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Only rarely in particle mechanics do the physical constants which enter into
the description of a system permit the formation of a “natural velocity.” In field
theory, on the other hand, it is rare when the available physical constants do
not permit the formation of one or more natural velocities—constants c1, c2, . . .
which describe (or at any rate enter into the description of) the “rapidity with
which effects propagate.”6 In this respect the “velocity of light” c = 1/

√
ε0µ0 is

entirely typical, though it is atypical in that it is assigned by special relativity
a preferred role which in the end has nothing special to do with light! In the
presence of such a constant it becomes possible to write x0 = ct, and natural
in place of ϕ(t, xxx) to adopt the still more compact notation ϕ(x). This we will
frequently find it convenient to do, and collaterally to write simply ∂ϕ when
we have in mind the entire population of first partials

ϕα,i =
∂ϕα
∂xi

where
{
α = 1, 2, . . . , N
i = 0, 1, . . . , n

At a deeper level, these opportunistic adjustments invite one to think of the
fields ϕ(x) not as objects that move on an n-dimensional manifold, but as
objects that inhabit an (n+ 1)-dimensional spacetime.

Our chess board is now set up; it is time to play the game. As an opening
move, we assume a Lagrange density of the form L(ϕ, ∂ϕ, x) to have been
given.7 Within the particular context provided by our clamped string system
we find it natural to introduce an action functional by writing

S[ϕ(x, t)] =
∫ t2

t1

Ldt with L =
∫ �

0

L(ϕ, ∂ϕ, x)dx

or, more compactly,

S[ϕ(x, t)] =
∫ ∫

R
L(ϕ, ∂ϕ, x) dtdx

where R refers to the “rectangular box” in spacetime defined t1 ≤ t ≤ t2 ,
0 ≤ x ≤ �. By straightforward extension, we take R to be an arbitrary
domain (or “bubble”) in n+ 1-dimensional spacetime and agree to let

SR[ϕ] =
∫

R
L(ϕ, ∂ϕ, x)dtdx1 · · · dxn (18)

serve in the general case to define the “action functional relative to R” of the
field system L(ϕ, ∂ϕ, x): ϕ = {ϕ1, ϕ2, . . . , ϕN}. In the following figure I have

6 The non-relativistic quantum mechanics of a particle—thought of as a
classical field theory—is in this respect the great exception.

7 Note the assumed absence of arguments of the type ∂∂ϕ, ∂∂∂ϕ, . . . Such
terms, were we proceeding from a crystaline model, would reflect the presence of
next-nearest-neighbor and even more remote interactions. Evidently we proceed
subject to a tacit locality assumption.



Hamilton’s principle 17

attempted to represent the geometrical image one has in mind when one draws
upon the fundamental definition (18).

Figure 5: A “bubble” R in the (n + 1)-dimensional spacetime
inhabited by the field system {ϕ1, ϕ2, . . . , ϕN}

We look to the leading-order response SR −→ SR + δSR of the action
functional SR[ϕ] to hypothetical variation ϕ −→ ϕ + δϕ of the field system,
subject to the explicit stipulation that

δϕ = 0 on the boundary ∂R of R

Writing8

δSR[ϕ] = SR[ϕ+ δϕ]− SR[ϕ]

=
∫

R

{
L(ϕ+ δϕ, ∂ϕ+ δ∂ϕ, x)− L(ϕ, ∂ϕ, x)

}
dx

8 I adopt here and henceforth the abbreviation

dx = dtdx1 · · · dxn = 1
cdx

0dx1 · · · dxn

where c has been selected from the population of velocities c1, c2, . . . natural
to the system in hand. The latter variant, though almost always available in
principle, will acquire special naturalness and utility in connection with the
theory of relativistic classical fields.
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we (by Taylor expansion of the integrand) obtain

δSR[ϕ] =
∫

R

{
∂L

∂ϕα
δϕα +

∂L

∂ϕα,i
δϕα,i

}
dx

where
∑
α and

∑
i are understood. Pretty clearly

δϕα,i = ∂i (δϕα)

so, integrating by parts, we have

δSR[ϕ] =
∫

R
δϕα

{
∂L

∂ϕα
− ∂

∂xi
∂L

∂ϕα,i

}
dx+

∫
R

∂

∂xi

(
δϕα

∂L

∂ϕα,i

)
dx

But the second of the integrals on the right has the structure
∫
R(∂iA

i)dx, and
by the divergence theorem9

∫
R(∂iA

i)dx =
∫
∂R Aidσi so∫

R

∂

∂xi

(
δϕα

∂L

∂ϕα,i

)
dx =

∫
∂R

(
δϕα

∂L

∂ϕα,i

)
dσi

which vanishes since, by assumption, δϕ = 0 on the boundary δR of R. Therefore

δSR[ϕ] =
∫

R
δϕα

{
∂L

∂ϕα
− ∂

∂xi
∂L

∂ϕα,i

}
dx (19)

By Hamilton’s Principle, ϕ will be “dynamical” if and only if

δSR[ϕ] = 0 for all regions R and all variations δϕ (20)

It follows from (19) that if the field system ϕ conforms to Hamilton’s Principle
then the field functions ϕ1, ϕ2, . . . , ϕN have necessarily to be solutions of the
field equations{

∂

∂ϕα
− ∂

∂xi
∂

∂ϕα,i

}
L(ϕ, ∂ϕ, x) = 0 α = 1, 2, . . . , N (21)

These comprise an N -fold system of coupled second-order partial differential
equations. Equations (21) are of a form which was anticipated already at (16),
and can in a more explicit notation be expressed

∂L

∂ϕα
− ∂2L

∂ϕβ∂ϕα,i
ϕβ,i −

∂2L

∂ϕβ,j∂ϕα,i
ϕβ,ij − ∂∂∂i

∂L

∂ϕα,i
= 0 (22)

where
∑
α,

∑
i and

∑
j are understood, and where ∂∂∂i looks only to the explicit

x-dependence of L(·, ·, x). The field equations will, in the general case, be
non-linear.

9 Which is to say, by Gauß’ theorem—by a particular instance of Stokes’
theorem. Here dσi signifies an outer-directed surface element.
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Gauge freedom in the construction of the Lagrangian. The Lagrangian density L

plays in field theory precisely the “system characterizer” role which in particle
mechanics is played by the Lagrangian, L(q, q̇, t). The

field system ←→ Lagrangian density

association is, however—like its particle mechanical counterpart—non-unique.
If L and L′ stand in the relation

L′(ϕ, ∂ϕ, x) = L(ϕ, ∂ϕ, x) + ∂kG
k(ϕ, x)

then they give rise to identical field equations, for the simple reason that (as
can be shown by explicit calculation){

∂

∂ϕα
− ∂

∂xi
∂

∂ϕα,i

}
∂kG

k(ϕ, x) = 0 identically, for all Gk(ϕ, x)

Insight into the origin of this important fact follows from the observation that
the gauge transformation

L −→ L′ = L + ∂kG
k (23)

induces

SR =
∫

R
Ldx −→ SR

′ =
∫

R
L′dx

= SR +
∫

R
∂kG

kdx

= SR +
∫
∂R

Gkdσk by the divergence theorem

and that the final term—the boundary term—is, for the purposes of Hamilton’s
Principle, invisible.

Non-uniqueness—gauge freedom—entails that the Lagrangian density L is,
its formal importance notwithstanding, not itself directly “physical.” It is, in
this respect, reminiscent of the potentials U(x) of particle mechanics, which are
determined only up to gauge transformations of the form

U(x) −→ U ′(x) = U(x) + constant

In the laboratory one measures not potentials, but only such gauge-invariant
constructs as (for example) potential differences. Gauge freedom imposes upon
us an obligation frequently to attach (at least tacitly) tedious qualifications to
statements we might prefer to keep sharply simple. For example: if L depends
quadratically upon ϕ and ∂ϕ then (see again (22)) the associated field equations
will be linear . It would, however, be incorrect to state that “linearity implies
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the quadraticity” of L, for to L we could aways add a quadraticity-breaking
gauge term.

We have now in hand, in the field equations (21), the general field-theoretic
proposition of which (16) provided our first hint. We turn now to a discussion
the objective of which will be to establish in similar generality the origins of a
population of important propostions of which (17) is the precursor. We turn,
in short, to a discussion of “Hamilton’s Principle, Part II”—i.e., of Noether’s
Theorem in its original (classical field-theoretic) setting.

Field-theoretic formulation of Noether’s Theorem. Emmy Noether (–)
is today remembered by mathematicians primarily for the importance of her
contributions to algebraic number theory, especially to the theory of ideals and
to several aspects of the theory of invariants. But her name will live forever
among physicists for the work which is our present subject matter. I digress to
sketch the soil from which that work sprang.

Noether did the first semester of what we would today call graduate study
at the University of Göttingen (winter term –), where she audited10

lectures by (among others) Hermann Minkowski, Felix Klein and David Hilbert.
She then returned to Erlangen, where her father was a professor, where Felix
Klein (–) had in his inaugural lecture () propounded the influential
“Erlangen Program”11 which held the group and invariance concepts to be
among the central organizing principles of mathematical (and also physical)
thought, and where Paul Gordon (–) became her mentor. Research
publications by E. Noether began appearing in . Meanwhile. . .

Einstein was at the sublime height of his powers during the “miracle
decade” –, and his work—especially that relating to the development
of general relativty—attracted the close attention of mathematicians, especially
(at Göttingen) of Klein and Hilbert. In  Noether—though unable because
of her sex to obtain either an advanced degree or a paid teaching position—
returned to Göttingen, where she soon became a kind of unofficial assistant to
Klein and especially Hilbert. In November of  Noether wrote to a friend
back in Erlangen that “the theory of invariants is the thing here now; even
the physicist Hertz12 is studying [the subject]; Hilbert plans to lecture next
week about his ideas on Einstein’s differential invariants, and so our crowd had
better be ready.” To another friend she reported that she and collaborators
were carrying out calculations of the most difficult kind for Einstein “although
none of us understands what they are for.” Klein remarks in a letter to Hilbert

10 Women were still at the time permitted to audit, but not to enroll as
students in advanced courses of study.

11 For a good discussion of the historical impact of the Erlangen Program see
E. Bell, Development of Mathematics (), pp. 442–453.

12 The reference is to Gustav Hertz (–), later to acquire fame for his
participation in the celebrated “Franck–Hertz experiment.” The theoretically
astute Heinrich Hertz certainly would have had interest in such material, but
had died already in .
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that “Noether is continually advising me in my projects, and it is really through
her that I have become competent in the subject. . . ” Hilbert makes reference
in his response to “Emmy Noether, whom I called upon to help me with such
questions as my theorem on the conservation of energy. . . ” It was Noether’s
effort to be “helpful” in precisely that connection which led to the development
of “Noether’s Theorem.”

By  it had finally become possible (owing to a change in German law;
manpower had become short in a Germany at war) for a woman to earn an
advanced degree, and to hold a university appointment. On  June —
six days after A. S. Eddington had obtained solar eclipse data in agreement
with Einstein’s prediction of the bending of star light—Noether stood before
a mathematical faculty which included R. Courant, P. Debye, Hilbert, Klein,
E. Landau, L. Prandtl and W. Voigt to deliver her Habilitation lecture. She had
been active in many areas during her years at Göttingen, and could have spoken
on a wide variety of topics. But she chose in fact to speak on research which she
had published already in  under the title “Invariante Variationsprobleme.”
Concerning that work she wrote at the time as follows:

“The last. . . of the works to be mentioned here concern differential
invariants and variational problems and in part are an outgrowth
of my assistance to Klein and Hilbert in their work on Einstein’s
general theory of relativity. . .The [paper], which I designated as my
Habilitation thesis, deals with arbitrary finite or infinite continuous
groups, in the sense of Lie, and discloses what consequences it has
for a variational problem to be invariant with respect to such a
group. The general results contain, as special cases, the theorems
on first integrals as they are known in mechanics; furthermore, the
conservation theorems and the interdependences among the field
equations in the theory of relativity—while, on the other hand, the
converses of these theorems are also given. . . ”

Short biography does invariable violence to the always-intricate facts of the
matter. For those I must refer you, dear reader, to the relevant literature,13

which anticipate, I think likely to make a lasting impression upon you. Here
my objective has been simply to suggest that the work for which Noether’s
name will forever be remembered by physicists is work which is in fact clearly
consonant with the principal themes evident in the larger body of her mathe-
matical work. It very cleverly exploits and enshrines a little constellation of
ideas which were very much in the air—at Göttingen and elsewhere—during

13 My principal source has been A. Dick’s Emmy Noether (), but see
also Emmy Noether: A Tribute to Her Life and Work (edited by J. Brewer &
M. Smith, and published in that same centennial year) and the deeply informed
and sensitively written obituary by Hermann Weyl which can be found at
p. 425 in Volume III of his Gesammelte Adhandlugen (). The circumstances
associated specifically with the development of Noether’s Theorem are discussed
on p. 431.
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the first years of this century, and which have assumed ever greater importance
as the century has matured.

Noether’s Theorem emerges fairly spontaneously when two ideas are (so
to speak) “rubbed against each other.” The first of those has to do with the
concept of “dynamical action,” the other with the concept of “parameterized
map.” We consider them in that order:

Let L(ϕ, ∂ϕ, x) be given, and let ϕ(x) be some solution of the associated
field equations. We agree to write ϕdynamical(x) when we wish to emphasize
that it is such field functions—“dynamical” field functions—that we have in
mind. The phrase “dynamical action” refers then to constructions of the form

SR[ϕdynamical(x)]

Easy enough. . . yet complex enough to conceal some deep mysteries, as comes
quickly to light when one looks to the corresponding construct in ordinary
particle mechanics. Consider L(q, q̇, t) to be given, and take qdynamical(t) to be
a solution of the associated equations of motion which conforms to endpoint
conditions

qdynamical(t) =
{
q1 when t = t1
q2 when t = t2

Familiarly, the action functional S[q(t)], when evaluated at q(t) = qdynamical(t),
becomes a function of the endpoint data:

S[qdynamical(t)] = S(q2, t2; q1, t1)

But while initial data

q(t1) = q1 and q̇(t1) = v1

generally is sufficient to determine q(t) = qdynamical(t) uniquely, endpoint data
generally is not; evidently the dynamical action function must, in the general
case, be multi-valued. This important fact we attribute to the circumstance
that while statements of the form

S[q(t)] = extremum

are global in character (and might for that reason be expected to admit in most
cases of a unique solution), Hamilton’s Principle δS[q(t)] = 0 imposes only a
local condition on the trajectory q(t). Returning in this light to classical field
theory, we expect to have

SR[ϕdynamical(x)] = some function S(ϕ(∂R)) of prescribed boundary data

Moreover, we expect S(ϕ(∂R)) to be in the general case multi-valued . But it
is by no means obvious that there even exists a ϕdynamical(x) which conforms
to arbitrarily prescribed boundary data ϕ(∂R), and to resolve such an issue
one would have to enter distractingly far into the general theory of partial
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differential equations. Happily, we can proceed formally in total ignorance
of such theory, and address such matters on a case by case basis as specific
occasions arise.

Turning now to the concept of “parameterized map” as it enters into
Noether’s train of thought. . . the simplest manifestation of basic idea emerges
naturally as soon as one agrees to look upon rotations, translations, dilations,
curvilinear deformations and other such point-to-point transformations as
“flows” achieved by specification of one or more continuously variable “control
parameters” ω = {ω1, ω2, . . . , ων}. More concretely, let a coordinate system be
inscribed on the (n+1)-space inhabited by our field system, let x and X signify
the coordinates of a point and its image, write

Tω : x −→ X(x;ω) (24)

and (though it entails the exclusion of such otherwise unexceptionable—and
frequently important—transformations as reflections and projections) agree to
look henceforth only to cases in which the set T={Tω} has these properties:

• compositional closure: For every pair {ω1, ω2} there exists an ω(ω1, ω2)
such that Tω2

Tω1
= Tω(ω1,ω2)

• existence of an identity : There exists within T an element Tω0
such that

X(x;ω0) = x for all x ; we henceforth assume the parameterization to have been
rigged in such a way as to achieve ω0 = 0, and write T0 to denote the identity
transformation.

• existence of an inverse: For every ω there exists an Ω(ω) such that TΩTω =
T0; in other words, X(X(x;ω); Ω(ω)) = x for all x and all ω.

• associativity : Tω3
(Tω2

Tω1
) = (Tω3

Tω2
)Tω1

We are brought thus to the notion of a “continuous group of transformations,”
of which ω(ω1, ω2) is, in effect, the “group multiplication table.” The theory of
such groups—“Lie groups,” as they are called—was (together with the details
of a great many illustrative applications) worked out almost single-handedly
by the Norwegian mathematician Sophus Lie (-) during the ’s
and ’s.14 Fundamental to the theory of Lie groups is the insight that
finite transformations can be built up by iteration of infinitesimal ones; the
structure of a Lie group is latent already in its structure in the infinitesimal
neighborhood of the identity. Returning in this light to (24)—which, as we
have rigged things, reduce to description of the map as experienced in the

14 Lie and the precocious Klein (seven years his junior) had been students
together at Göttingen. Klein was initially Lie’s collaborator, and stood always
ready to lend him support and encouragement. And Klein was, as I have
remarked, one of Noether’s primary mentors; the ideas here at work were
therefore entirely natural to her. For a good brief account of Lie’s work in
its original setting (unified theory of differential equations), see Chapter V of
E. Ince’s classic Ordinary Differential Equations ().
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neighborhood of the point ω = 0 in parameter space—we have

Tδω : x −→ X(x; δω) = x+δωx

with δωx =
ν∑
r=1

Xr(x)δωr

where the functions Xr(x)—called “structure functions” because it is they which
account ultimately for the distinctive structure of the particular Lie group
in hand—can, in the notation natural to the finite transformation (24), be
described

Xr(x) =
∂X(x;ω)
∂ωr

∣∣∣∣
w=0

The (infinitesimal) “parameterized maps” (my terminology) contemplated
by Noether appropriate, but at the same time enlarge upon, the root idea
sketched above. The map Tδω is understood by Noether to be “bipartite,”
in this sense: it sends spacetime points to new spacetime points (in precisely
the manner described above), and—simultaneously but quite independently—it
adjusts the functional structure of the field functions ϕ(x):

Tδω :
{

x −→ X(x ; δω) = x + δωx
ϕ(x) −→ Φ(X; δω) = ϕ(x) + δωϕ(x) (25)

where (installing all indices, but surpressing a
∑
r)

δωx
i = Xir(x)δωr (26.1)

δωϕα(x) = Φαr(x)δωr (26.2)

The field variation δωϕα(x) derives, as emphasized above, from two distinct
sources, and those contributions are (since we are working in lowest order)
additive; we have

δωϕα(x) = contribution from variation of argument
+ contribution from variation of functional form

Since the former can be described ϕα,iδωx
i we can notate the preceeding

disentanglement as follows:

δωϕα = ϕα,iδωx
i +

{
Φαrδω

r − ϕα,iδωx
i
}

= ϕα,iδωx
i +

{
Φαr − ϕα,iX

i
r

}︸ ︷︷ ︸ δωr
= ∆ωϕα (27.1)

Similarly

δωϕα,i = ϕα,ijδωx
j + ∆ωϕα,i with ∆ωϕα,i =

(
∆ωϕα

)
,i

(27.2)

which serves to disentangle the variations of the various field derivatives.
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Armed as we are with some understanding of the concepts of “dynamical
action” and “parameterized map,” we are in position now at last to put those
ideas into the same pot and stir; we will find that Noether’s Theorem emerges
(as I have claimed) “fairly spontaneously,” but not without the exercise of some
trickery. We look to the description of

δωSR[ϕ] = SR+δR[Φ]− SR[ϕ]

subject to the assumption that ϕ is a solution of the field equations. Writing

SR+δR[Φ] =
∫

R+δR
L(Φ(X), . . .)dX

we have

=
∫

R
L(Φ(X(x)), . . .)

∣∣∣∣∂X∂x
∣∣∣∣ dx

after the indicated change of variables.15 Therefore (introducing a term at the
beginning only to subtract it again at the end)

δωSR[ϕ] =
∫

R

{
L(Φ(X(x)), . . .)− L(ϕ(x), . . .)

}
dx

+
∫

R
L(Φ(X(x)), . . .)

{∣∣∣∣∂X∂x
∣∣∣∣− 1

}
dx

Expansion of the Jacobian (use det(I + εM) = 1 + εtrM + · · ·) gives{∣∣∣∣∂X∂x
∣∣∣∣− 1

}
=

∂

∂xk
(δωx

k) + · · ·

Since this expression is itself of first order, and we are working only in first
order, we can in the second integral replace L(Φ(X(x)), . . .) by its zeroth order
approximation L(ϕ(x), . . .), giving

δωSR[ϕ] =
∫

R

{
L(Φ(X(x)), . . .)− L(ϕ(x), . . .)

}
dx

+
∫

R
L(ϕ(x), . . .)

∂

∂xk
(δωx

k)dx

Turning our attention now to the first of the integrals in the preceeding equation,
we use

Φα(X) = ϕα(x) + δωϕα(x) and Φα,k(X) = ϕα,k(x) + δωϕα,k(x)

to obtain

15 Noting that every X in R + δR is the image under Tδω of an x in R, we
have elected to adopt the latter as our variables of integration. This has the
effect of making both integrals range on the same domain.
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∫
R

{
L(Φ(X(x)), . . .)− L(ϕ(x), . . .)

}
dx

=
∫

R

{
∂L

∂ϕα
δωϕα +

∂L

∂ϕα,j
δωϕα,j +

∂∂∂L

∂∂∂xk
δωx

k

}
dx

which by (27) becomes

=
∫

R

{
∂L

∂ϕα
∆ωϕα +

∂L

∂ϕα,j

∂

∂xj
(∆ωϕα)

+
[
∂L

∂ϕα
ϕα,k +

∂L

∂ϕα,j
ϕα,jk +

∂∂∂L

∂∂∂xk

]
︸ ︷︷ ︸ δωx

k

}
dx

=
∂L

∂xk

so after some slight manipulation we obtain

=
∫

R

{
δωx

k ∂L

∂xk
+

[
∂L

∂ϕα
− ∂

∂xj
∂L

∂ϕα,j

]
︸ ︷︷ ︸ ∆ωϕα +

∂

∂xk

(
∂L

∂ϕα,k
∆ωϕα

)}
dx

0

Here the expression internal to the square bracket vanishes by virtue of our
assumption that ϕ is dynamical . Combining this result with that achieved near
the bottom of the preceeding page, we obtain

δωSR[ϕ] =
∫

R

∂

∂xk

[
∂L

∂ϕα,k
∆ωϕα + Lδωx

k

]
dx

Drawing finally upon (26.1) and (27.1), we obtain Noether’s Theorem:

δωSR[ϕdynamical] =
ν∑
r=1

δωr ·
∫

R

(
∂kJ

k
r

)
dx =

ν∑
r=1

δωr ·
∫
∂R

Jkr dσk (28)

with
Jkr =

∂L

∂ϕα,k

{
Φαr − ϕα,iX

i
r

}
+ LXkr (29)

where
∑
α and

∑
k are understood.

Equation (29) can—quite naturally, in view of the construction ∂kJ
k
r which

made unbidden claim to our attention at (28)— be considered to describe the
k-indexed components of an object JJJr. One such object—one such “Notherian
current”—is associated with each of the parameters ωr which enter into the
description of the map T. One can write out the the explicit description

Jkr = Jkr (ϕ, ∂ϕ, x)



Application of Noether’s Theorem 27

of such a JJJr as soon as one is in possession of (i) the Lagrangian density
L(ϕ, ∂ϕ, x) characteristic of the system in hand, and (ii) the structure functions
Xir(x) and Φαr(ϕ, x) characteristic of the map. The question, however, remains:
what is such knowledge good for?

General considerations relating to the application of Noether’s Theorem. We
came at (28) to a conclusion of which

δωSR[ϕ] =
∑
r

δωr ·
∫

R
divJJJrdx =

∑
r

δωr ·
∫
∂R

JJJr···dddσσσ (30)

provides a picturesque abbreviation. This is a result of charming simplicity, but
it is for the power of its immediate implications that it is celebrated. Suppose,
for example, that it could on some grounds be asserted that

δωSR[ϕ] = 0 for all bubbles R and all variations δω (31)

It would then follow that

∂kJ
k
r = 0 : r = 1, 2, . . . , ν (32)

These are “continuity equations,” statements of the form

∂
∂t (density) +∇∇∇···(f luxfluxflux) = 0

What we have in (32) is an ν-fold set of conservation laws.
Insofar as (31) =⇒ (32), Noether’s Theorem serves to provide a particularly

precise and powerful formulation of the connection between symmetries (of the
dynamical action) on the one hand, and conservation laws on the other. It
derives its power in part from the fact that it formulates the association

symmetry ←→ conservation

in terms which are rooted in a variational principle, and which are, therefore,
essentially coordinate-free. When a new conservation law has been discovered
(experimentally, let us say), it becomes urgent in this light to undertake a
search for the underlying symmetry, and when such a symmetry is discovered it
is difficult to resist the conclusion that one has discovered something “deep.”16

It is useful to notice that Noether’s Theorem gives rise to currents JJJ which
tend generally to be “interesting” to precisely the degree that the associated
map is interesting—whether or not JJJ happens to be in fact conserved. Energy,
momentum, angular momentum. . . are, interesting (because frequently useful)
physical constructs even in contexts where they are not conserved. Special

16 Such searching may, however, prove futile. Contrary to a widely-held
belief, there exist conservation laws which do not have their origin in invariance
properties of the dynamical action.
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interest attaches (but not exclusively) to maps which embody isometries of the
spacetime manifold .

One should bear in mind that conservation laws—whatever the “symmetry
considerations” that may have been that led to their discovery—have ultimately
this status: they are implications of the equations of motion. This is true
even when (as in relativistic field theory) the symmetry is one which has been
intentionally “built into” the field equations. By way of illustration, consider
the simple “translational map”

Ttranslation
δω :

{
xi −→ Xi (x ; δω) = xi + δωi

ϕα(x) −→ Φα(X; δω) = ϕα(x)
(33)

Comparison with (26) shows the associated structure functions to be given by

Xij = δij and Φαj = 0

We are led thus from (29) to expressions of the design

Jkj =
∂L

∂ϕα,k

{
0− ϕα,iδ

i
j

}
+ Lδkj

which, in respect for entrenched tradition, we agree to notate

Skj =
∂L

∂ϕα,k
ϕα,j − Lδkj (34)

and to call the “stress-energy tensor.”17 Does (33) describe in fact asymmetry,
in the sense δωSR[ϕ] = 0, of the dynamical action? Is it in fact the case that
∂kS

k
j = 0? By calculation

∂kS
k
j =

[
∂

∂xk
∂L

∂ϕα,k

]
ϕα,j +

∂L

∂ϕα,k
ϕα,kj −

∂L

∂ϕα
ϕα,j −

∂L

∂ϕα,i
ϕα,ij −

∂∂∂L

∂∂∂xk

Since the second term cancels the fourth (trivially), and the first cancels the
third in consequence of the equations of motion, we have

∂kS
k
j = − ∂∂∂L

∂∂∂xk

= 0 if and only if L has no explicit x-dependence

17 It is, of course, entirely natural to assign particularized names/notations to
Noetherian currents which—as here—derive from particularized assumptions.
But when one attaches the word “tensor” to an object one is not simply alluding
to its indicial decorations; one is making a statement concerning the explicit
transformation properties of the object in question. We ourselves have yet to
discuss the transformation properties of Skj .
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In all applications of Noether’s Theorem one stands with one foot planted
in particularities of the map, and the other in particularities of the system—
that is, of the Lagrange density L which serves to describe the system. In the
preceeding discussion L remained unspecified at (34), and we came ultimately
to an L -dependent conclusion. Suppose it were in fact the case that the
Lagrangian possessed the x-independent structure

L = L(ϕ, ∂ϕ)

which the conservation law(s) ∂kS
k
j = 0 have been seen to entail. We are

in position now to appreciate the importance of the observation that by gauge
transformation, structural features of the Lagrangian—whence also symmetry
properties of the associated action functional—can be profoundly altered . The
Lagrangian

L′ = L(ϕ, ∂ϕ) + ∂kG
k(ϕ, x) = L′(ϕ, ∂ϕ, x)

will, in general, not be x-independent; it serves equally well to describe the
physical system in hand (it gives rise to the same field equations), but leads
via (34) to an S′k

j which is distinct from Skj and which is, in general, not
conserved. Had we adopted L′ at the outset, we would have obtained ∂kS

′k
j �= 0,

and would—though they remain valid properties of the system—have missed
the conservation laws ∂kS

k
j = 0. We would have picked up the latter

information only if we had thought to ask

Can the x-dependence of L′(ϕ, ∂ϕ, x) be “gauged away”?

As was observed already at (23)

L −→ L′ = L + ∂kG
k induces SR −→ S′

R = SR +
∫
∂R

Gkdσk (35)

It is the boundary term which, though invisible to Hamilton’s Principle, can do
violence to applications of Noether’s Theorem. Reading from (29), we obtain

Jkr −→ J ′k
r = Jkr +

{[
Φαr − ϕα,iX

i
r

] ∂

∂ϕα,k
+ Xkr

}(
∂jG

j
)

︸ ︷︷ ︸ (36)

Gkr (ϕ, ∂ϕ, x)

In exceptional cases it will be possible to write

Gkr = ∂jA
jk
r with Ajkr = −Akjr

In such cases—some of which are, as will emerge, physically quite important—
the symmetry of the action functional is preserved; one has

∂kJ
k
r = 0 ⇐⇒ ∂kJ

′k
r = 0
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It becomes natural in this light to anticipate that there will arise cases in
which it is appropriate to absorb “parameterized gauge transformations” into
an enlarged conception of what we are to mean by a “parameterized map,”
writing

Tδω :




xi −→ xi + δωr · Xir
ϕα(x) −→ ϕα(x) + δωr · Φαr

L −→ L + δωr · ∂jGjr
(37)

in place of (25). Slight adjustment of the argument that gave (29) then gives

Jkr =
∂L

∂ϕα,k

{
Φαr − ϕα,iX

i
r

}
+ LXkr + Gkr (38)

We recall in this connection that in particle mechanics it is precisely such a
generalization that makes it possible to construct a Noetherian account of the
implications of Galilean covariance.18

Each of the statements (32) provides what is, in effect, the differential
formulation of a local conservation law . What are the associated “conserved
quantities?” The question is best approached by looking to the corresponding
integral statements∫

∂R
Jkr dσk = 0 for all R, with r = 1, 2, . . . , ν (39)

Take R to have, in particular, the form of a “spacetime drum,” as illustrated in
the figure at the top of the next page. We then have∫

top

JJJr···dddσσσ +
∫

sides

JJJr···dddσσσ +
∫

bottom

JJJr···dddσσσ = 0

The middle term will be assumed to vanish, either because we have imposed
spatial boundary conditions of the form JJJr(sides) = 000 or because we have
“pushed the sides of the drum to infinity,” where JJJr has been assumed to
die a natural asymptotic death. The surface differentials dddσσσ are, by stipulation
of the divergence theorem, all “outer-directed,” which on the bottom of the
drum means “past-directed.” Let us, however, adopt the convention that
surface differentials associated with “timeslices” (surfaces of constant t) will
in all cases be “future-directed.” We then have∫

top

JJJr···dddσσσ + 0−
∫

bottom

JJJr···dddσσσ = 0

or again ∫
top

JJJr···dddσσσ =
∫

bottom

JJJr···dddσσσ

—quite irrespectively of the particular t -value used to position the top of the

18 See, for example, Classical Mechanics (), p. 169 and the discussion
which appears on pp. 161–170 of Classical Field Theory ().
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Figure 6: A “drum” in spacetime—a bubble bounded above and
below by “timeslices.” All points on the top surface have time
coordinate t, and all points on the bottom have time coordinate t0.
The edges of the drum may, at the end of the argument, recede to
infinity.

drum. The implication is that the integrated expressions∫
top

JJJr···dddσσσ ≡
∫ ∫

· · ·
∫

J0
r dx

1dx2 · · · dxn : r = 1, 2, . . . , ν (40)

are (global) constants of the field motion.
Returning, by way of illustration, to the translational map (33), we learn

from (34) that

S0
0 =

∂L

∂ϕα,0
ϕα,0 − L ≡ E

S0
1 =

∂L

∂ϕα,0
ϕα,1 ≡ P1

S0
2 =

∂L

∂ϕα,0
ϕα,2 ≡ P2

S0
3 =

∂L

∂ϕα,0
ϕα,3 ≡ P3




(41)

Here I have, in the interests of physical concreteness, set n = 3; I have assigned
x0 the meaning x0 ≡ t and have understood {x1, x2, x3} to refer to an inertial
Cartesian frame in physical 3-space. We note that E is co-dimensional with L,
and has the dimensionality therefore of an energy density (energy/volume),
while P1, P2 and P3 each has the dimensionality (energy density/velocity)
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of linear momentum density. We are in position now to assert that if the
Lagrangian density has no explicit x-dependence (i.e., is invariant with respect
to translations in spacetime), then the following number-valued expressions are
global constants of the field motion:

E =
∫ ∫ ∫

E dx1dx2dx3 = total energy

P1 =
∫ ∫ ∫

P1 dx
1dx2dx3 = total 1-component of linear momentum

P2 =
∫ ∫ ∫

P2 dx
1dx2dx3 = total 2-component of linear momentum

P3 =
∫ ∫ ∫

P3 dx
1dx2dx3 = total 3-component of linear momentum

The local equations ∂kJ
k
r = 0 can now be rendered

∂
∂t (energy density E) +∇·∇·∇·(energy fluxfluxflux) = 0

∂
∂t (momentum density P1) +∇∇∇···(associated momentum fluxfluxflux) = 0
∂
∂t (momentum density P2) +∇∇∇···(associated momentum fluxfluxflux) = 0
∂
∂t (momentum density P3) +∇∇∇···(associated momentum fluxfluxflux) = 0

and by straightforward adjustment of the arguments that gave (41) we can
obtain explicit descriptions of the fluxes in question. These statements assign
explicitly detailed meaning to the statement that field energy and momentum,
when globally conserved, are conserved because they slosh about in a locally
conservative way. And—to restate a point already made—the total energy and
momentum of a field system are of manifest “interest” even when they happen
not to be conserved!

One final remark: at no point in our work thus far have we made actual use
of the “group structure” which has been presumed to attach to the infinitesimal
parameterized maps which are themselves clearly central to Noether’s line of
argument. The families of transformations which lay natural claim to our
attention do tend generally—spontaneously—to possess the group property,
but nowhere have we had to draw upon any of the rich consequences of that
fact. That situation will change when we look to details pursuant to certain
(important) specific applications of Noether’s Theorem.

Field-theoretic analog of the Helmholtz conditions. Generalized forces Fi(q)
which are “conservative” in the sense they can be derived from a potential

Fi(q) = − ∂

∂qi
U(q)

have (owing to the general equality of the cross derivatives of U(q)) necessarily
the property that

∂Fi
∂qj
−
∂Fj
∂qi

= 0
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Conversely (by a famously more difficult line of argument), if Fi(q) possesses
the latter property then there exists such a function U(q); it is in fact the case
that—in particular consequence of a very general formula due to Poincaré19—
U(q) admits of this little-known but wonderful explicit construction

U(q) = −
∫ 1

0

Fk(τq)q
kdτ + constant (42)

The preceeding remarks serve to generalize (very slightly) the familiar statement

AAA = gradϕ ⇐⇒ curlAAA = 000

Identical ideas enter into the observation20 that the dynamical system

q̇ = f(q, p)
ṗ = g(q, p)

will admit of Hamiltonian formulation if and only if it is true of the functions
f(q, p) and g(q, p) that

∂f

∂q
+
∂g

∂p
= 0

It seems entirely natural, in the light of such remarks, to ask a question which—
quite unaccountably to me—appears in fact to be only very seldom asked:
Under what conditions do the coupled second-order differential equations

G1(q̈, q̇, q, t) = 0
G2(q̈, q̇, q, t) = 0

...
Gn(q̈, q̇, q, t) = 0

admit of Lagrangian formulation

Gi(q̈, q̇, q, t) =
{
d

dt

∂

∂q̇i
− ∂

∂qi

}
L(q̇, q, t)

The question was first explored by Hermann von Helmholtz (– ), who
in  established the necessity of the conditions

∂Gi
∂q̈j
−
∂Gj
∂q̈i

= 0

∂Gi
∂q̇j

+
∂Gj
∂q̇i

=
d

dt

[
∂Gi
∂q̈j

+
∂Gj
∂q̈i

]
∂Gi
∂qj
−
∂Gj
∂qi

=
1
2
d

dt

[
∂Gi
∂q̇j
−
∂Gj
∂q̇i

]




(43)

19 See Electrodynamics (), p. 173, or p. 14 of my “Electrodynamical
Applications of the Exterior Calculus” ().

20 See Classical Mechanics (), p. 209.
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for which A. Mayer in  established the sufficiency. To establish necessity
one has simply to notice that differential equations derived from a Lagrangian
are differential equations

Gi(q̈, q̇, q, t) =
∂2L

∂q̇i∂q̇j
q̈j +

∂2L

∂q̇i∂qj
q̇j +

∂2L

∂q̇i∂t
− ∂L

∂qi

= gij(q̇, q, t)q̈
j + hi(q̇, q, t)

of a very particular structure; they are, for example, linear in the 2nd derivatives
q̈j , and the coefficients gij are necessarily symmetric. The Helmholtz conditions
(43) emerge quite naturally when such observations are collected and—this is
the point—formulated in such a way as to make no explicit reference to the
(generally unknown) Lagrangian itself.21 In (43) we are presented with an
antisymmetric array + a symmetric array + another antisymmetric array of
conditions—conditions which in number total

1
2 (n− 1)n+ 1

2n(n+ 1) + 1
2 (n− 1)n = 1

2n(3n− 1) = 1, 5, 12, 22, 35, . . . ∼ 3
2n

2

The practical utility of the Helmholtz conditions is limited however not so
much by their number as by the fact that we never know whether equations
that fail the test might by appropriate “pre-processing” be made to pass it; by
the converse, that is to say, of the following observation: if equations Gi = 0
pass the test, then reorderings, multiplication by factors, formation of linear
combinations, etc. will result generally in equivalent equations that nevertheless
fail the test. This awkward circumstance has motivated P. Havas22 to pose and
resolve this more general question: Given an ordered system of equations

Gi(q̈, q̇, q, t) = 0

when do there exist integrating factors fi(q̇, q, t) such that the equivalent system

G̃i(q̈, q̇, q, t) ≡ fi(q̇, q, t) ·Gi(q̈, q̇, q, t) = 0

admit of Lagrangian formulation? Unsurprisingly, the conditions achieved by
Havas are markedly more complicated than the Helmholtz conditions. And
the Havas conditions, for all their complexity, contribute nothing toward the
resolution either of the ordering problem or of the linear combination problem.

Look, by way of illustration, to the simple system

G(q̈, q̇, q, t) ≡ q̈ + q = 0

Here n = 1; there is a single Helmholtz conditon, it reads

∂G

∂q̇
=

d

dt

[
∂G

∂q̈

]
21 For the details see pp. 117–120 of Classical Mechanics ().
22 “The range of application of the Lagrange formalism-I,” Nuovo Cimento

Supp. 5, 363 (1957).
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and is clearly satisfied; there exists an associated Lagrangian (Helmholtz does
not tell us how to find it) and by familiar tinkering we know it to be

L(q̇, q, t) = 1
2 q̇

2 − 1
2q

2 + possible gauge term

Look next to the system

G(q̈, q̇, q, t) ≡ q̈ + kq̇ + q = 0

The single Helmholtz condition now entails k = 0, which is the case already
studied. We conclude that if k �= 0 then no Lagrangian exists. Suppose,
however, we ask this weaker question: Does there exist an integrating factor
f(t) such that the equivalent equation

G̃(q̈, q̇, q, t) ≡ f(t) ·G(q̈, q̇, q, t) = f · (q̈ + kq̇ + q) = 0

admits of Lagrangian formulation? The Helmholtz condition is seen now to
entail fk = ḟ . We conclude that if f(t) = f0e

kt then G̃(q̈, q̇, q, t) = 0 does admit
of Lagrangian formulation (therefore of Hamiltonian formulation, therefore even
of quantum mechanical formulation!), and by unfamiliar tinkering discover the
Lagrangian to be given by

L(q̇, q, t) = 1
2f0e

kt(q̇2 − q2) + possible gauge term

We recover the previous Lagrangian at k = 0, provided we set the physically
inconsequential prefactor f0 equal to unity. By exercise of some uncommon
self-control, I shall forego discussion of some of the interesting physics that can
be extracted from generalizations of this striking result.

One gains the impression that from some sufficiently exhaulted formal
standpoint the Helmholtz conditions can be understood as but yet another
instance of the familiar “curl condition.” The reader who wishes to look more
closely into that or other aspects of our present topic might be well-advised to
start by looking into the dense pages of R. Santilli’s Foundations of Theoretical
Mechanics I: The Inverse Problem in Newtonian Mechanics ().

Returning now to field theory, we find it natural, in light of the preceeding
discussion, to ask: Under what conditions do the coupled second-order partial
differential equations

G1(∂∂ϕ, ∂ϕ, ϕ, x) = 0
G2(∂∂ϕ, ∂ϕ, ϕ, x) = 0

...
GN (∂∂ϕ, ∂ϕ, ϕ, x) = 0

admit of Lagrangian formulation

Gα(∂∂ϕ, ∂ϕ, ϕ, x) =

{
∂

∂xi
∂

∂ϕα,i
− ∂

∂ϕα

}
L(∂ϕ, ϕ, x)
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Havas, in the introduction to his paper, remarks that “the general problem
was studied in great detail by Königsberger,23 who also investigated continuous
systems” [my emphasis], so it seems quite possible that the result I am about
to describe was known to L. Königsberger and his readers (who, curiously,
seem not to have included E. T. Whittaker among their number) already 
years before it was worked out by me. In any event. . . if one proceeds in direct
imitation of the line of argument which led to (43) one is led24 to conditions
which can be notated

ðGα
ðϕβ,ij

−
ðGβ

ðϕα,ij
= 0

∂Gα
∂ϕβ,j

+
∂Gβ
∂ϕα,j

=
∂

∂xi

[
ðGα

ðϕβ,ij
+

ðGβ
ðϕα,ij

]
∂Gα
∂ϕβ

−
∂Gβ
∂ϕα

=
1
2
∂

∂xi

[
∂Gα
∂ϕβ,i

−
∂Gβ
∂ϕα,i

]




(44)

and concerning which my first obligation is to clarify the meaning and origin of
the fancy derivatives. It is an implication of ϕα,ij = ϕα,ji that

ϕα,ij = (1− λ)ϕα,ij + λϕα,ji (all λ)

and follows therefore that

F (. . . , ϕα,ij , . . . , ϕα,ji, . . .)

and its substitutional transform

F̃ (. . . , ϕα,ij , . . . , ϕα,ji, . . .)
≡ F (. . . , (1− λ)ϕα,ij + λϕα,ji, . . . , (1− µ)ϕα,ji + µϕα,ij , . . .)

are in all cases equal, but (in most cases) functionally distinct. The definition

ð

ðϕα,ij
≡ 1

2

[
∂

∂ϕα,ij
+

∂

∂ϕα,ji

]

has been cooked up to achieve (in all cases, even—trivially—in the case i = j)

ð

ðϕα,ij
F =

ð

ðϕα,ij
F̃

and thus to yield results which are invariant with respect to the exercise of
our substitutional options. If N signifies the number of field components, and

23 Die Principien der Mechanik ().
24 See Classical Field Theory (), p. 121–124.
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m = n + 1 the number of independent variables, then by delicate counting we
find the conditons (44) to be

1
2 (N − 1)N · 1

2m(m+ 1)+ 1
2N(N + 1) ·m+ 1

2 (N − 1)N

= 1
4N

[
N(m2 + 3m+ 2)− (m2 −m+ 2)

]
in number. We therefore have

1
2N( 3N − 1) conditions if m = 1
1
2N( 6N − 2) conditions if m = 2
1
2N(10N − 4) conditions if m = 3
1
2N(15N − 7) conditions if m = 4
1
2N(21N − 11) conditions if m = 5

and recover precisely the Helmholtz conditions (43) in the case m = 1. The
conditions (44) are beset with all the limitations which have previously been
seen to afflict the practical application of the Helmholtz conditions (and are
susceptible, I suppose, to the same modes of potential remedy). They are
necessary by demonstration, but concerning their sufficiency one can, at this
point, only speculate.

Look, by way of illustration, to the class of simple systems

G(∂∂ϕ, ∂ϕ, ϕ, x) = ϕtt − ϕxx + kϕp = 0

Here N = 1 and m = 2; there are two conditions (44), and they read

∂G

∂ϕt
=

∂

∂t

[
ðG

ðϕtt

]
+

∂

∂x

[
ðG

ðϕxt

]
∂G

∂ϕx
=

∂

∂t

[
ðG

ðϕtx

]
+

∂

∂x

[
ðG

ðϕxx

]

Both are readily seen to be satisfied, so we are entitled to hope (yet cannot,
in the absence of a sufficienty proof, be certain) that the system admits of
Lagrangian formulation. A little tinkering yields

L(∂ϕ, ϕ) = 1
2ϕ

2
t − 1

2ϕ
2
x − 1

p+1kϕ
p+1

At k = 0 we recover the essentials (compare (15)) of the familar wave equation,
and at p = 1 we obtain the Lagrangian system

ϕtt − ϕxx + kϕ = 0

which will acquire importance for us as the “Klein-Gordon equation.” By easy
extension we have

L(∂ϕ, ϕ) = 1
2ϕ

2
t − 1

2ϕ
2
x − F (ϕ) ⇐⇒ ϕtt − ϕxx + F ′(ϕ) = 0
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In the particular case F (ϕ) = −k cosϕ we obtain a much-studied nonlinear field
equation

ϕtt − ϕxx + k sinϕ = 0

known as the “Sine-Gordon equation,” which in the weak-field approximation
gives back the (linear) Klein-Gordon equation.

Look next to the system

G(∂∂ϕ, ∂ϕ, ϕ, x) = ϕt − ϕxx = 0

which captures the essence of the so-called “heat equation” (otherwise known as
the “diffusion equation”). From the same pair of conditions as served us in the
preceeding example we are led promptly to the conclusion that the heat equation
does not admit of Lagrangian formulation. Nor does the obvious variant of the
“integrating factor trick” salvage the situation. That I would encourage my
reader to regard as a profoundly unsatisfactory state of affairs, as an invitation
to invention. For the heat equation is an important thing, and the Lagrangian
formalism is an important thing, and it is “unreasonable” that they should have
nothing to say to each other. Since we will fairly frequently find ourselves in
analogous predicaments, I digress to illustrate the kind of escape routes that
can, with a little cleverness, be devised. One standard trick—the “auxiliary
field trick,” as it is sometimes called—hinges on the recognition that our field
may possess a heretofore overlooked “companion field.” With such an idea in
mind, it does in the present context not take one long to concoct the 2-field
system

L = 1
2 (αtϕ− αϕt)− αxϕx

and to observe that{
∂

∂t

∂

∂αt
+

∂

∂x

∂

∂αx
− ∂

∂α

}
L = 0 gives ϕxx = +ϕt{

∂

∂t

∂

∂ϕt
+

∂

∂x

∂

∂ϕx
− ∂

∂ϕ

}
L = 0 gives αxx = −αt

We have successfully reproduced the diffusion equation, but at the cost of
introducing an auxiliary field that satisfies an “antidiffusion equation,” and the
question becomes “What are we to make of that?” Have we made a discovery, or
merely replaced one embarrassment by another? Such questions tend generally
to be important questions, but to admit of no easy (or at least of no universal)
answer; everything hinges on details of the particular system at hand.25 The
natural force of well-crafted formalism is frequently more persuasive—and a
surer guide—than the imperfect evidence of a laboratory. But tact and good

25 Later I will have occasion to develop the sense in which manipulations quite
similar to those just sketched lead with a kind of inevitability to “the invention
of quantum mechanics!” One would appear to be well within one’s rights to
say of such a development that it is “important,” and has the character of a
“discovery.”
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judgment are all-important, for the free-spinning formalist teeters always on
the edge of triviality. For example:

Allegations of the form A = B can—whether true or false—always be
displayed as “variational principles”

(A−B)2 = minimum

but it would be frivilous to claim that the elegance of the display enhances
the likelihood that the allegation is correct.26 Somewhat less frivilous is the
observation that, while (as we have seen) the system

q̇ = f(q, p)
ṗ = g(q, p)

admits of Hamiltonian formulation only when a certain “curl condition” is
satisfied, it can always be absorbed into an expanded system which does admit
of such formulation: construe q and p to be “coordinates in a 2-space,” let Q
and P denote their conjugate momenta, and construct

H(q,Q, p, P ) = Qf(q, p) + Pg(q, p)

Then

q̇ = +∂H/∂Q = f(q, p)
ṗ = +∂H/∂P = g(q, p)

which have, however, acquired these companions:

Q̇ = −∂H/∂q = −Q∂f

∂q
− P

∂g

∂q

Ṗ = −∂H/∂p = −Q∂f

∂p
− P

∂g

∂p

It’s an admittedly “cheap trick,” but on occasion proves useful. Similarly
“cheap” is the observation that if we wish to achieve

G(∂∂ϕ, ∂ϕ, ϕ, x) = 0

and are not opposed to the free introduction of auxiliary fields, then to achieve
contact with the Lagrangian formalism we have only to constuct

L(∂∂ϕ, ∂ϕ, ϕ, α, x) = −αG(∂∂ϕ, ∂ϕ, ϕ, x)

Trivially, {
∂

∂xi
∂

∂
(
∂α
∂xi

) − ∂

∂α

}
L = G(∂∂ϕ, ∂ϕ, ϕ, x) = 0

26 See, however, the discussion of Gauß’ “Principle of Least Constraint” which
can be found in §105 of Whittaker’s Analytical Mechanics.
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but we acquire an obligation to describe also the motion of the auxiliary field,
and that (since the Lagrangian depends now—non-standardly—also upon the
second partials of ϕ) requires that we subject the Lagrangian formalism to a bit
of stretching, along lines first explored in () by M. Ostrogradsky.27 Thus
are we led at length to write (if I may lapse for a moment into the notation
appropriate to the descripton of a multi-component field system ϕ = {ϕα}){

− ∂2

∂xi∂xj
∂

∂ϕα,ij
+

∂

∂xi
∂

∂ϕα,i
− ∂

∂ϕα

}
L = 0 (45)

where terms containing ϕα,ijk will be avoided if and only if ϕα,ij enters at most
linearly into the structure of the functions G(∂∂ϕ, ∂ϕ, ϕ, x). Returning again
to our most recent example, we construct

L′ = −α(ϕt − ϕxx)

and, in addition to the diffusion equation, recover (by application of (45))
precisely the backwards diffusion equation αt + αxx = 0. Nor is this, in fact,
surprising, for

L− L′ = 1
2αtϕ+ 1

2αϕt − αxϕx − αϕxx

= ( 1
2αtϕ)t + (−αϕx)x

shows that L and L′ are in fact gauge equivalent . Here a “seeming triviality”
and a “stroke of modest genius” are seen to be actually of identical force. One
should perhaps not be too casually dismissive of trivialities.

Hamiltonian methods in classical field theory. We wrote out the Lagrangian
theory of a one-dimensional crystal, traced that theory to its continuous limit
where we obtained a Lagrangian description of the dynamics of a string, and by
straightforward generalization we led to an elegantly functional “Lagrangian
formulation of the classical dynamics of field systems.” Plausibly that same
strategy would lead us to a “Hamiltonian fomulation of classical field theory,”
to the associated “theory of canonical transformations,” whence finally to a
“field-theoretic generalization of Hamilton-Jacobi theory.” Alternatively, we
might attempt to work entirely within a field-theoretic framework—building
upon the Lagrangian formalism in direct imitation of particle-theoretic practice,
but avoiding all reference to “crystals,” to “refinement of the lattice.” We might
expect to be led ultimately—by natural extension of standard quantization
procedures—to a “quantum theory of fields.”

Central to all such formal elaboration, we can anticipate, will be a field-
theoretic analog of the “conjugate momentum” concept. Were we to proceed
by the lattice-refinement technique, we can expect to achieve28

pi = pi(q̇, q, t) ≡
∂L

∂q̇i
−−−−−−−−−−−−−−→

lattice refinement
πα = πα(∂ϕ, ϕ, x) ≡ ∂L

∂ϕ̇α

27 See Whittaker’s §110.
28 At this point it becomes formally more natural to write ϕα where formerly

we have written ϕα.
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And there’s the rub. Field theory presents us with a population of co-equal
constructions

∂L

∂
(
∂ϕα

∂t

) , ∂L

∂
(
∂ϕα

∂x1

) , ∂L

∂
(
∂ϕα

∂x2

) , . . . , ∂L

∂
(
∂ϕα

∂xn

)
and it would appear to be in violation of the essential spirit of field theory
(and certainly in violation of the spirit of relativity) to promote one of those—
equivalently, to promote one of the independent variables

{
t, x1, x2, . . . , xn

}
—to

a status of preeminence over the others. What to do? Should we associate with
each field component an indexed set of “conjugate momenta”

ϕα ←→




πα0 = ∂L
∂(∂ϕα/∂x0)

πα1 = ∂L
∂(∂ϕα/∂x1)

...
παn = ∂L

∂(∂ϕα/∂xn)

Such a procedure would appear to do such radical violence to the essentials
of Hamiltonian mechanics as to be unworkable. Should the παi be made to
participate co-equally in the assembly into some unitary object along (perhaps)
these general lines

πα =
n∑
i=0

παiP
i

To do so would be to import into the theory an auxiliary object P i which
is unprecidented in the Hamiltonian mechanics of particles, and of which no
natural candidate presents itself.

By way of preparaion for what follows, I digress now to observe that one can
bring geometrical imagery to φ(x, y, z) (which I shall, in service of concreteness,
assume to be number-valued and real) in a variety of distinct ways; one can
consider that φ(x, y, z) describes

a “point” in an (∞-dimensional) space of functions f(x, y, z)
a x-parameterized “curve” in a space of functions f(y, z)
a y-parameterized “curve” in a space of functions f(x, z)
a z-parameterized “curve” in a space of functions f(x, y)
a (x, y)-parameterized “curve” in a space of functions f(z)
a (x, z)-parameterized “curve” in a space of functions f(y)
a (y, z)-parameterized “curve” in a space of functions f(x)
a (x, y, z)-parameterized point on the real line

Lagrangian field theory proceeds implicitly from the first point of view, though
when we, as physicists, undertake to comprehend what ϕ(t, x, y) is telling us
(or to discover the implications of prescribed initial data) we frequently have
recourse to the second viewpoint: we make mental “movies.” The Hamiltonian
formalism(s) developed below embrace the second viewpoint explicitly, from the
outset.
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Let
{
x0, x1, . . . , xn

}
refer to some specified coordinatization of spacetime

(of which there are, of course, infinitely many). Identically structured and
physically equivalent Hamiltonian formalisms Hi of (n + 1) distinct “flavors”
come into existence as follows: In Hi the variable xi has been promoted to a
distinguished status; it rules as “the parameter.” It is the business of Hi to
inscribe “xi-parameterized dynamical flow curves” in the functional analog Γ i

of a 2N -dimensional phase space, as illustrated in the following figure. Each

π

ϕ

Figure 7: The figure provides a highly schematic representation
of a “dynamical flow curve in the phase space Γ i.” In the figure,
ϕ refers to the N -tuple of field functions ϕα(x), construed to be
functions of the variables

x0, x1, x2, . . . , •, . . . , xn (the missing variable is xi)

and of the parameter xi, while π refers to the conjugate fields

πα(x) ≡ ∂L

∂(∂ϕα/∂xi)

—similarly construed.

individual Hi proceeds from a symmetry-breaking act—the promotion of an
arbitrarily selected variable to “distinguished status.” But construction of the
composit formalism

H = H0 ⊕H1 ⊕ · · · ⊕Hn

entails no such symmetry-breaking act. It becomes attractive in this light to
regard the field-theoretic “Hamiltonian formalism” to reside in H; to do so
would be to embrace a formalism with many redundant component parts, and
to accept an obligation ultimately to discuss the (transformation-theoretic and
other) interconnections amongst those parts.

In the discussion that follows I shall, in place of xi, write t to denote
the promoted variable. The parameter t can—and in the literature29 typically

29 See, for example, H. Goldstein, Classical Mechanics (2nd edition ),
§12–4.
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does—refer physically to “time,” but should in the generic case be taken to
refer to some word like “typical.” The generic instance of Hamiltonian field
theory will be denoted Ht. Field derivatives with respect to the parameter t
will be written ϕ̇, while derivatives with respect to the independent variables{
x1, x2, . . . , xn

}
will collectively be denoted ∇x. Where formerly we were

content to write L(∂ϕ, ϕ, x) we would, by these more explicit conventions, write
L(ϕ̇,∇ϕ;ϕ; t, x). We will soon come to attach interest to the observation that
the field equations themselves, by these conventions, admit of the following
curious reformulation:

∂

∂t

∂L

∂ϕ̇α
−

{
∂L

∂ϕα
− ∂

∂xk

n∑
k−1

∂L

∂
(
∂ϕα

∂xk

)}
= 0

Equivalently (since L has been assumed not to depend upon second derivatives
of the fields, and is in particular therefore ∇ϕ̇-independent)

∂

∂t

{
∂L

∂ϕ̇α
− ∂

∂xk

n∑
k−1

∂L

∂
(
∂ϕ̇α

∂xk

)}
−

{
∂L

∂ϕα
− ∂

∂xk

n∑
k−1

∂L

∂
(
∂ϕα

∂xk

)}
= 0

More compactly

∂

∂t

δL

δϕ̇α
− δL

δϕα
= 0 (46)

where
δL

δϕα
≡

{
∂

∂ϕα
− ∂

∂xk

n∑
k−1

∂

∂
(
∂ϕα

∂xk

)}
L (47)

serves to define the so-called “variational derivative” of L with respect to ϕα.
Equations (46), which exist in as many variants as there are ways to assign
specific meaning to the parameter t, manage—“by contrivance,” as it were—to
resemble the Lagrange equations of particle mechanics, and put us in position
to write out the generic Hamiltonian field theory Ht by proceeding in formal
mimicry of the methods of particle mechanics.

Our former definition of the momentum fields πα which are (within Ht)
conjugate to the ϕα-fields can now be notated

πα =
δL

δϕ̇α
(48)

Evidently [ϕα][πα] = [L][ physical dimension of the parameter t ], which when t
has the nature of a “time”—but not otherwise—entails

[ϕα][πα] = action density (49)

We note also that—whatever the degree of “directly physical significance” that
attaches to the ϕ -fields (and that varies from application to application)—we
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should in no case assign “direct physical significance” to the associated π-fields,
for they respond non-invariantly to gauge transformations:

L −→ L + gauge term induces πα −→ πα + gauge term

If the so-called “Hessian” (the determinant of the matrix ‖∂2L/∂ϕ̇α∂ϕ̇β‖)
does not vanish, then it becomes possible-in-principle—by functional inversion
of the system of equations

πα =
δ

δϕ̇α
L(ϕ̇,∇ϕ;ϕ; t, x) = πα(ϕ̇,∇ϕ;ϕ; t, x)

—to write ϕ̇α = ϕ̇α(π,∇ϕ;ϕ; t, x)

and therefore to construct that particular “Legendre transform” of L

H = παϕ̇
α − L(ϕ̇,∇ϕ;ϕ; t, x)

∣∣∣
ϕ̇α−→ϕ̇α(π,∇ϕ;ϕ;t,x)

= H(π,∇ϕ;ϕ; t, x) (50)

which (within the Ht formalism) plays the role of a “Hamiltonian density.” The
associated “Hamiltonian” would be constructed

H =
∫

Hdx1 . . . dxn

Clearly, [H ] = [L] = energy density and [H ] = energy. It is notable that H, as
displayed in (50), is devoid of the∇π-dependence one might, on formal grounds,
otherwise have expected. So far as concerns its ∇ϕ-dependence, we compute

∂H

∂
(
∂ϕα

∂xk

) = πβ
∂ϕ̇β

∂
(
∂ϕα

∂xk

) − ∂L

∂ϕ̇β
∂ϕ̇β

∂
(
∂ϕα

∂xk

)︸ ︷︷ ︸−
∂L

∂
(
∂ϕα

∂xk

)
= 0 by the definition of πβ

= − ∂L

∂
(
∂ϕα

∂xk

) (51)

of which we will have immediate need. For by a similar calculation

∂H

∂ϕα
= πβ

∂ϕ̇β

∂ϕα
− ∂L

∂ϕ̇β
∂ϕ̇β

∂ϕα︸ ︷︷ ︸−
∂L

∂ϕα

0

= − ∂

∂t
πα −

n∑
k=1

∂

∂xk
∂L

∂
(
∂ϕα

∂xk

) by the field equations
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and when we draw upon (51) we obtain

∂

∂t
πα = −

{
∂H

∂ϕα
−

n∑
k=1

∂

∂xk
∂H

∂
(
∂ϕα

∂xk

)}

= − δH

δϕα
(52)

Finally—by a simpler variant of the same line of argument—we have

∂H

∂πα
= ϕ̇α + πβ

∂ϕ̇β

∂πα
− ∂L

∂ϕ̇β
∂ϕ̇β

∂πα︸ ︷︷ ︸ = ϕ̇α

0

which, owing to the fact that (as has already been remarked) H is actually
∇π-dependent, can be notated

∂

∂t
ϕα = +

δH

δπα
(53)

Pulling these results together, we have

ϕ̇α = +
δH

δπα

π̇α = − δH

δϕα


 (54)

which are the field equations in “canonical Hamiltonian form.” The derivation
of (54) has been designed to resemble maximally its counterpart in particle
mechanics.30 We recognize the cancellations encountered along the way to be
a characteristic signature of the Legendre transform, seen in all of its diverse
applications.

One might plausibly suppose, in view of the structure of (46) and of (54),
that we are off and running; that we are now in position to work our way
through (say) Whittaker or Goldstein, painlessly translating the concepts and
formulæ basic to the analytical dynamics of particles—one after another, as we
come to them—into the language of field theory. For example, we might find it
natural in imitation of

[A,B] ≡
n∑
k=1

{
∂A

∂qk
∂B

∂pk
− ∂B

∂qk
∂A

∂pk

}

30 See, for example, p. 193 of Classical Mechanics (). An alternative
line of argument, which proceeds not from properties of H but from properties
of the Hamiltonian H =

∫
Hdx and uses “integration by parts” to motivate

the introduction of the variational derivative, see Chapter IV, pp. 19–20 of
Classical Theory of Fields ().
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to introduce a “field-theoretic Poisson bracket” by

[A,B] ≡
N∑

κ=1

{
δA

δϕκ

δB

δπκ

− δB

δϕκ

δA

δπκ

}
(55)

and to notice that the canonical equations (54) can in this notation be written

ϕ̇α = [ϕα,H ]
π̇α = [πα,H ]

}
(56)

One appears at this point to possess the seed of a notion of “H-generated flow
in phase space”

ϕα(t) −→ ϕα(t+ dt) = ϕα(t) + dt · [ϕα,H ]

and to stand on the brink of a field-theoretic analog of the theory of canonical
transformations. But all is not quite so simple. Surprises lurk. . . for reasons
which have partly to do with the circumstance that H(π,∇ϕ;ϕ; t, x) possesses
—in its ∇ϕ-dependence—a structural element which is absent from H(p, q). I
turn now to a discussion intended to identify more clearly some of the points
at issue.

In the Hamiltonian mechanics of particles, the familiar constructions

coordinate = q

conjugate momentum = p

energy = 1
2mp

2 + U(x)
angular momentum = xpy − ypx

...

make it natural to assign the name “observable” to functions of the type

A = A(p, q; t) = A(p1, p2, . . . , pn, q
1, q2, . . . , qn; t)

and to notice that, in consequence of the canonical equations of motion,

Ȧ = [A,H] +
∂

∂t
A (57)

By natural extension (taking care to cast our net wide enough to include H

itself; see again (50)), we assign the name “observable density” to constructions
of the type

A = A(∇π,∇ϕ, π, ϕ, x; t)

and look to the evaluation of

Ȧ =
∂A

∂
(
∂πα

∂xk

) ∂

∂t

∂πα
∂xk

+
∂A

∂
(
∂ϕα

∂xk

) ∂

∂t

∂ϕα

∂xk
+

∂A

∂πα
π̇α +

∂A

∂ϕα
ϕ̇α +

∂A

∂t
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The trick here is to notice that

∂A

∂
(
∂πα

∂xk

) ∂

∂t

∂πα
∂xk

=
∂A

∂
(
∂πα

∂xk

) ∂

∂xk
π̇α

=
∂

∂xk

{
∂A

∂
(
∂πα

∂xk

) π̇α}− π̇α
∂

∂xk
∂A

∂
(
∂πα

∂xk

)
and that the corresponding ϕ-term yields to similar manipulation. We therefore
have

Ȧ =
{
∂A

∂ϕα
− ∂

∂xk
∂A

∂
(
∂ϕα

∂xk

)}
ϕ̇α +

{
∂A

∂πα
− ∂

∂xk
∂A

∂
(
∂πα

∂xk

)}
π̇α

+
∂

∂xk

{
∂A

∂
(
∂ϕα

∂xk

) ϕ̇α +
∂A

∂
(
∂πα

∂xk

) π̇α} +
∂A

∂t

and if we draw upon the canonical equations (54), recall the definition (47) of
the variational derivative, and note that

δA

δ
(
∂ϕα

∂xk

) =
∂A

∂
(
∂ϕα

∂xk

) because A is ∇∇A-independent

we obtain

Ȧ =
{
δA

δϕα
δH

δπα
− δH

δϕα
δA

δπα

}
+
∂A

∂t
(58)

+
∂

∂xk

{
δA

δ
(
∂ϕα

∂xk

) δH

δπα
− δH

δϕα
δA

δ
(
∂πα

∂xk

)}

At this point field theory and particle mechanics appear to have diverged, for
the dangling term in (58)—which is present except in special cases of the type
A(π, ϕ)—has no counterpart in (57). If, however, we allow ourselves to write

“observable” =
∫

“observable density”dx1 · · · dxn

then we can proceed from (58) to the conclusion

Ȧ =
∫

Ȧdx

=
∫ {

[A,H] +
∂A

∂t

}
dx+ surface term

↓

=
∫ {

[A,H] +
∂A

∂t

}
dx when the “surface term” vanishes (59)

At (55) we assigned meaning to the “Poisson bracket of a pair of observable
densities.” The result just achieved invites us to write

[A,B] ≡
∫

[A,B]dx (60)
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and thus to assign meaning to the “Poisson bracket of a pair of observables.”
The two concepts are clearly related, yet clearly distinct. If we return with
this notation to (59) we find ourselves writing an equation which is identical
in appearance to (57), but which carries now a field-theoretic meaning. In
particular, if hypotheses sufficient to force the “surface term” to vanish are in
place, and if ∂A/∂t = 0 (i.e., if the observable A is devoid of any explicit
t -dependence) then

Ȧ = [A,H ] (61)

From (61) we can recover (56) as special cases, and are led to the conclusion
that

[A,H ] = 0 =⇒ A =
∫

Adx is a constant of the field-motion

Evidently [A,H ] = 0 provides a global formulation of the local statement
[A,H ] = 0.

It becomes instructive at this point to revisit our former discussion of
Noether’s Theorem, which recent remarks31 will have recalled to the minds of
attentive readers. Noether was led from the specification of certain “maps”
to the construction at (29) of certain expressions Jkr (ϕ, ∂ϕ, x)—constructions
which within the Hamiltonian formalism Hi acquire the status of “observable
densities” of a particular design:

J0
r = πα

{
Φαr −

(
ϕ̇αX0

r +
∑∂ϕα

∂xk
Xkr

)}
+

(
παϕ̇

α −H
)
X0
r

Jir =
∂L

∂
(
∂ϕα

∂xi

){
Φαr −

(
ϕ̇αX0

r +
∑∂ϕα

∂xk
Xkr

)}
+

(
παϕ̇

α −H
)
Xir


 (62)

Here Xkr (t, x) and Φαr (ϕ; t, x) are considered to have been prescribed, and ϕ̇α

is to be read as it was during the assembly at (50) of H; i.e., as a reference
to ϕ̇αr (π,∇ϕ;ϕ; t, x). Local conservation laws rooted in Noether’s Theorem—
rooted, that is to say, in the Lagrangian formalism—have (recall (32)) the
characteristic form

∂kJ
k
r = 0

Such statements are, as I have already emphasized, to be read as implications
of the field equations; i.e., of the Lagrange equations of motion, of which they
express a revealed symmetry property. But, so far as I am aware, there exists
no generally-applicable technique for explicitly demonstrating that

field equations =⇒ ∂kJ
k
r = 0

Such problems are tackeled case-by-case, by ad hoc methods special to the
instance, as witnessed in the discussion subsequent to (34). But consider:
Noetherian conservation laws admit (see again (40)) of global formulation

J̇r = 0 with Jr =
∫

J0
r dx

31 Compare p. 32.
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And this is a statement which translates directly into language natural to the
Hamiltonian formalism

J̇r = 0 with Jr =
∫

J0
rdx

where it leads to a local statement

[ J0
r,H ] = 0

which is in every computational respect quite distinct from its Lagrangian
counterpart, ∂kJ

k
r = 0. Interestingly, what was a bothersome gap within

the Lagrangian formalism is a question rendered moot in the Hamiltonian
formalism; a generally-applicable technique for explicitly demonstrating how
it comes about that

canonical field equations =⇒ [ J0
r,H ] = 0

is written onto the very face of the statement. Interesting also is the fact
that, while statements of the form ∂kJ

k = 0 just sit there as unitary thoughts
within the Lagrangian formalism, they admit of as many (generally distinct and
complementary) modes of Hamiltonian interpretiation as there are variants of
the Hamiltonian formalism. I draw attention finally to the fact that the densities
J0
k(∇ϕ,ϕ, x; t) described by (62) are structurally quite particular; evidently one

cannot expect to construct, in any natural way, a “Noetherian interpretation”
of the conservation law [A,H ] = 0 if A fails to exhibit the required “structural
particularities.” This is the point I had in mind at footnote 16.

It had become apparent by the time we reached (61) that—the evidence of
(54) notwithstanding—a properly drawn abstract of the relationship between
Hamiltonian particle mechanics and the Hamiltonian theory of fields reads not

H(p, q) ←→ H

but

H(p, q) ←→ H =
∫

Hdx

—as would, in fact, have been evident from the outset had we proceeded
by the lattice-refinement technique. But consider: field-theoretic objects of
type H, Jr, A,B, . . . are by nature functions of functions 32—they are, in short,
“functionals”—while the notion of a “Poisson bracket” is, in all of its diverse
manifestions, rooted in the concept of differentiation. The Poisson bracket
guards the entry portal to the higher reaches of Hamiltonian mechanics; pretty
clearly, if we, as field theorists, are ever to penetrate those higher reaches—
are ever, for example, to understand the deeper meaning of (61)—we must be
in possession of a “functional calculus.” That, therefore, is a topic to which
I promise to return. But for the moment it seems to me advisable to take
temporary leave of theory-building in order to explore what the results already
in hand have to say about illustrative concrete cases.

32 They are, more precisely, number-valued functions of sets of functions{
π, ϕ

}
and their “spatial” first partials

{
∇π,∇ϕ

}
.
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Examples of the Hamiltonian method at work. Look first to the single-field system

L = 1
2ϕ

2
t − 1

2ϕ
2
x − F (ϕ)

first encountered on p. 37. There are two independent variables, therefore two
distinct variants (Ht and Hx) of the Hamiltonian formalism. Working first
within the former, we write

L = 1
2 ϕ̇

2 − 1
2ϕ

2
x − F (ϕ) with ϕ̇ ≡ ϕt

and introduce
π = ∂L/∂ϕ̇ = ϕ̇

The function ϕ̇(π, ϕx, ϕ) is in this case very simple: ϕ̇ = π. The Hamiltonian
density is given therefore by

H =
[
πϕ̇− L(ϕ, ϕ̇, ϕx)

]
ϕ̇→π

= 1
2π

2 + 1
2ϕ

2
x + F (ϕ)

The canonical equations of motion (54) read

ϕ̇ = +
{
∂

∂π
− ∂

∂x

∂

∂πx

}
H = π

π̇ = −
{
∂

∂ϕ
− ∂

∂x

∂

∂ϕx

}
H = −F ′(ϕ) + ϕxx

from which it is very easy to recover the Lagrangian field equation

ϕtt − ϕxx + F ′(ϕ) = 0

The Noetherian analysis of p. 28, applied to the specific system now at hand,
shows it to be an implication of the assumed t-independence of L that

∂tS
t
t + ∂xS

x
t = 0

while ∂tS
t
x + ∂xS

x
x = 0

follows similarly from the assumed x-independence. Explicit descriptions of the
quantities (

S t t S tx
Sxt Sxx

)
≡

(
S0

0 S0
1

S1
0 S1

1

)
can be read off from (34), but since in the Hamiltonian formalism Ht we have
interest only in S t t and S t x we restrict our explicit attention to those; we find

S t t =
∂L

∂ϕ̇
ϕ̇− L

S t x =
∂L

∂ϕ̇
ϕx
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from which (using ϕ̇ = π to eliminate all reference to ϕ̇) we obtain

St = 1
2π

2 + 1
2ϕ

2
x + F (ϕ)

Sx = πϕx

Since St is precisely the Hamiltonian density H, it is trivially the case that
[ St,H ] = 0, and therefore trivial also that

St =
∫

Stdx is conserved: Ṡt =
∫

[ St,H ]︸ ︷︷ ︸ dx = 0

0

By calculation we find, on the other hand, that

[ Sx,H ] = −πxπ − ϕx
(
F ′(ϕ)− ϕxx

)
= ∂
∂xW with W ≡ 1

2ϕ
2
x − 1

2π
2 − F (ϕ)

does not vanish, but has the structure of a divergence. Therefore

Ṡx =
∫

∂
∂xWdx = boundary terms

from which it follows that

Sx =
∫

Sxdx is conserved if the boundary terms vanish

Since, as we have seen, Sx admits of physical interpretation as the total linear
momentum of the system, we are not at all surprised to be reminded that
“conservation of linear momentum requires that the system be isolated” (no
boundary effects).

We follow those same ideas now down a less well-trodden path. Relativistic
considerations (which we are not yet in position to entertain, though they are
of no great profundity; we note simply that our L contains L = ϕtt − ϕxx as a
special case, and that this is the system which historically served as the cradle
of Special Relativity) inspire an interest in the Lorentz-transform properties of
the system L. In 2-dimensional spacetime the Lorentz group is a one-parameter
group, the elements of which can be described(

x0

x1

)
−→

(
X0

X1

)
= eωG

(
x0

x1

)
with G =

(
0 1
1 0

)

To describe an infinitesimal Lorentz transformation we therefore write

δωx
0 = X0δω with X0 = x1

δωx
1 = X1δω with X1 = x0
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and, to express the presumption that ϕ transforms as a scalar field, set Φ = 0.
Returning now to (29) (and reverting to our recent notational conventions:
t←− x0, x←− x1) we obtain the Noetherian current with components

K t = +ϕ t (ϕtx+ ϕxt)− ( 1
2ϕ

2
t − 1

2ϕ
2
x − F )x

Kx = −ϕx(ϕtx+ ϕxt)− ( 1
2ϕ

2
t − 1

2ϕ
2
x − F )t

which after simplifications can be written

K t = +ϕtϕx t + ( 1
2ϕ

2
t + 1

2ϕ
2
x + F )x

Kx = −ϕtϕxx− ( 1
2ϕ

2
t + 1

2ϕ
2
x − F )t

If one writes out ∂tK
t + ∂xK

x and draws upon the Lagrangian field equation
one discovers without difficulty that in fact

∂tK
t + ∂xK

x = 0

But from a Hamiltonian point of view—more precisely, from the viewpoint of
the Ht formalism—the object of interest is the observable density

K ≡ Kt
∣∣
ϕt−→π

= πϕx t+ Hx

Noting that K displays some explicit t -dependence, we compute

[K,H ] +
∂K

∂t
=

{
F ′x− (πt)x − (ϕxx)x

}{
π
}
−

{
F ′ − ϕxx

}{
ϕxt+ πx

}
+ πϕx

= t · ∂∂xW with W ≡ 1
2ϕ

2
x − 1

2π
2 − F (ϕ) as before

Therefore

K̇ =
∫ {

[K,H ] + ∂
∂tK

}
dx = t ·

∫
∂
∂xWdx = boundary terms

from which it follows that

K =
∫

Kdx is conserved if the boundary terms vanish

So distinguished is the ancestry of K—it is rooted in, and a symptom of, the
Lorentz covariance of our system—that some urgency attaches to the matter
of its physical interpretation. The following observations are intended not to
resolve that question, but only to indicate the direction in which the resolution
surely lies. We begin by noting that

∫
(Hx)dx is the first moment of the

energy distribution. Equivalently, the first moment of the mass distribution.
It becomes on this basis fairly natural to consider that

X(t) =
∫

(Hx)dx locates the “center of mass” of the field
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In this notation K = X(0), and we have

X(t) = X(0) + V t

with V = −
∫

(πϕx)dx = −
∫

(πϕ)xdx+
∫

(πxϕ)dx, where
∫

(πϕ)xdx has in fact
the nature of a boundary term, and might therefore be dropped. More to the
point: if we write V =

∫
Vdx then by quick calculation we find

[V,H ] = − ∂∂xV− πxF (ϕ)

from which it follows that V is itself a constant of the field motion, except for
effects attributable to F (ϕ). In the absence of such effects, we can, by these
interpretations, consider K̇ = 0 to be telling us that—however complicated the
motion of the field itself may be, its center of mass drifts with constant velocity.
In the mechanics of N -particle systems, Galilean covariance can be exploited
to similar effect.33

Now we take off our Hamiltonian hat Ht, put on the hat Hx, and look to
the physics of the same system as before. We agree to retain the convention
that the occurance of an “overdot” ˙ signifies differentiation with respect to “the
parameter,” and accept that—since “the parameter” is now not t but x—all
allusions to “motion” have acquired suddenly a novel meaning. We write

L = 1
2ϕ

2
t − 1

2 ϕ̇
2 − F (ϕ) with ϕ̇ ≡ ϕx

and assign new meaning to the conjugate momentum field34

π = ∂L/∂ϕ̇ = −ϕ̇

The Hamiltonian density is given in Hx therefore by

H =
[
πϕ̇− L(ϕ,ϕt, ϕ̇)

]
ϕ̇→−π

= − 1
2ϕ

2
t − 1

2π
2 + F (ϕ)

It is, as it was in Ht, a Legendre transform of L, but a different Legendre
transform. The canonical equations of motion now read

ϕ̇ = +
{
∂

∂π
− ∂

∂t

∂

∂πt

}
H = −π

π̇ = −
{
∂

∂ϕ
− ∂

∂t

∂

∂ϕt

}
H = −F ′(ϕ)− ϕtt

33 See Classical Mechanics (), pp. 170 & 253 and especially—because
it is much more “field-theoretic” in spirit—the discussion which appears in
Classical Electrodynamics () at pp. 323–329.

34 In order to keep simple things simple, I am asking my reader simply to
remember that π and similar constructs have now new meanings; to distinguish
πt from πx seems excessively pedantic, and lends off-putting clutter to the
symbols which denote the partial derivatives of those objects.
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from which it is as easy as it was before to recover the Lagrangian field equation

ϕtt − ϕxx + F ′(ϕ) = 0

We have observed that—and why—the Ht formalism exhibits a special interest
in the t -row of the stress-energy tensor, and are not surprised to discover that
the Hx formalism is similarly enamoured of the x-row. We have

S x t =
∂L

∂ϕ̇
ϕt

S x x =
∂L

∂ϕ̇
ϕ̇− L

from which we obtain

St = πϕt

Sx = − 1
2ϕ

2
t − 1

2π
2 + F (ϕ)

Reminding ourselves that the variational derivatives δ
δϕ and δ

δπ have now (see
again the most recent version of the canonical equations of motion) a new
meaning, and that so also does the Poisson bracket, we compute

[St,H ] = ∂
∂tU with U ≡ − 1

2ϕ
2
t + 1

2π
2 − F (ϕ)

We introduce St =
∫

Stdt and from

Ṡt =
∫

[St,H ]dt = temporal boundary terms

conclude that S is “conserved”—a constant of the “motion”—if the “temporal
boundary terms” vanish. A simpler argument (one has only to notice that
Sx = H, from which Ṡx =

∫
[Sx,H ]dt = 0 follows trivially) establishes the

unconditonal conservation of Sx =
∫

Sxdt.
The Hx formalism has led us, with an inevitability born of its familiar

internal logic, to the perception of a population of conservation laws of this
unfamiliar general type:

Sit in Portland for an eternity, collecting data sufficient to
permit the evaluation of (say) Sx =

∫
Sxdt. The result you

ultimately obtain is the same as you would have obtained had
you instead elected to sit in Pocatello. Or Paris, or Prague.

Such statements are “bizarre” for precisely the reason, and to precisely the
extent, that “motion” within Hx is bizarre: it is x-parameterized, and therefore
runs counter to the mechanical experience which has made unwitting “time-
Chauvinists” of us all—relativistically untenable though we recognize such
a position to be. In particle mechanics our “time-Chauvinism” is, I think,
pretty much forced upon us; we may, if we wish, tinker with the metrization
of time (t −→ θ = θ(t)), but the subject-matter provides no independent
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variable fundamentally distinct from the time parameter, and no plausible
alternative to such statements as this: “A particle can easily be at the same
point at two times, but cannot easily be at two points at the same time.”
But now we are doing field theory, which provides an abundance of alternatives
to t -parameterization, and which treats systems that are typically “at two
points at the same time.” Perhaps, therefore, we should relax the tenacity
with which we cling to some entrenched habits of thought. Why, after all, do
we collect conservation theorems? For a variety of reasons, of which some are
more narrowly technical than others, but principally because conservation laws
nourish physical intuition; they permit us to see unity in the contingent details

Figure 8: The “standard” Hamiltonian formalism Ht supplies
conservation theorems which are written onto consecutive t-slices,
as illustrated on the right half of the figure. The formalism Hx

supplies, on the other hand, theorems which incorporate data written
onto consecutive x-slices. It is argued in the text that both contribute
usefully to a fuller understanding of the physical system ϕ, which
in itself just “sits there, waiting to be probed” in as many ways as
we can think of.

of particular cases, in the confusing complexity typical of particular solutions
of the equations of motion (in field theory: the field equations); they permit us
even to say useful things when no solutions are known. It would seem in this
light extravagant to discard such “conservation theorems” as Hx stands ready
to provide, simply on the grounds that they come to us nameless, and require of
us that we exercise some unfamiliar modes of thought. Nor, in the end, would
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such a “policy of abandonment” even be tenable. For if

t −→ T = T (t, x)
x −→ X = X(t, x)

then the conservation theorems which issue from HT will , in general, conflate
those which issue from Ht and Hx. As so also, of course, will those which
issue from HX . Directly related to the preceeding remark is this final curious
point: We have proceeded from a comparison of the output (so far as relates to
conservation theorems) of the Hx formalism with that of the more familiar Ht

formalism. But there is, in fact, nothing peculiarly “Hamiltonian” about our
conclusions, for they were latent already in the Lagrangian formalism, where
the conservation law

∂iJ
i = 0

is standardly elaborated

∂0J
0+divergence term = 0

divergence term ≡ • + ∂1J
1 + ∂2J

2 + · · ·+ ∂nJ
n

but can—equally well, if non-standardly—be elaborated

∂1J
1+divergence term = 0

divergence term ≡ ∂0J
0 + • + ∂2J

2 + · · ·+ ∂nJ
n

To write the former is to acquire automatic interest in the t -independence of∫
J0dx1dx2 · · · dxn

while the latter engenders interest in the x1-independence of∫
J1 dt dx2 · · · dxn

This simple point—brought naturally and forcibly to our attention by the
Hamiltonian formalism—is (almost unaccountably) passed by unnoticed in most
surveys of Lagrangian field theory.

Look back again now to the two-field system

L = 1
2 (αtϕ− αϕt)− αxϕx

which engaged our interest already on p. 38 for the reason that it yields the
diffusion equation ϕt = ϕxx as a field equation.35 In naive preparation for what
we intend to be “work within the Ht formalism,” we write

L = 1
2 (α̇ϕ− αϕ̇)− αxϕx

35 Recall that we had no initial interest in the auxiliary field α, which was
introduced as a formal crutch, and was found to satisfy the “backwards (or
time-reversed) diffusion equation.”



Applications of Hamiltonian formalism 57

and introduce the conjugate momenta

π ≡ ∂L

∂ϕ̇
and β ≡ ∂L

∂α̇

—only to find that we have run smack into a brick wall. For the resulting
equations

π = − 1
2α

β = + 1
2ϕ

show that the conjugate fields
{
π, β

}
are redundant with their companion fields{

ϕ, α
}
. One cannot by inversion obtain equations of the form

ϕ̇ = ϕ̇(fields, conjugate fields, non-parametric partials of those)
α̇ = α̇(fields, conjugate fields, non-parametric partials of those)

The procedure
L −−−−−−−−−−−−−−−−−−→

Legendre transformation
H

cannot be carried out, for essentially the reason that the Hessian vanishes:∣∣∣∣ ∂2L/∂ϕ̇∂ϕ̇ ∂2L/∂ϕ̇∂α̇
∂2L/∂α̇∂ϕ̇ ∂2L/∂α̇∂α̇

∣∣∣∣ = 0

But consider: if we take
H = −ϕxπx

to be (within the Ht formalism) the Hamiltonian density of a one-field system,
then the canonical equations

ϕ̇ = +
{
∂

∂π
− ∂

∂x

∂

∂πx

}
H = +ϕxx : diffusion equation

π̇ = −
{
∂

∂ϕ
− ∂

∂x

∂

∂ϕx

}
H = −πxx : backwards diffusion equation

reproduce precisely the equations formerly obtained as field equations from the
Lagrangian density L! What we have in hand—since clearly no procedure of
the type

L←−−−−−−−−−−−−−−−−−−
Legendre transformation

H

is possible—is a strikingly efficient example of a “free-standing Hamiltonian
theory,” a theory unsupported by any underlying Lagrangian framework. The
absence of such a framework carries with it the implication that we are cut off
from (for example) the assistance of Noether’s Theorem; when we undertake to
construct descriptions of (say) the energy density, or the momentum density—
constructions which the equivalent two-field Lagrangian theory supplies
straightforwardly—we will be “on our own.” But that circumstance we are
prepared to accept as an invitation to invention!
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There remains yet some juice to be squeezed from the preceeding example,
and the last drop is, in a way, the sweetest. By way of preparation, recall that
in mechanics of particles it sometimes proves useful—particularly in connection
with the theory of canonical transformations36—to notice that the canonical
equations of motion

q̇ = +
∂H

∂p

ṗ = −∂H
∂q

can be obtained as the “Lagrange equations” from a certain “meta-Lagrangian.”
For if

LLL ≡ 1
2 (pq̇ − ṗq)−H(p, q) = (pq̇ −H) + gauge term

then {
d

dt

∂

∂ṗ
− ∂

∂p

}
LLL = 0 =⇒ q̇ = +

∂H

∂p{
d

dt

∂

∂q̇
− ∂

∂q

}
LLL = 0 =⇒ ṗ = −∂H

∂q

This remark admits straightforwardly of field-theoretic imitation, for if we define

LLL ≡ 1
2 (πϕ̇− π̇ϕ)−H(π, ϕ) (63)

we obtain {
∂

∂t

δ

δπ̇
− δ

δπ

}
LLL = 0 =⇒ ϕ̇ = +

δH

δπ{
∂

∂t

δ

δϕ̇
− δ

δϕ

}
LLL = 0 =⇒ π̇ = −δH

δϕ


 (64)

This is a result of very general importance. But look now again to the particular
case H = −πxϕx; we have

LLL = 1
2 (πϕ̇− π̇ϕ) + πxϕx

= −
[
1
2 (π̇ϕ− πϕ̇)− πxϕx

]︸ ︷︷ ︸
L = 1

2 (α̇ϕ− αϕ̇)− αxϕx to within notational adjustment

We’ve been “talking prose all our lives, without knowing it!” What we initially
imagined to be an unwelcome “auxiliary field” was actually the conjugate field,
and what we took to be the Lagrangian L was actually the meta-Lagrangian,
LLL. When we lamented the impossibility of proceeding

L −−−−−−−−−−−−−−−−−−→
Legendre transformation

H

we were actually commenting on the impossibility of proceeding

LLL −−−−−−−−−−−−−−−−−−→
Legendre transformation

HHH

36 See Classical Mechanics (), pp. 217–228.
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which is, in fact, cause for rejoicing, for it protects us from the possiblity of
infinite regress:

meta-Lagrangian −−−−−−−−→ meta-Hamiltonian
↓

meta-meta-Hamiltonian ←−−−−−−−− meta-meta-Lagrangian
↓

meta-meta-meta-Lagrangian −−−−−−−−→

Here I break off this account of the Hamiltonian method, as it applies to
the classical theory of fields. My objective has been simply to sketch the lay
of the land, and I think that limited objective has been achieved. But clearly,
wonders lie just over the horizon.

Classical field theory of a quantum particle. My purpose here will be to illustrate
—in what I think readers will agree is a rather surprising context—how the
material presently at our command can be used to organize the discussion
of some real physics of undeniable importance. In view of that intent, and
in order to costume my results in their most familiar dress, I will abandon
my formerly somewhat generic mode of expression; I will be careful to insure
that all variables are clearly dimensioned, and that all physical parameters and
constants are explicitly displayed. Let us agree at the outset that we have
equipped ourselves with a “good clock” and an “inertial meter stick;” i.e., that
we have coordiniatized spacetime in such a way that the motion of classical free
particles can be described ẍ = 0. Thus prepared. . .

To describe the one-dimensional quantum motion of a mass point m in
the presence of a potential U(x), we write and undertake to solve—subject to
prescribed side conditions and to the normalization condition∫

ψ∗ψdx = 1 (65)

—the time-dependent Schrödinger equation

−(	2/2m)ψxx + Uψ = i	ψt (66)

The wave function ψ(x, t) is, owing to the presence of the exposed i-factor on
the right side of (66), necessarily complex. If, to emphasize that fact, we write

ψ = ϕ1 + iϕ2

we find that (66) is equivalent to the following coupled system of equations

−(	2/2m)ϕ1
xx + Uϕ1 = −	ϕ2

t

−(	2/2m)ϕ2
xx + Uϕ2 = +	ϕ1

t

}
(67)
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where evidently it is the “exposed i-factor” that is responsible for the coupling.
If, alternatively, we adopt the polar representation

ψ = R exp
{
i
�
S

}
we obtain{
− �

2

2m

[
Rxx + 2 i

�
RxSx + i

�
R

(
Sxx + i

�
S2
x

)]
+ UR

}
e
i
�
S = i	

(
Rt +

i
�
RSt

)
e
i
�
S

giving—if we abandon the exponential factors, separate the real terms from the
imaginary, and make some notational adjustments—

1
2mS

2
x + U + St = �

2

2mR
–1Rxx

(R2)t + ( 1
mSxR

2)x = 0

}
(68)

Or we might, in place of the fields ϕ1 and ϕ2, elect to work with some linear
combination of those fields, writing(

ψ1

ψ2

)
=

(
a b
c d

) (
ϕ1

ϕ2

)

If, in particular, we elect to set (
a b
c d

)
=

(
1 +i
1 −i

)

we obtain (
ψ1

ψ2

)
=

(
ψ
ψ∗

)
This little observation lends legitimacy to the frequently very convenient trick
whereby one treats ψ and ψ∗ as though they were distinct and independent
complex fields, even though one cannot, in point of fact, change either without
inducing change in the other. If we take advantage of this tricky opportunity
(as in the future we will consider ourselves free to do casually, without explicit
comment), then (66) acquires a co-equal conjugated companion; we have this
uncoupled pair of Schrödinger equations

−(	2/2m)ψxx + Uψ = +i	ψt
−(	2/2m)ψ∗

xx + Uψ∗ = −i	ψ∗
t

}
(69)

It is useful also to note that the Schrödinger equation can, in the case U = 0,
be written

ψxx = Dψt with D ≡ 2m
i�

which has formally the structure of a “diffusion equation (heat equation) with
an imaginary diffusion coefficient .”
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The idea now—just crazy enough to be interesting—is to look upon (67),
(68) and (69) as providing alternative representations of the field equations
characteristic of a two-component classical (!) field theory . Semi-arbitrarily
electing to work in language provided by the latter representation, we form

G1 ≡ (	2/2m)ψxx + i	ψt − Uψ

G2 ≡ (	2/2m)ψ∗
xx − i	ψ∗

t − Uψ∗

}
(70)

and find it natural to ask: Does there exist a Lagrangian density L such that

G1 =
{
∂

∂t

∂

∂ψt
+

∂

∂x

∂

∂ψx
− ∂

∂ψ

}
L

G2 =
{
∂

∂t

∂

∂ψ∗
t

+
∂

∂x

∂

∂ψ∗
x

− ∂

∂ψ∗

}
L


 ? (71)

It was to answer just such questions that the Helmholtz conditions (44) were
devised. In the present context

N ≡ number of field components = 2
m ≡ number of spacetime dimensions = 2

so these are—rather soberingly— 3 + 6 + 1 = 10 in number. I write them out:

ðG1

ðψ∗
tt

− ðG2

ðψtt
= 0 (72.1)

ðG1

ðψ∗
tx

− ðG2

ðψtx
= 0 (72.2)

ðG1

ðψ∗
xx

− ðG2

ðψxx
= 0 (72.3)

∂G1

∂ψt
+
∂G1

∂ψt
=

∂

∂t

[
ðG1

ðψtt
+

ðG1

ðψtt

]
+

∂

∂x

[
ðG1

ðψxt
+

ðG1

ðψxt

]
(73.1)

∂G1

∂ψ∗
t

+
∂G2

∂ψt
=

∂

∂t

[
ðG1

ðψ∗
tt

+
ðG2

ðψtt

]
+

∂

∂x

[
ðG1

ðψ∗
xt

+
ðG2

ðψxt

]
(73.2)

∂G2

∂ψ∗
t

+
∂G2

∂ψ∗
t

=
∂

∂t

[
ðG2

ðψ∗
tt

+
ðG2

ðψ∗
tt

]
+

∂

∂x

[
ðG2

ðψ∗
xt

+
ðG2

ðψ∗
xt

]
(73.3)

∂G1

∂ψx
+
∂G1

∂ψx
=

∂

∂t

[
ðG1

ðψtx
+

ðG1

ðψtx

]
+

∂

∂x

[
ðG1

ðψxx
+

ðG1

ðψxx

]
(73.4)

∂G1

∂ψ∗
x

+
∂G2

∂ψx
=

∂

∂t

[
ðG1

ðψ∗
tx

+
ðG2

ðψtx

]
+

∂

∂x

[
ðG1

ðψ∗
xx

+
ðG2

ðψxx

]
(73.5)

∂G2

∂ψ∗
x

+
∂G2

∂ψ∗
x

=
∂

∂t

[
ðG2

ðψ∗
tx

+
ðG2

ðψ∗
tx

]
+

∂

∂x

[
ðG2

ðψ∗
xx

+
ðG2

ðψ∗
xx

]
(73.6)

∂G1

∂ψ∗ −
∂G2

∂ψ
=

1
2
∂

∂t

[
∂G1

∂ψ∗
t

− ∂G2

∂ψt

]
+

1
2
∂

∂x

[
∂G1

∂ψ∗
x

− ∂G2

∂ψx

]
(74.1)
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Taking the G1 and G2 as our input, we find by quick calculation that eight
of these ten conditions are satisfied—indeed, are trivially satisfied—but that
(73.1) and (73.3) are not satisfied, for they entail the absurdity i	 = 0. We
are, however, well aware (see again the discussion of this point on p. 34) that
the Helmholtz test is (like computer software tends to be) utterly unforgiving of
little misalignments of the input data. So enticed are we by the attractiveness of
our paradoxical objective, and so encouraged by the knowledge that the closely
related forward/backward diffusion equations can be made to pass the test, that
we experiment a bit. . . and are led soon enough to interchange the definitions
(70) of the functions G; we define

G2 ≡ (	2/2m)ψxx + i	ψt − Uψ

G1 ≡ (	2/2m)ψ∗
xx − i	ψ∗

t − Uψ∗

}
(75)

and try again. A few seconds of work is sufficient to establish that the functions
G1 and G2—thus defined—do pass all parts of the Helmholtz test. Thus
encouraged to think that it may be possible to write (71), we do a little inspired
tinkering37 and are led at length to an L that works:

L = 1
2 i	(ψ∗

tψ − ψ∗ψt) + �
2

2mψ
∗
xψx + ψ∗Uψ (76)

The LSchrödinger of (76) possesses several striking and important properties
to which I would like now to draw attention. It is, in the first place, manifestly
real

L∗ = L

and so also, therefore, is the associated action functional SR[ψ] =
∫

L dxdt. This
is gratifying, for in the contrary case we would have in hand a “multi-component
Langrangian” L = L1 + iL2, and so would have acquired an obligation to
venture in to some highly non-standard formal territory.38 We might also expect
(for reasons basic to the theory of functions of several complex variables) to
encounter difficulties in giving precise meaning to Hamilton’s Principle δS = 0.
Note also the “bilinear” structure of LSchrödinger; it is (manifestly) linear in
the variables

{
ψ,ψx, ψt

}
and linear also in the complex conjugates of those

variables. Bilinearity accounts for the uncoupled linearity of the Schrödinger
equation (69). We observe in passing that if we write ψ = ϕ1 + iϕ2 then

37 In the real world of work-a-day physics one is well-advised to do one’s
“inspired tinkering” at the outset ; i.e., to skip the Helmholtzian folderol, which
I have written out only for didactic effect. Helmholtzian methods of greatest
practical utility when used to establish the impossibility of casting the field
equations of momentary interest in Lagrangian form; in such applications they
alert one to the need to “do something heroic.”

38 See, in this connection, T. Morgan & D. Joseph, “Tensor Lagrangians and
generalized conservation laws for free fields,” Nuovo Cimento, 39, 494 (1965)
and the literature cited.
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L = 	(ϕ1ϕ2
t − ϕ1

tϕ
2) + �

2

2m (ϕ1
xϕ

1
x + ϕ2

xϕ
2
x) + U(ϕ1ϕ1 + ϕ2ϕ2) (77)

while ψ = R exp
{
i
�
S

}
gives

L = R2
[
St +

1
2mS

2
x + U

]
+ �

2

2mR
2
x (78)

and that the field-variable adjustments which achieve (77) and (78), while
they preserve the reality of (76), do violence to its bilinearity. Commentary
concerning what is, from some points of view, the most interesting feature of
LSchrödinger (namely, that it has actually the status of a meta -Lagrangian) will,
however, be reserved until the point at issue has been more carefully framed.

Schrödinger’s Lagrangian (76) gives rise (by Noetherian analysis) to a
stress-energy tensor the components of which can, by (34), be described

Stt =
∂L

∂ψt
ψt +

∂L

∂ψ∗
t

ψ∗
t − L

= − �
2

2mψ
∗
xψx − ψ∗Uψ (79.1)

Sxt =
∂L

∂ψx
ψt +

∂L

∂ψ∗
x

ψ∗
t

= �
2

2m (ψ∗
xψt + ψ∗

tψx) (79.2)

Stx =
∂L

∂ψt
ψx +

∂L

∂ψ∗
t

ψ∗
x

= 1
2 i	(ψ∗

xψ − ψ∗ψx) (79.3)

Sxx =
∂L

∂ψx
ψx +

∂L

∂ψ∗
x

ψ∗
x − L

= − 1
2 i	(ψ∗

tψ − ψ∗ψt) + �
2

2mψ
∗
xψx − ψ∗Uψ (79.4)

By straightforward calculation (which draws critically upon the field equations
(69); i.e., upon the Schrödinger equation and its conjugate) we find

∂tS
t
t + ∂xS

x
t = −ψ∗ ∂U

∂t
ψ (80.1)

∂tS
t
x + ∂xS

x
x = −ψ∗ ∂U

∂x
ψ (80.2)

These equations speak quite intelligibly to us (in language quite consistent with
our Noetherian experience): the former says that

Energy will be conserved unless the t-dependence of U serves to
break the time-translational invariance of the system,

while the latter says that
Momentum will be conserved unless the x-dependence of U serves
to break the space-translational invariance of the system.

Of course, we do not expect momentum to be conserved in the presence of forces
F = −∂U/∂x!



64 Analytical Dynamics of Fields

Equations (80) are local statements, very much in the Lagrangian tradition
of classical field theory (though we are at present doing the quantum mechanics
of a particle!), and put us in position to state that the total energy of our
field system—an “interesting quantity,” whether conserved or not—can be
described39

E =
∫

(−Stt) dx

=
∫ {

�
2

2mψ
∗
xψx + ψ∗Uψ

}
dx

=
∫ {
− �

2

2mψ
∗ψxx + ψ∗Uψ

}
dx

where to achieve the final result I have integrated by parts and discarded the
boundary term. Evidently we can, if we wish, write

E =
∫

ψ∗
{

1
2m

(
�

i
∂
∂x

)2
+ U

}
ψ dx (81)

Similarly, the total momentum can be described

p =
∫

Stx dx

=
∫

1
2 i	(ψ∗

xψ − ψ∗ψx) dx

= −
∫

i	(ψ∗ψx) dx

=
∫

ψ∗
{(

�

i
∂
∂x

) }
ψ dx (82)

Readers will not fail to notice that the expressions which stand on the right
sides of equations (81) and (82) are precisely the expressions which in quantum
mechanics are taken to describe 〈E 〉ψ and 〈 p 〉ψ—the expected values of energy
and momentum, given that the particle is in state ψ. As field theorists we are
struck by the fact (which is for us as quantum mechanics already old news!)
that (82) can be notated

p =
∫

ψ∗pψ dx where p is the differential operator p ≡ �

i
∂
∂x (83)

and that in this notation (81) becomes

E =
∫

ψ∗Hψ dx with H ≡ 1
2mp2 + U(x) (84)

while (66)—the Schrödinger equation itself—becomes

Hψ = i	ψt

39 I exercise here my freedom to introduce a minus sign in order to achieve
consistency with notationial and interpretive orthodoxies later on.
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The point I have been trying in recent remarks to illustrate is this: if one looks
upon the Schrödinger equation with the eyes of a classical field theorist, then
one is led naturally/spontaneously to the “quantization procedure”

p −→ p = �

i
∂
∂x

x −→ x = x ·

and to the formulae (such, for example, as (83) and (84)) most characteristic
of the quantum theory of particulate motion.

From the (previously noted) bilinear reality of (76) it follows that L

—whence also S =
∫

Ldx—is invariant under “phase transformations” of the
form

ψ −→ e+iωψ

ψ∗ −→ e−iωψ∗

}
(85.1)

and therefore (we note in passing) that (77) is invariant under

ϕ1 −→ ϕ1 cosω − ϕ2 sinω

ϕ2 −→ ϕ1 sinω + ϕ2 cosω

}
(85.2)

and (78) invariant under

R −→ R

S −→ S + 	ω

}
(85.3)

To describe an infinitesimal phase transformation we write

t −→ t + δωt with δωt = 0 · δω
x −→ x + δωx with δωx = 0 · δω
ψ −→ ψ + δωψ with δωψ = +iψ · δω
ψ∗ −→ ψ∗ + δωψ

∗ with δωψ
∗ = −iψ∗ · δω


 (86)

We have encountered here our first example of a purely “internal symmetry” of
a multi-component field system; the fields are “folding among themselves,” but
nothing else is going on. The field variations derive (in the language of p. 24)
entirely from “variation of functional form,” and not at all from “variation of
argument.” To the extent that we find (84) an “interesting map” we should,
according to Noether, have interest in the current whose components can, by
(29), be described

P t =
∂L

∂ψt
(iψ) +

∂L

∂ψ∗
t

(−iψ∗)

= 	 · ψ∗ψ (87.1)

P x =
∂L

∂ψx
(iψ) +

∂L

∂ψ∗
x

(−iψ∗)

= 	 · i �

2m (ψ∗
xψ − ψ∗ψx) (87.2)
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and we should not be surprised to discover that (in consequence of the field
equations)

∂tP
t + ∂xP

x = 0

The global formulation of this local conservation law reads∫
ψ∗ψ dx = constant of the field motion (89)

This result acquires interest from several distinct considerations. It shows, in
the first place, that no risk of inconsistency was incurred when, at (65), we
imposed the normalization condition

∫
ψ∗ψ dx = 1. While (89) speaks to our

physical intuitions (as historically it spoke in  to Schrödinger himself) of
the conservation of some kind of “charge,” it does not carry within it any hint of
anything having to do with a “statistical interpretation of the wave function.”
It permits—but certainly does not force—us to write (with Born, )

“probability density” = ψ∗ψ (90.1)
= ϕ1ϕ1 + ϕ2ϕ2

= R2

or (collaterally)

“probability current” = i �

2m (ψ∗
xψ − ψ∗ψx) (90.2)

= m ·momentum density
= �

m (ϕ2
xϕ

1 − ϕ2ϕ1
x)

= 1
mSxR

2

We are in position now to notice, by the way, that the conservation theorem

∂
∂t (probability density) + ∂

∂x (probability current) = 0 (91)

lends direct physical significance to the 2nd of the “polar Schrödinger equations”
(68). It is, finally, of deep interest (and a harbinger of beautiful things to
come) that (91) is attributed within the field-theoretic formulation of quantum
mechanics to an internal symmetry of the theory.

The quantum theory of a particle is (at least as standardly formulated) so
profoundly “Hamiltonian” in spirit that we, as field theorists, find it natural
to ask: Do the field equations admit of Hamiltonian formulation within Ht?
within Hx? Working first within Ht, we look to (76) and obtain

momentum conjugate to ψ = − 1
2 i	ψ

∗

momentum conjugate to ψ∗ = + 1
2 i	ψ

Evidently
L −−−−−−−−−−−−−−−−−−→

Legendre transformation
H
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is not possible, for reasons of precisely the sort discussed already on p. 57. Nor
do the variant Lagrangians (77) and (78) afford, in this regard, any advantages.
But. . . suppose we write

π = momentum conjugate to ψ = − 1
2 i	ψ

∗ (92)

—which is to make of ψ∗ a field “conjugate” to ψ in quite a novel sense—
and construe (76) to have the character of a meta-Lagrangian, writing (after
multiplication by an inconsequential 1

2 )

LLL = 1
2 (πψt − πtψ) + i

�
( �

2

2mπxψx + πUψ) (93)

Certainly this meta-Lagrangian works, in the easily confirmed sense that

∂

∂t

∂LLL

∂πt
+

∂

∂x

∂LLL

∂πx
− ∂LLL

∂π
= 0

∂

∂t

∂LLL

∂ψt
+

∂

∂x

∂LLL

∂ψx
− ∂LLL

∂ψ
= 0

do reproduce the Schrödinger equations (69), which we would now notate

− �
2

2mψxx + Uψ = +i	ψt
− �

2

2mπxx + Uπ = −i	πt

}
(94)

Comparison of (93) with (63)—which it so closely resembles—leads us to define

H(π, ψ) ≡ − i
�
( �

2

2mπxψx + πUψ) (95)

and to observe that the implied canonical field equations

ψt = +
{
∂

∂π
− ∂

∂x

∂

∂πx

}
H = − i

�
(Uψ − �

2

2mψxx)

πt = −
{
∂

∂ψ
− ∂

∂x

∂

∂ψx

}
H = + i

�
(Uπ − �

2

2mπxx)


 (96)

again reproduce the Schrödinger equations (94). So quantum mechanics does,
within Ht, admit of formulation as a Hamiltonian field theory. Note, however,
that the Hamiltonian (95) is “free-standing” in the sense that it does not admit
of

L←−−−−−−−−−−−−−−−−−−→
Legendre transformation

H

What we took at (76) to be a description of LSchrödinger was, we now see,
actually a deceptively notated description of the meta-Lagrangian LLLSchrödinger.

Within Hamiltonian formalism we attribute the occurance of conservation
laws to the special properties acquired by certain Poisson brackets. For example,
we might notice that

“probability density” ≡ ψ∗ψ = 2 i
�
· πψ
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and compute

[πψ,H ] =
{
∂R

∂ψ
− ∂

∂x

∂R

∂ψx

}{
∂H

∂π
− ∂

∂x

∂H

∂πx

}

−
{
∂H

∂ψ
− ∂

∂x

∂H

∂ψx

}{
∂R

∂π
− ∂

∂x

∂R

∂πx

}
with R ≡ πψ

= − i
�

{
π
(
Uψ − �

2

2mψxx

)
−

(
πU − �

2

2mπxx

)
ψ

}
= − i

�

�
2

2m (πxxψ − πψxx)

= − ∂∂x
{
i �

2m (πxψ − πψx)
}

(97)

Therefore (discarding a boundary term) ∂
∂t

∫
πψ dx = 0, which is the upshot of

(89). We note that the expression interior to the final braces is proportional to
“probability current,” as described in (90.1). And that if we bring the equations
of motion (94) to the braces in the second equation we obtain [πψ,H ] = (πψ)t;
we have in fact obtained by Hamiltonian means an equation which differs from
(91) only by an overall factor.

The discovery that the Lagrangian LSchrödinger is (at least within Ht) more
properly construed to be a meta-Lagrangian carries within it the seed of a
very important lesson. For it means that when we successfully (and quite
informatively) brought Noetherian methods to bear upon LSchrödinger we were
actually bringing those methods to bear upon a meta-Lagrangian, and that’s
a much more general object; the arguments of a meta-Lagrangian range not
on configuration space but on phase space (which accounts for the fact that
such objects are most commonly encountered in connection with the theory
of canonical transformations). By (unwittingly) transposing Noether’s line of
argument from Lagrangian physics to meta-Lagrangian physics we have in effect
created a vast generalization of Noether’s method , as standardly conceived.
And since (if I may lapse for a moment into the simpler language of particle
mechanics)

LLL(ṗ, q̇, p, q) = 1
2 (pq̇ − ṗq)−H(p, q)

exists independently of whether or not H(p, q) happens to be “free-standing”
(even, that is to say, when an associated L(q̇, q) cannot be constructed), we have
in fact resolved the problem which (at the bottom of p. 57) we have described
as an “invitation to invention.”

We have been witnesses to a conversation between classical field theory and
quantum mechanics that seemed a moment ago to be at the point of wrapping
up, to the satisfaction of all participants. . .but which now takes a new turn.
For suppose we elect to work (not, as above, within Ht but) within Hx. We
look back again to (76) and obtain

π ≡ momentum conjugate to ψ = �
2

2mψ
∗
x (98.1)

π∗ ≡ momentum conjugate to ψ∗ = �
2

2mψx (98.2)
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and observe that it now is possible to proceed

L −−−−−−−−−−−−−−−−−−→
Legendre transformation

H

We write

H = πψx + π∗ψ∗
x − L

= πψx + π∗ψ∗
x − 1

2 i	(ψ∗
tψ − ψ∗ψt)− �

2

2mψ
∗
xψx − ψ∗Uψ

and by substitutions ψx −→ 2m
�2 π

∗ and ψ∗
x −→ 2m

�2 π obtain

H = H(π, π∗, ψ, ψ∗)
= 2m

�2 π
∗π − ψ∗Uψ − 1

2 i	(ψ∗
tψ − ψ∗ψt) (99)

The canonical field equations are now four in number:

ψx = +
{
∂

∂π
− ∂

∂t

∂

∂πt

}
H = 2m

�2 π
∗ (100.1)

πx = −
{
∂

∂ψ
− ∂

∂t

∂

∂ψt

}
H = Uψ∗ + i	ψ∗

t (100.2)

ψ∗
x = +

{
∂

∂π∗ −
∂

∂t

∂

∂π∗
t

}
H = 2m

�2 π (100.3)

π∗
x = −

{
∂

∂ψ∗ −
∂

∂t

∂

∂ψ∗
t

}
H = Uψ − i	ψt (100.4)

The first and third of these equations give back (98). The 1st order canonical
equations collectively reproduce precisely the 2nd order Schrödinger equations
(94). It should be noticed that when we shift from one variant of Hamiltonian
formalism to another we find ourselves writing equations that are superficially
identical, but which carry quite distinct meanings, with the result that the
associated calculations which can sometimes feel radially different. For example,
to account for “probability conservation” (89) within Hx we compute

[ψ∗ψ,H ] =
{
∂R

∂ψ
− ∂

∂t

∂R

∂ψt

}{
∂H

∂π
− ∂

∂t

∂H

∂πt

}

+
{
∂R

∂ψ∗ −
∂

∂t

∂R

∂ψ∗
t

}{
∂H

∂π∗ −
∂

∂t

∂H

∂π∗
t

}

−
{
∂H

∂ψ
− ∂

∂t

∂H

∂ψt

}{
∂R

∂π
− ∂

∂t

∂R

∂πt

}

−
{
∂H

∂ψ∗ −
∂

∂t

∂H

∂ψ∗
t

}{
∂R

∂π∗ −
∂

∂t

∂R

∂π∗
t

}
with R ≡ ψ∗ψ

= ψ∗ �
2

2mπ
∗ + ψ �

2

2mπ

which by (100.1) and (100.3) can be written
= ∂
∂x (ψ

∗ψ)

This is interesting information, but does not have the form ∂
∂t (something) which



70 Analytical Dynamics of Fields

is essential to the establishment of global conservation theorems within the Hx

formalism. But of course! When the Lagrange formalism supplies ∂
∂tρ+∇∇∇···JJJ = 0

we look within Ht to [ρ,H ], but within Hx should look to the x-component of
[JJJ,H ]. Now

x-component of “probability current” = i �
2

2m (ψ∗
xψ − ψxψ

∗)

according to (90.2), so drawing upon (98) we have

= i
�
(πψ − π∗ψ∗)

and by quick computation obtain

[ x-component of “probability current”,H ] = − ∂∂t (ψ
∗ψ) (101)

which has precisely the anticipated form. The computational experience which
led us to (101) is vividly distinct from that which led us to (97). Similarly
distinct—see again Figure 8—are the meanings of the conservation theorems
thus achieved. For while (97) refers to the invariance of data written onto
t-sections in spacetime (and is therefore a “conservation theorem” in the familiar
sense), (101) refers to the invariance of (other) data written onto x-sections.

A few comments before I bring this discussion to a close: I begin by
drawing attention to the familiar fact that quantum theory is a wonderfully
abstract physical theory; only by abandoning some of that abstraction do we
find ourselves working in the “Schrödinger picture”

H|ψ〉 = i	 ∂∂t |ψ〉

and only by further arbitrary acts—for example, by electing to work in the
x-representation

ψ(x) = 〈x|ψ〉
or perhaps in the associated “Wigner representation”40

Pψ(p, x) = 2
h

∫
ψ∗(x+ ξ)e2

i
�
pξψ(x− ξ)dξ

—does quantum mechanics acquire the status of a field theory. It seems to me
unreasonable—unacceptable—that classical field theory should be able to “see,”
and to comment usefully upon, quantum mechanics only when the latter subject
is suitably costumed; if classical field theory has things to say about quantum
mechanics, it should be able to say them about “naked” quantum mechanics.
The patient-analyst roles have at this point been reversed; quantum mechanics
is telling us that to understand her we should first attend to the improvement
of classical field theory, at least as it relates to linear systems, and (if I read
her correctly) that we should attend in particular to the canonical transform

40 See Quantum Mechanics (), Chapter III, pp. 99 et seq .
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aspects of classical field theory. For it is by transformation theory that we
learn to look beyond the representations of things to the structural essentials
of things-in-themselves.41

Our quantum experience has—relatedly, I think—also alerted us to the
richness of the interconnections amongst the Lagrangian, Hamiltonian and
meta-Lagrangian modes of conceptualizing the dynamics of specific classical
field systems. Recall the pattern of that experience: we started with the L of
(76) and found that

L−−−−−−−−→
{

H t is not possible, while
Hx is possible

We noticed that a Hamiltonian quantum mechanics of type H t did, however,
become possible if L were assigned the meaning of a meta-Lagrangian LLL; we
then obtained this “folliation” of the initial Lagrangian theory:

H within Ht ←−−−−−−−− LLL

L

L −−−−−−−−→ H within Hx −−−−−−−−→ L̃LL

where

L̃LL = πψx + π∗ψ∗
x −

{
2m
�2 π

∗π − ψ∗Uψ − 1
2 i	(ψ∗

tψ − ψ∗ψt)
}

While the phase space associated with the Ht formalism is 2-dimensional,
that associated with the Hx formalism is 4-dimensional, and might before
be expected to support a richer population of symmetry relations; those we
might expect to expose (pursuant to a point developed on p. 68) by bringing
Noetherian methods to bear on L̃LL.

Classical field theory of the Hamilton-Jacobi equation. Schrödinger, as is well
known, was led to the equation which bears his name by an avowedly analogical
procedure: building upon speculation () of DeBroglie (“the mechanics of
particles is in some respects wave-like”), who was himself inspired by Einstein’s
demonstration () that “the mechanics of electromagnetic radiation is in
some respects particle-like,” Schrödinger sought (in his phrase) to “complete
the optico-mechanical analogy”

geometrical optics ←−−−−−−−− physical optics
↓ ↓

classical mechanics −−−−−−−−→ wave mechanics

41 It was, in fact, precisely thus that quantum mechanics itself acquired
its abstract identity; see M. Jammer, The Conceptual Development of
Quantum Mechanics ()
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That geometrical optics (the optics of “rays”—a subject implicit in the
variational principle of Fermat) and classical mechanics (which addresses the
design of the “trajectories” temporally traced by mass points, and is implicit
in the variational principle of Lagrange) are homologous structures had been
established already by Hamilton, nearly a century before (–), and
rediscovered by Bruns.42 The idea that geometrical optics is an artifact of an
underlying theory of “optical waves”—and becomes available only in a certain
approximation43—is, of course, so ancient that Newton was at pains to “refute”
it, and by the last third of the th Century had been brought to a high state of
development; Fresnel, Helmholtz, Kirchhoff and others—working in pursuit of
an idea original to Huygens44—had erected a “physical optics” in which a “wave
equation” was the fundamental analytical device, and diffraction, superposition
(linearity), interference and polarization were among the most characteristic
phenomenological manifestations. In the early ’s—immediately prior to
Schrödinger’s involvement—it had become evident that those same phenomena
are manifest in the mechanics of small particles. When Schrödinger sought to
account for this development by “completion of the optico-mechanical analogy”
his more precise objective was to devise a “wave mechanics” which stands to
Hamiltonian mechanics (Hamilton-Jacobi theory) as physical optics stands to
Hamiltonian optics; it was to the most rarified (and—then as now—least widely

42 Hamilton himself proceeded from the observation that his formulation
of geometrical optics was adaptable to mechanics, where it gave rise to the
“canonical equations of motion,” the theory of canonical transformations and
what we now call “Hamilton-Jacobi theory” (Jacobi entered the picture in
). His mechanical work became widely known, but its optical precursor fell
rapidly into obscurity—especially in Europe. Almost seventy years were to pass
before Heinrich Bruns—a student of Sophus Lie, from whom he had acquired a
sensitivity to the geometry of differential equations—reported his “discovery”
(“Das Eikonal,” Sächs. Ber. D. Wiss. 21,1895) that Hamilton’s mechanics
could be adapted to the needs of geometrical optics. Contemporary optical
theorists generally claim desent from Hamilton, rather than Bruns, but have
appropriated Bruns’ “eikonal” terminology when referring to what Hamilton
called the “characteristic function.” Bruns’ work, though redundant, did serve
to revive interest in Hamiltonian optics, and served to underscore the fact that—
on the classical side of the ledger—the “optico-mechanical analogy” refers to
an association of the form

Hamiltonian optics ←→ Hamiltonian mechanics

43 What approximation? The essential clue is provided by the fact that while
the concept of “ray” is recommended to our intuition by the evidence of our
eyes, our acoustic experience does not make it natural to speak of “sound rays.”

44 Traité de la lumière (). For a suberb account of the developments to
which I allude, see B. B. Baker & E. T. Copson, The Mathematical Theory of
Huygens’ Principle ().
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understood) formulation of classical mechanics that Schrödinger looked for his
point of departure.45 More specifically. . .

The classical object to which Schrödinger looked for quantum guidance
was the Hamilton-Jacobi equation, which in the simplest instance (mass point
m moving one-dimensionally in the presence of an impressed potential) can be
written

1
2mS

2
x + U + St = 0 : S ≡ S(x, t) (102.1)

and in progressively more general classes of cases becomes

1
2m∇∇∇S···∇∇∇S + U + St = 0 : S ≡ S(xxx, t) : relax one-dimensionality

↓
H(∇∇∇S,xxx) + St = 0 : relax restriction on structure of H(ppp,xxx)

↓
H

(
∂S
∂q , q

)
+ ∂S
∂t = 0 : S ≡ S(q, t) ≡ S(q1, q2, . . . , qn︸ ︷︷ ︸, t) (102.2)

generalized coordinates

It is a remarkable fact that that the classical mechanics of a particle (or system
of particles), when formulated at such a high level46 of abstraction, is described
no longer by a system of coupled ordinary differential equations, but by a single
partial differential equation; it has, in short become a field theory. Equations
of the form

S(q, 0) = constant, call it σ

45 He broke new ground in the manner in which he did so, but not in the mere
fact that he did so; “quantization conditions” of the form

∮
p dq = nh began to

appear at an early point in the history of the “old quantum mechanics,” and in
 Karl Schwartzschild remarked that such expressions could in every instance
be associated with the “action-angle” variables which are the hallmark of the
“Hamilton-Jacobi theory of periodic systems” devised by the celestial mechanic
C. E. Delauney in . Paul Ehrenfest was at that same time promoting
the view that “Bohr-Sommerfeld quantization conditions” should be associated
with certain “adiabatic invariants,” and was inspired by Schwartzschild’s paper
to suggest to Jan Burgers, his thesis student, that it might be possible to develop
a “Hamilton-Jacobi theory of adiabatic invariants with quantum mechanical
applications.” Which Burgers promptly did (though Ehrenfest himself claimed
never to have understood the work). The perception that Hamilton-Jacobi
theory had important things to say about the quantum world became (at
least within a small circle of theorists) progressively more widespread, with
the curious result that two of the best accounts of classical Hamilton-Jacobi
theory (I refer to Max Born’s The Mechanics of the Atom () and George
Birtwhistle’s The Quantum Theory of the Atom ()) were published with
quantum intent just in time to be rendered obsolete by Schrödinger. For
further discussion and references, see classical mechanics (), pp. 382–
423, especially 418–421.

46 Which is to say: at such a profoundly geometrical level. . .
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describe the initial design of a σ-parametrized population of non-intersecting
surfaces in configuration space. The Hamilton-Jacobi equation describes the
H(q, p)-generated motion of such surfaces.47 The fundamental relation

ppp(xxx, t) = ∇∇∇S(xxx, t) (103.1)

—more generally

pi(q, t) = ∂

∂qiS(q, t) : i = 1, 2, . . . , n (103.2)

—directs our attention to a dual construction: the population of curves which
(at time t) thread everywhere normally through the population of S-surfaces. It
is through that portal and another—the observation that the functions pi(q, t)
associate p -values with q-values, and serve therefore to inscribe (at time t) a
surface on phase space, a point-set which is subsequently swept along by the
H(q, p)-generated phase flow—that one recovers contact with the moving-point
imagery of (respectively) the Lagrangian and canonical Hamiltonian formalisms;
I will soon have occasion to spell out the meaning this remark in somewhat finer
detail.

It is, it seems to me, quite natural to ask (and therefore surprising that,
so far as I am aware, no one else has previously thought to ask) whether the
Hamilton-Jacobi equation—looked upon as a field equation—can be displayed
as an instance of a Lagrangian field theory. Here the Helmholtz conditions (44)
come to our aid. Looking to the case (102.1), we have a single field (N = 1)
written on a spacetime of m = 2 dimensions, so the Helmholtz conditions are
two in number; they read ∂G/∂St = 0 and ∂G/∂Sx = 0; i.e.,

1 = 0 and 1
mSx = 0

which are absurd: no Lagrange density exists which would yield (102.1) as a
field equation.

This is an unsettling development, for Hamilton-Jacobi theory is a field
theory with a uniquely strong claim to “deep and universal significance;” it
seems to me unreasonable on its face that such a theory should be denied
access to the rich formal resources of Lagrangian field theory. I interpret this
development to be a “call to invention;” we must deepen the channel if we are
to get this boat afloat. I describe now two distinct strategies for accomplishing
precisely that objective:

first strategy

What might be called the “auxiliary variable trick”48 is always available,
but merits serious attention only in cases where direct physical significance can
be assigned to the auxiliary field or fields, and to the associated field equations.

47 It is natural to associate such surfaces with “wavefronts,” though—for us
as for Huygens—such wavefronts possess no undulatory aspect; we find our
pre-quantum mechanical selves contemplating “wavefronts without waves.”

48 See again pp. 39–40.
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That we have in hand just such a case will emerge, but only after we have
introduced new ideas into the Hamilton-Jacobi formalism itself.49

Writing
L = A ·

{
1

2mS
2
x + U + St

}
we observe that, of dimensional necessity,

[A ] =
1

(length)spatial dimension
=

1
volume

= density

and obtain field equations

{
∂t

∂

∂At
+ ∂x

∂

∂Ax
− ∂

∂A

}
L = 0 giving 1

2mS
2
x + U + St = 0{

∂t
∂

∂St
+ ∂x

∂

∂Sx
− ∂

∂S

}
L = 0 giving ∂tA+ ∂x

(
1
mASx

)
= 0

The latter equation—which in the 3-dimensional case reads

∂tA+∇∇∇···
(

1
mA∇∇∇S

)
= 0 (104)

—has the form of a continuity equation, and therein lies the clue to its meaning.
It is to make clear that meaning that we have need of the “new ideas” to which
I just referred, and it is to acquire those that I now digress:

Let state points be sprinked onto phase space with initial density given
by P (xxx, ppp, 0). Those points—transported by the ambient phase flow—have by
time t achieved the distribution P (xxx, ppp, t). Phase flow is symplectic, therefore

49 The following discussion has been adapted from material which appears on
pp. 435–471 and 489–495 in classical mechanics (). A word concerning
my motivation in that work: Feynman’s sum-over-paths formulation of quantum
mechanics assigns central importance—this is a point first recognized by Pauli
and others in /, a point which seems never to have aroused the interest
of Feynman himself—to an object called the Van Vleck determinant. That
object first appears in a paper (“The correspondence principle in the statistical
interpretation of quantum mechanics,” PNAS 14, 178 (1928)) concerned with
quantum fundamentals, but is itself entirely classical. My objective was to
establish the sense in which the Van Vleck determinant

D(xxx, t;xxx0, t0) ≡ det
∥∥∥∥∂2S(xxx, t;xxx0, t0)

∂xi∂xj0

∥∥∥∥
—a construction which has already other work to do within the deeper reaches
of Hamilton-Jacobi theory (see p. 259 in V. I. Arnold’s Mathematical Methods
of Classical Mechanics ())—acquires a “natural predisposition” to assume
its quantum mechanical burden.
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x

p

Figure 9: Shown above is an unspecialized distribution P (x, p, t) of
state points, such as might be encountered in a statistical mechanical
argument. The motion of the distribution is described by (105). In
the lower figure the state points have been sprinkled on the surface
Σ t defined by p(x, t) = Sx(x, t). Open circles on the x-axis represent
projective images of those points, distributed as described by A(x, t).
The distribution in phase space has the specialized structure (106),
and A(x, t) satisfies the continuity equation developed in the text.
The x-axis is folded to reflect implications of the fact that on a
central interval the function Sx(x, t) is triple-valued.
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volume-preserving; therefore the point density in the neighborhood of any
co-flowing point is seen to be constant:

d
dtP =

∑
k

{
∂P
∂xk ẋ

k + ∂P
∂pk

ṗk

}
+ ∂P
∂t

=
∑
k

{
∂P
∂xk

∂H
∂pk
− ∂P
∂pk

∂H
∂xk

}
+ ∂P
∂t = 0

↓
[P,H ] + ∂P

∂t = 0 (105)

which is the upshot of Liouville’s theorem.50 In the “pointwise conception” of
Hamiltonian mechanics one uses the canonical equations

ẋk = + ∂
∂p

k
H and ṗk = − ∂

∂xkH

to watch the motion of individual points in phase space, while in the “global
conception” one uses (105) to watch the motion of arbitrarily distributed point
populations. Hamilton-Jacobi gives rise to an “intermediate conception” if one
sprinkles state points on the surface—call it Σ t—which (103) serves to inscribe
on phase space; to do so is in effect to assume that the distribution function
P (xxx, ppp, t) has the specialized structure

P (xxx, ppp, t) = A(xxx, t) · δ
(
ppp−∇∇∇S(xxx, t)

)
(106)

Here A(xxx, t) provides a “projective” account of how state points are distributed
on Σ t; from

∫
P (xxx, ppp, t) dp1dp2 . . . dpn = A(xxx, t) · (multiplicity of ∇∇∇S(xxx, t) at xxx)

we see that A(xxx, t) is closely related to the marginal distribution in xxx, and
becomes precisely the marginal distribution at points where ∇∇∇S(xxx, t) is
single-valued. Figure 9 provides illustration of the sense in which distributions
of type (106) are “specialized,” of how A(xxx, t) acquires projective significance,
and of why multiplicity matters. Introducing (106) into (105) we obtain51

[P,H ] + ∂P
∂t =

{
Aδ(p− Sx)

}
xHp −

{
Aδ(p− Sx)

}
pHx +

{
Aδ(p− Sx)

}
t

=
{
Ax

p
m +At

}
δ (p− Sx)

−Aδ′(p− Sx)
{
Sxx

p
m + Ux + Sxt

}
50 See H. Goldstein, Classical Mechanics (2nd edition ), §9-8.
51 I find it notationally convenient (since the argument is a little bit intricate)

to restore now my former presumption that n = 1. For that same reason,
I restrict my explicit remarks to the case H(p, x) = 1

2mp
2 + U(x), and use

subscripts to denote partial derivatives.
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It has, however, been observe by Dirac52 that xδ(x) = 0; by differentiation we
have xδ′(x) = −δ(x) whence xδ′(x − a) = aδ′(x − a) − δ(x − a), with the aid
of which we obtain

=
{

1
m (SxxA+ SxAx) +At

}
δ(p− Sx)

−Aδ′(p− Sx)
{

1
mSxSxx + Ux + Sxt

}
=

{
( 1
mSxA)x +At

}
δ(p− Sx)

−Aδ′(p− Sx) ∂∂x
{

1
2mS

2
x + U + St︸ ︷︷ ︸ }

0 by the Hamilton-Jacobi equation
= 0 by (105)

The implication is that if P (xxx, ppp, t) is of the form (106) then Liouville’s theorem
(105) entails that A(xxx, t) satisfies the continuity equation

At + ( 1
mSxA)x = 0

In several-dimensional cases (by an elaboration of the same argument) we
recover (104). The fact that A(xxx, t) invites interpretation as a spatial point
density conforms well, by the way, to an earlier remark relating to its enforced
physical dimensionality.

We are brought thus to the conclusion that while the Hamilton-Jacobi
theory of the textbooks—a single-field theory—resists display as a Lagrangian
field theory, the associated theory of “populated” Σ t-surfaces—a two-field
theory , with (in the simplest instance) field equations

1
2m∇∇∇S···∇∇∇S + U + ∂

∂tS = 0
∂
∂tA+∇∇∇···( 1

mA∇∇∇S) = 0

}
(107)

—does admit of such display, and derives in fact from a very simple Lagrangian:

L = A ·
{

1
2m∇∇∇S···∇∇∇S + U + ∂

∂tS
}

(108)

second strategy

In , when I first considered the problem of bringing Hamilton-Jacobi
theory within the rubric of of Lagrangian field theory,53 I was led—with the
“integrating factor trick” (see again p. 34) and the “auxiliary field trick”48

jointly in mind, and “after a bit of exploratory tinkering”—to construct

La = eS/a
{
a

2mSxBx + aBt − UB
}

(109)

52 Principles of Quantum Mechanics (4th edition, ), (7) in §15.
53 See “A sense in which classical mechanics ‘quantizes itself’:” notes for a

seminar presented  January  at Portland State University—appended to
classical field theory ().
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where a is a constant of (for the moment) arbitrary value but the dimensionality
of action (made necessary because the exponentiated S carries that dimension)
and the auxiliary field B is co-dimensional with the previously-encountered
auxiliary field A. The Lagrangian (109) yields field equations{

∂t
∂

∂Bt
+ ∂x

∂

∂Bx
− ∂

∂B

}
La = eS/a

{
1

2mS
2
x + U + a

2mSxx + St

}
= 0{

∂t
∂

∂St
+ ∂x

∂

∂Sx
− ∂

∂S

}
La = eS/a

{
a

2mBxx −Bt +
1
aUB

}
= 0

which entail

1
2mS

2
x + U + a

2mSxx + St = 0 (110.1)
a2

2mBxx + UB − aBt = 0 (110.2)

The latter equation, though formally interesting on account of its linearity,
appears at present to have the status of a mere artifact, and—particularly since
uncoupled to its companion—to have no direct claim to our attention. The
former equation contains an “unwanted Sxx-term,” but that term disappears
in the limit a ↓ 0. Evidently the Hamilton-Jacobi equation can be harvested as
fruit of the somewhat odd procedure

lim
a↓0

{
∂t

∂

∂Bt
+ ∂x

∂

∂Bx
− ∂

∂B

}
La = 0 (111)

Formulation of the higher-dimensional analog of this result poses no problem.

The deus ex machina is never a welcome participant in scientific discourse.
Good theories, like good machines, accomplish their work with the least number
of moving parts. We have learned to hold in contempt theories which rely upon
the assistance of crutches, which contain “unused parts,” and our contempt is
the higher the more “fundamental” the theory purports to be. We are motivated
by this train of thought to inquire more closely into possibly deeper significance
of the auxiliary field B. Such a program entails that we suspend the limit
procedure a ↓ 0 and take seriously the two-field theory implicit in La; it entails
that we divert our attention from the (solitary) Hamilton-Jacobi equation itself
and look with focused attention to the (uncoupled) pair of field equations (111).

How to proceed? The question vitually answers itself the minute one
notices that adjustment of what one understands to be the “field function”

S −→ Ψ ≡ eS/a

entails
a2Ψxx = eS/a

{
S2
x + aSxx

}
aΨt = eS/aSt

and permits the Lagrange equation eS/a(110.1) to be notated

a2

2mΨxx + UΨ + aΨt = 0 (112)
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Remarkably, we have managed (unwittingly) to linearize (110.1), and have
achieved an equation which—except for the final sign—mimics the structure
of (110.2). That mimicry can be made precise by a very simple device: assume
a to be imaginary , writing

a = −i	
where 	 is for the moment not to be confused with Planck’s constant: it is a
real variable of arbitrary value, and dimensionality [	 ] = action. Then (112)
reads

− �
2

2mΨxx + UΨ− i	Ψt = 0 (113.1)

which by conjugation—note that

Ψ = e
i
�
S has become a complex-valued field function

—assumes precisely the form

− �
2

2mΨ∗
xx + UΨ∗ + i	Ψ∗

t = 0

of (110.2), which now reads54

− �
2

2mBxx + UB + i	Bt = 0 (113.2)

and can be considered to have arisen (together with (113.1)) from this notational
variant of (109):

L� = − �
2

2mΨxBx − i	ΨBt −ΨUB (114)

Beyond this point there are several ways to proceed: it is tempting to
identify (113.2) with the conjugate of (113.1), but dimensional circumstances
stand in the way:

Ψ—whence also Ψ∗—are dimensionless, while [B ] = (volume)–1

We might, at (114), circumvent this problem by making formal replacements

Ψ ↪→ ψ
B ↪→ ψ∗

}
with [ψ ] = [ψ∗] = (volume)−

1
2

We then obtain (after a physically insignificant overall sign reversal)

L = �
2

2mψ
∗
xψx + i	ψ∗

tψ + ψ∗Uψ

↓
= �

2

2mψ
∗
xψx + 1

2 i	 (ψ∗
tψ − ψ∗ψt) + ψ∗Uψ (115)

where the point of the final manipulation has been (by gauge transformation)
to restore the manifest reality of L.

54 Note that the following equation forces the complexification also of the
B-field.
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Continuing in the rhetorical pretense that we are “classical physicists who
don’t already know quantum mechanics,” we might argue that the theory latent
in (115) is “so pretty that it might be right.” But what to do about 	? Most
systems do not supply constants/parameters sufficient to permit assembly of
a “natural action.” To lend the theory a universality commensurate with its
beauty we would be forced to assign 	 the status of a “constant of Nature”
. . . and ultimately the observational value

	 = 1.054592× 10−27erg-seconds

We have at (115) recovered precisely the Lagrangian which in discussion
subsequent to (76) was found to give rise (with the assistance of Noether’s
theorem) to all formal aspects of quantum-mechanics-according-to-Schrödinger,
though not to enforce the interpretive aspects of the latter theory.55 The
classical mechanics of a particle—when written as a (Hamilton-Jacobi) field
theory and forced (by these means) into conformity with the general rubric
of Lagrangian field theory—has, in effect, “quantized itself.” At what point
did classical mechanics become something other than it was? Several distinct
actions—each seemingly slight, and formally natural in itself—contributed to
this development:

• We left classical mechanics behind when we agreed to suspend the limiting
process a ↓ 0;
• We went further afield when at a→ −i	 we complexified the parameter a,

which entailed complexification also of Ψ = eS/a and of B; a 2-field theory had
at that point become a 4-field theory.

By that point we had achieved a theory which was neither classical mechanics
nor quantum mechanics; to achieve the latter (a 2-field theory) we had finally
to make the replacements Ψ ↪→ ψ,B ↪→ ψ∗.

I now reverse the trend of the argument; taking (115) as my point of
departure, I use field-theoretic methods to proceed back again toward the
Hamilton-Jacobi theory from which we came:

Hamilton-Jacobi theory ←− quantum mechanics

We make essential use of the polar representation

ψ = R exp
{
i
�
S
}

(116)

and will find that most of the work has already been done; the exercise will,
however, serve to establish a bridge of the form

55 It is from those “interpretive aspects”—due to Born—that we acquire
rationale for the imposition of boundary conditions upon ψ, and also the theory
of measurement which becomes the source of (amongst other things) our initial
value assertions.
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first strategy ←→ second strategy

and to illuminate the theoretical placement of the so-called “de Broglie-Bohm
interpretation of quantum mechanics.”

In the discussion culminating in (91) we found it to be (by Noether’s
theorem) an implication of the phase-invariance of L that

∂tP +∇∇∇···PPP = 0 :
{

standardly interpreted to
express “probability conservation”

where in polar notation (see again (90)) P = R2 and PPP ≡ 1
mR2∇∇∇S. So we have

↓
∂t(R2) +∇∇∇···( 1

mR2∇∇∇S) = 0 (117.1)

which bears a striking resemblance to (104), to which it would revert upon
substitutional transformation

R2 ↪→ A and S ↪→ S

We are, in the light of this observation, not surprised to recall from (78) that
introduction of (116) into the higher-dimensional generalization of (115) yields
a Lagrangian

L = R2 ·
[
St +

1
2m∇∇∇S···∇∇∇S + U

]
+ �

2

2mR2
x

which has except for the “dangling term” precisely the structure of (108), and
gives rise to field equations (117.1) and

2R
[

1
2m∇∇∇S···∇∇∇S + U + St

]
= �

2

m∇2R

↓
1

2m∇∇∇S···∇∇∇S +
{
U − �

2

2m
1
R∇2R

}
+ ∂
∂tS = 0 (117.2)

which—except for a solitary extra term of order O(	2)—possess precisely the
structure of the Hamilton-Jacobi system (107).

It will be appreciated that equations (117)—their classical appearance
notwithstanding—refer to the quantum dynamics of a particle; taken together,
they are equivalent to (simply a notational variant of) the Schrödinger equations

− �
2

2m∇
2ψ + Uψ = i	∂tψ and its complex conjugate (118)

The classical dynamics of a particle (Hamilton-Jacobi formulation: (107)) is
recovered if, in the spirit of several-dimensional WKB theory,56 one introduces

S = S + 	S1 + 	
2S2 + · · ·

R =
√
A+ 	R1 + 	

2R2 + · · ·

into (117) and retains only the terms of 0th order.

56 See quantum mechanics (), Chapter I, p. 88–106.
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Looking to the “field-theoretic reconstruction of quantum mechanics,” as
outlined above, we see that the theory acquired its undulatory aspects—became
literally a “wave mechanics”—from the i introduced at a → −i	.57 Only with
those undulatory aspects in place does it become possible (with de Broglie) to
entertain associations of the form

wavelength ∼ 	/momentum
frequency ∼ energy/	

Surfaces of constant S admit literally of interpretation as “wavefronts: surfaces
of constant phase;” in the limit 	 ↓ 0 they become surfaces of constant S, the
spooky “wavefronts without waves” which Hamilton-Jacobi theory leads one to
contemplate.47

The connection between “the field theory we call quantum mechanics” and
“the field theory we call Hamilton-Jacobi theory” is so richly deep that it is
encountered at every turn, and in many guises, whenever one looks either to “the
quantization problem” or to its obverse, “the classical limit (correspondence)
problem.” Schrödinger himself worked from one perception of that connection,
Feynman from another. A particularly beautiful account of the intrusion of
Hamilton-Jacobi theory into quantum mechanics was devised by Whittaker
in some early work58 which attracted little attention at the time and is today
almost forgotten, though in several respects it was anticipatory both of Feynman
and of Schwinger. Diverse beasts drink at the same waterhole. On this occasion
I will digress to discuss only one of those:

In  David Bohm published the first59 of series of papers in which
he took the Schrödinger equation (117≡118) as his point of departure, but
imported from classical mechanics an equation

ppp = ∇∇∇S (119)

imitative of (103). By the latter strategem he made available to quantum
mechanics a physical image—populated surface moving in phase space—basic
to classical Hamilton-Jacobi theory (see again Figure 9). Given a solution ψ
of (118)—and therefore already in possession of all the testable statements his
theory is capable of providing—Bohm proceeds to “play classical mechanics”

57 This i is responsible also for the fact that we had to make a “physically
insignificant. . . sign reversal” in order to achieve (115). Such a reversal sends
p = ∂L/∂q → −p, and will be “physically insignificant” only if the physics in
question is time-reversal invariant .

58 E.T.Whittaker, “On Hamilton’s principal function in quantum mechanics,”
Proc. Roy. Soc. Edinburgh 61A, 1 (1941). For an exposition of Whittaker’s
work see “The quantum mechanical Hamilton-Jacobi equation” in quantum
mechanics (), Chapter 3, pp. 68–83.

59 “A suggested interpretation of the quantum theory in terms of ‘hidden
variables,’ Parts I & II,” Phys. Rev. 85, 166 & 180. These papers are reprinted
in J.A.Wheeler & W.H.Zurek, Quantum Theory and Measurement ().



84 Analytical Dynamics of Fields

in order to gain what he imagines to be a philosophical advantage. By the
phrase “play classical mechanics” I mean this: he elects to construe (117) as a
specialized mutant of (107). “Specialized” in this regard: to the “point density”
function A he assigns the ψ -dictated structure

A −−−−−−−−−−−−−−→
Bohm’s specialization

ψ∗ψ = R2

And “mutant” in this:

U −−−−−−−−−−−−−−→
Bohm’s adjustment

U+Q

Q ≡ − �
2

2m
1
R∇2R = − �

2

2m
1

2A

[
∇2A− 1

2A∇∇∇A···∇∇∇A
]

≡ so-called “quantum potential”

In Bohm’s quantum-adjusted version of classical mechanics the populated
surface Σt inscribed on phase space by (119) does not—owing to the presence
of the “quantum potential”—move classically (except in the limit 	 ↓ 0), and
in one respect its motion is qualitatively quite unclassical: the motion of Σt
depends upon the density A with which state points have been sprinkled upon
it .60 That detail notwithstanding, Bohm promotes the view that the particle
trajectories which emerge from the system

− �
2

2m∇
2ψ + Uψ = i	∂tψ

1
2m∇∇∇S···∇∇∇S +

{
U +Q

}
+ ∂
∂tS = 0

Q constructed from ψ, as explained above
ppp = ∇∇∇S




(120)

are as “objectively real” as those which emerge from the Hamilton-Jacobi
system (107), and that ψ provides representation of a force field as objectively
real as (say) the electromagnetic field. A detailed account of the resulting
“causal interpretation of quantum mechanics” (the outlines of which were
anticipated already by de Broglie in ) can be found in a recent monograph
by Peter Holland,61 and a broad selection of more narrowly focused essays—
some by major figures (Roger Penrose, Berhard d’Espagnat, Richard Feynman,
Y. Aharonov, J. S. Bell and others), some by assorted philosophers and
psychiatrists—has been edited by B. J. Hiley & F. David Peat.62

60 Bohm himself might have taken exception to my image of “state points
sprinkled on Σt. He imagined himself to be describing the motion of a single
state point (or particle), and the intrusion of A into the theory to be “merely
a consequence of our [unavoidable and irreducible] ignorance or the precise
initial conditions of the particle.” In my view the distinction is mainly one
of language and emphasis, though it is for Bohm the source of his allusion to
“hidden variables.”

61 The Quantum Theory of Motion (). Holland’s §2.6—entitled “Classical
mechanics as a field theory” (see also his equation (8.14.19))—bears a striking
similarity to material presented in recent pages, though his point of departure
and intended destination are both quite different from my own.

62 Quantum Implications: Essays in Horour of David Bohm ().
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The question “Is quantum mechanics complete?” was debated to a virtual
standstill by Bohr and Einstein during the years –,63 and brought (or so
it was imagined) to a kind of conclusion (in the affirmative) by von Neumann,
whose “impossibility proof”64 appeared in . That the question is today
more alive than ever, and exploration of the “foundations of quantum
mechanics” has become a cottage industry, is due in substantial part to Bohm.
Not that Bohm attracted (except from fringe elements) many converts to his
views: most physicists were no more inclined than I am to optimism that
our understanding of quantum mechanics can be deepened in any significant
or useful way by the addition of elements which can be defended/rebutted
only by philosophical debate, and many found technical fault with Bohm’s
proposal.65 Bohm’s  papers did, however, draw attention to the fact that
von Neumann’s assumptions were susceptible to criticism (and, latently, to
circumvention), and did lend encouragement to those who sought—for whatever
reason—to escape the dogma of the “Copenhagen interpretation;” they did,
in short, inspire thought. Thus J. S. Bell, who at one point wrote66 that
“Bohm’s. . .papers were for me a revelation. . . . I have always felt that people
who have not grasped the ideas of those papers. . . are handicapped in any
discussion of the meaning of quantum mechanics.” Y. Aharonov remarks that
Bohm’s theory is “often accused of artificiality and inelegance, and doubtless it
is guilty of both,” but continues: “But to make such accusations, and to leave it
at that, is to entirely miss the point. What Bohm was after. . .was not elegance
and not naturalness; Bohm’s intentions were simply to produce a theory which,
whatever its other characteristics, had logically clear foundations. . . ”67 Quoting
again from Bell: “It is easy to find good reasons for disliking the de Broglie–
Bohm picture. Neither de Broglie nor Bohm liked it very much; for both of
them it was only a point of departure. Einstein also did not like it very much.

63 See P. A. Schilpp, Albert Einstein: Philosopher-Scientist (), Chapter 7;
Abraham Pais, ‘Subtle is the Lord. . . ’: The Science and the Life of Albert
Einstein, Chapter 25 or Chapter 5 of Jammer (cited below). It is interesting
to recall in this connection that the title of the famous EPR paper, which
appeared somewhat later (A. Einstein, B. Podolsky & N. Rosen, Phys. Rev.
47, 777 (1935)), is “Can the quantum mechanical description of Nature be
considered complete?”

64 J.von Neumann, Mathematische Grundlagen der Quantenmechanik (),
Chapter 4, §§1 & 2.

65 For a wonderfully detailed account of the issues surrounding Bohm’s work
and its reception, see Max Jammer, The Philosophy of Quantum Mechanics:
The Interpretations of Quantum Mechanics in Historical Perspective (),
Chapter 7, especially §7.5.

66 “Beables for quantum field theory,” Speakable and unspeakable in quantum
mechanics (), reprinted in Hiley & Peat.

67 The quotation is taken from “The issue of retrodiction in Bohm’s theory,”
which appears in Hiley & Peat. The “Aharanov-Bohm effect” was first described
in “Significance of electromagnetic potentials in quantum theory,” Phys. Rev.
115, 485 (1959).
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He found it ‘too cheap,’ although, as Born remarked, ‘it was quite in line with
his own ideas.’ ”68

I feel I owe my reader an explanation: Why—in a work ostensibly concerned
with the classical theory of fields—have I allowed myself the indulgence of the
preceding digression? The answer resides in the collision of two circumstances:
We found it to be the case that the classical mechanics of a particle, when
approached field theoretically from just the right angle, very nearly “quantizes
itself,” but that the line of argument in question only hints at—and certainly
does not enforce—the interpretive statements standard to quantum theory. Oz
Bonfim—my colleague, and the occupant of the office next to mine—has in
recent years been exploring this question: Can the “orbital concreteness” which
the Bohm theory introduces into quantum theory be exploited to lend sharper
meaning to the notion of “quantum chaos”? It became therefore natural to
ask: Does the field theoretic quantization procedure lead to a formalism as
“naturally predisposed” to Bohm’s “causal interpretation” as to the standard
(Bohr/Born) interpretation? Had the answer been in the affirmative, I would
have looked upon Bohm’s creation with more enthusiasm (which is to say: with
less dubiousness) than has been my habit. But I have come to the conclusion
that appropriation of the equation

ppp = ∇∇∇S

—an act which lies at the heart of Bohm’s program—is field theoretically
unmotivated; the equation is a gratuitous import which, since it stands with
one leg planted in a formalism dominated by the symplectic group and the other
in a formalism dominated by the unitary group, leads to a fantasy at risk of
becoming transformation-theoretically unstuck unless managed carefully.

I conclude with Bohm-inspired remarks which culminate in formulation
of an open question which seems to me to be of independent field theoretic
interest. From (116) it follows (recall (90)) that

R2 = ψ∗ψ

= probability density

∇∇∇S = 	∇∇∇arctan
{
i
ψ∗ − ψ

ψ∗ + ψ

}
= 1

2 i	
ψ∇∇∇ψ∗ − ψ∗∇∇∇ψ

ψ∗ψ

= m · probability current
probability density

This information could have been extracted directly from (117.1), but I find
the present argument amusing. The immediate point, however, is this: we have

68 See §3 in “On the impossible pilot wave,” which appears as Essay 17 in
the collection cited previously.66 Also the appendix to the paper reprinted as
Essay 10: “Einstein–Podolsky–Rosen experiments.”
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shown (104) to originate in (106); we have, in other words, shown that (117.1)
would follow from

P (xxx, ppp, t) = R2(xxx, t) · δ(ppp−∇∇∇S)

= (probability density) · δ
(
ppp−m

probability current
probability density

)
= ψ∗ψ · δ

(
ppp− 1

2 i	
ψ∇∇∇ψ∗ − ψ∗∇∇∇ψ

ψ∗ψ

)
= ψ∗ψ · δ

(
ppp− 1

2 i	
[
∇∇∇ logψ∗ −∇∇∇ logψ

])




(121)

which provide alternative formulations of Bohm’s fundamental assumption: he
takes the “pilot wave” ψ to be simultaneously responsible for
• the instantaneous design of the surface Σ t, and
• how Σ t is “populated”

with the result that in his theory “motion depends upon the population”
(through, he would say, the “quantum potential”). There are, however, other
ways than (121) to get from ψ(xxx) into phase space. One of those—fundamental
to the so-called “phase space formulation of quantum mechanics”—has already
been mentioned;40 I refer to the process

ψ(x) −→ P (x, p) = 2
�

∫
ψ∗(x+ ξ)e2

i
�
pξψ(x− ξ) dξ (122)

devised by E. P. Wigner and L. Szilard sometime prior to . The Bohm
distribution (121) and the Wigner distribution (122), if extracted from identical
ψ functions, yield identical marginal distributions∫

P (x, p) dp = |ψ(x)|2

which, in their separate ways, they launch identically into motion.69 But
when plotted, PWigner(x, p) and PBohm(x, p) could hardly be more different; the
former (if we make allowances for the fact that it can assume negative values)
resembles Figure 9upper, while the latter (except for the fact that it can never
display multivaluedness) resembles Figure 9lower. Holland,70 after remarking
that “there have been many attempts to introduce phase-space-type structures
into quantum mechanics,” discusses only one—the formalism based upon the
Wigner distribution, which he promptly dismisses on the grounds that it does
not conform to Bohm’s conception of the world (“does not appear to provide
a suitable language for a causal representation of quantum phenomena”). The
“phase space formulation of quantum mechanics,”as elaborated by J.E.Moyal,71

69 On this evidence we conclude that while probability conservation (91)
permits, it does not enforce Bohm’s structural assumption (121).

70 See §8.4.3 in the monograph61 cited previously.
71 “Quantum mechanics as a statistical theory,” Proc. Camb. Phil. Soc. 45,

99 (1949).
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is, in fact, precisely equivalent to orthodox quantum mechanics, of which it is
an informative reorganization, but into which it imports no fundamentally new
physical concepts (no gratuitous innovations subject defense/refutation only by
philosophers); therein, for many, lies one of its strengths.72

The role of the Schrödinger equation is (in the one-dimensional case) taken
over within the phase space formalism by the equation73

∂
∂tP = 2

�
sin

{
�

2

[(
∂
∂x

)
H

(
∂
∂p

)
P
−

(
∂
∂x

)
P

(
∂
∂p

)
H

)]}
HP (123.1)

which gives back Liouville’s equation (105) in the limit 	 ↓ 0. Expanding
the sine, we find (123.1) to be a partial differential equation of infinite order
(though in special cases the power series may truncate). The question which
I take this opportunity to pose—but will not attempt to resolve—is this: Can
(123.1) be rendered into the language of Lagrangian field theory? The question
acquires urgency for the same reason as motivated us when we looked at the
beginning of this discussion to the Hamilton-Jacobi equation: the “quantum
Liouville equation” (123.1) can plausibly be claimed to be “fundamental.” And
it acquires formal interest from the circumstance that if a suitable Lagrangian
could be found, it would have necessarily the form

L(P, ∂P, ∂∂P, ∂∂∂P, · · ·)

The field equation (123.1) can alternatively be cast as an integral equation

∂
∂tP (x, p, t) =

∫∫
K(x, p;x0, p0)P (x0, p0, t) dx0dp0 (123.2)

K(x, p;x0, p0) suitably defined73

which speaks on its face of non-local field theory. Whether we were to proceed
from (123.1) or from (123.2), we would be obligated to undertake at the outset
a major enlargement of Lagrangian field theory , as I have presented it.

72 For an excellent brief account of the phase space formalism, see pp. 422–425
in Jammer.65

73 For detailed discussion see quantum mechanics (), Chapter 3, p.110.
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