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We present a detailed study of instabilities arising in optoelectronic oscillators with a single narrow-band
time-delayed feedback loop. Such optoelectronic oscillators produce periodic solutions and may be useful as
high-purity signal generators, but their nonlinear dynamics sets limits on available signal amplitudes. Starting
from an integrodifferential model, we utilize approximate analytic solutions to find the stability boundaries of
the periodic solutions as well as regions of multistability. Our analytical predictions are confirmed by numerical
simulations and experiments.
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I. INTRODUCTION

Optoelectronic oscillators (OEOs) are well controlled
tabletop experimental systems that are able to generate a
plethora of interesting dynamical states. Research on OEOs is
driven both by the need to better understand basic dynamical
phenomena and by technological applications of OEOs, such
as for communication [1,2], random number generation [3,4],
reservoir computing [5–7] or ultrapure microwave generation
[8,9], to name a few.

One widely utilized basic optoelectronic oscillator archi-
tecture is shown in Fig. 1. It consists of a nonlinearity and
a time-delayed amplified and frequency-filtered feedback of
the nonlinearity’s optical output to its electrical input. In the
particular system considered in this paper, the feedback is
bandpass filtered, and the nonlinearity is provided by a Mach-
Zehnder modulator, which relates the optical output to the
electrical input in a cos2-type fashion. The combination of the
nonlinearity and the delayed feedback gives rise to a wealth
of possible dynamics, such as multiple coexisting attractors
and oscillatory behavior that ranges from periodic waveforms
to high-dimensional chaos as well as hybrid states, such as
chaotic breathers [10–14].

Although rich dynamics arise in OEOs regardless of the
broadband or narrow-band nature of the feedback loop, it
is nevertheless useful to distinguish these two cases, both
for theoretical studies and when considering technological
applications. For example, broadband OEOs are used for
random number generation [3,4] and reservoir computing
[5–7], whereas narrow-band OEOs are the key technology
that permits efficient generation of spectrally pure microwave
signals [8,9]. In the context of OEOs with an electronic
bandpass filter in the feedback loop, narrow band means that
the filter bandwidth ��/2π is small compared to the filter’s
center-frequency �0/2π , whereas the opposite is true for
broadband OEOs.
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It has been shown [12,13] that a simple two-pole model
of the bandpass filter is sufficient to reproduce the dynamics
of the basic optoelectronic feedback systems shown in Fig. 1
even if the actual filter roll-off is steeper. In the two-pole
model, the filter output is given by the integrodifferential
equation,

x + 1

��

dx

dt
+ �2

0

��

∫ t

t0

x(s)ds = γ cos2[xτD + φ], (1)

in which x is the dimensionless variable corresponding to the
experimentally measured voltage, γ is the overall loop gain,
τD is the overall loop delay, xτD is shorthand notation for
the delayed variable x(t − τD ), and φ is a fixed phase that
is controlled by adding a dc voltage to the Mach-Zehnder
modulator input (see Refs. [12,13,15] for details).

Motivated by the technological importance of narrow-band
OEOs, we present in this paper a detailed study of the periodic
solutions of Eq. (1) and their stability in the narrow-band
regime. Our theory does not make a priori assumptions about
the size of the delay and is therefore applicable for a wide
range of τD’s, including the large delay case that is relevant
for high-purity microwave signal generators.

Large delays of practical OEO signal generators are often
achieved by using several kilometers of optical fiber in the
feedback loop [8,16]. A large delay means, in this context, that
τD � 2π/�0 or, in terms of frequency, that the fundamental
delay-mode frequency �T/(2π ) = 1/τD is much smaller than
the filter’s center frequency. Indeed, for most microwave
signal generators the fundamental delay-mode frequency is
smaller than the filter bandwidth, i.e., �T � �� � �0 holds.

Large delays lead to delay modes that are narrowly spaced
in Fourier space and, although many of these modes fall
within the bandwidth of the electronic bandpass filter, under
optimal conditions, only one such mode is amplified and os-
cillates, resulting in the desired spectrally pure signal. Yet, as
already pointed out by Chembo et al. [17], the narrow filter is
insufficient to completely eliminate complex dynamics if the
feedback gain is large. For sufficient gain, torus bifurcations
(also called secondary Hopf bifurcations or Neimark-Sacker
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FIG. 1. Schematic of optoelectronic oscillator: LD: laser diode;
PC: polarization controller; MZM: Mach-Zehnder modulator; D:
photodetector; AD: adjustable delay (τ ); γ : adjustable amplification;
F: bandpass filter; and Osc: digital oscilloscope.

bifurcations) destabilize the periodic solutions [16,17], just
as is the case for other delayed-feedback oscillators [18–21].
This bifurcation has the important implication that it sets an
upper limit to the output power of an OEO signal generator.

Although the existence of an upper gain threshold for
narrow-band OEOs with large delays is known [16,17], we
show in this paper that the detailed picture of the periodic os-
cillation’s stability region is complicated because the thresh-
old is delay dependent with several torus bifurcation curves
contributing. We will pay special attention to shorter delays
where the threshold value significantly differs from its value in
the large delay limit. We furthermore show that stable periodic
solutions coexist for certain delay values and quantify the
degree to which stable periodic oscillations remain sinusoidal
as their amplitudes increase.

The paper is organized as follows: A numerical analysis
of the bifurcation structure of Eq. (1) is presented in Sec. II
with approximate analytic solutions given in Sec. III. The
experimental setup is detailed in Sec. IV, and results are
discussed in Sec. V.

II. NUMERICAL BIFURCATION ANALYSIS

For ease of analysis, we rescale time with respect to the
filter’s center-frequency t → �0t and introduce the dimen-
sionless delay τ = �0τD as well as the parameter,

μ = ��0

�0
. (2)

We note that the parameter μ is the inverse of the bandpass
filter’s quality factor (μ = 1/Q) and is a small parameter
if the filter is narrow (μ = 0.22 for our experiment). After
differentiation of Eq. (1) we obtain the nonlinear delay differ-
ential equation (DDE),

ẍ + μẋ + x = μγ
d

dt
F [xτ ], (3)

where the overdot denotes the derivative with respect to
rescaled time, xτ = x(t − τ ) denotes the delayed variable,
and the nonlinearity is

F [xτ ] = cos2[xτ + φ]. (4)

We numerically find the stable regions of periodic oscil-
lation using DDE-BIFTOOL [22,23], a software package for

τ (arb. units)

γ
(a

rb
.

un
it

s)

τ τ/2 τ/3 τ/4

stable steady state

τ (arb. units)
γ

(a
rb

.
un

it
s)

(a)

(b)

FIG. 2. Numerical bifurcation analysis in delay (τ ) and
feedback-gain (γ ) parameter plane. Computations are performed for
φ = −π/4 (implying γ = γeff , see Sec. III A). (a) Short delays: sta-
ble steady state (labeled gray region), Andronov-Hopf bifurcations
of steady state (dashed lines), Hopf-Hopf bifurcations of steady state
(intersection of dashed lines with a subset of interest indicated by
diamond symbols), stable periodic solutions (color shaded regions),
torus bifurcations of periodic solutions (solid lines). Experimental
measurements were taken along τ = 6.27 and γ = 2.28 (dotted
lines). (b) Longer delays: Only the stability regions and boundaries
are shown. Asymptotic upper threshold γ ≈ 2.31 (dashed-dotted
line).

numerical bifurcation analysis of systems of delay differ-
ential equations. The result is shown in Fig. 2 for positive
(noninverting) feedback, achieved by setting φ = −π/4. It
is seen that the x = 0 steady state is stable for sufficiently
small feedback gain for any delay. As the gain is increased,
periodic solutions are created through Andronov-Hopf bifur-
cations. The minimum threshold for this bifurcation is γ = 1
and occurs when the dimensionless delay τ is equal to 2πk

for integer k. At these delays, which we call “integer de-
lays,” a periodic solution with dimensionless period T = τ/k

not only satisfies x(t − τ ) = x(t ) precisely, but also its fre-
quency exactly matches the filter’s center frequency, implying
maximum amplification per round trip. For other delays,
Andronov-Hopf bifurcations occur for larger feedback gains
(γ > 1), and the frequencies of periodic solutions are shifted
away from the filter’s center frequency. We nevertheless can
identify the different delay oscillation modes by the integer
k because it still holds that T ≈ τ/k (k > 0). Stable periodic
modes with k = 1–4 are labeled in Fig. 2(a), and their stability
regions are depicted by different colors (shades of gray).

Considering a fixed delay τ in Fig. 2(a) and increasing
gain, the Andronov-Hopf bifurcation curve with minimum
gain γ corresponds to a supercritical bifurcation of a stable
periodic solution from the steady state, whereas Andronov-
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Hopf bifurcation curves at larger gain values correspond to
the creation of unstable periodic solutions. The points of
intersection of two Andronov-Hopf bifurcation curves are
Hopf-Hopf bifurcations of the zero steady state, and we
indicate by diamonds the Hopf-Hopf points at the steady-
state stability boundary. Emanating from each of the stability-
boundary Hopf-Hopf points are two separate torus bifurcation
curves. This is seen, for example, in Fig. 2(a) where the k = 1
and k = 2 Andronov-Hopf curves intersect in the Hopf-Hopf
point at (τ, γ ) ≈ (9.2, 2.2) and two torus bifurcation curves
emerge, one limiting the region of stable k = 1 oscillations
and the other limiting the region of stable k = 2 oscillations.

In addition to the torus curves associated with the Hopf-
Hopf points of the zero steady state, there is, for each delay
mode k, an additional torus bifurcation curve that forms the
upper stability boundary for that mode. For gain values in
excess of the latter boundary (white regions in Fig. 2) both
the zero steady state and the periodic solution are unstable.

It is seen in Fig. 2 that the upper gain threshold for
stable periodic solutions strongly depends on the delay τ . The
minimal threshold value is larger than 4 for short delays and
decreases as the delay increases, approaching the value of 2.31
[17] for large delays. Regions of coexisiting stable periodic
solutions are clearly seen by the areas with overlapping colors
(shades of gray).

Figure 2(b) shows the stability regions for slightly larger
values of delay. It is seen that relevant features of the stabil-
ity regions persist for large delays: Stability boundaries are
delay dependent, boundaries are formed by an upper torus
bifurcation curve together with two torus bifurcation curves
that emanate from Hopf-Hopf points, and there are regions of
multistability.

III. THEORY

In this section, we develop approximate solutions of Eq. (3)
that are valid not only for large delays, but also for providing
a good description of the short delay regime (modes with
k = 1, 2, . . .). The main assumption made is that the bandpass
filter is narrow band such that μ can be considered a small
parameter.

The idea is to look for a spectrally pure periodic approxi-
mate solution to Eq. (3) of the form

x0(t ) = A cos(ωt ), (5)

and to determine both when such a solution exists as well
as the behavior of first order corrections. The first order
corrections are split into two parts based on their spectrum:
(1) contributions x̂1 due to higher harmonics, i.e., solutions
with frequencies nω for integer n with n > 1, and (2) con-
tributions x1 that have other and potentially incommensurate
frequencies ω1. The higher harmonics will lead to periodic
signals that are no longer spectrally pure. Contributions from
incommensurate frequencies will lead to quasiperiodic solu-
tions associated with a torus bifurcation.

Accordingly, to first order, we write the approximate solu-
tion as

x ≈ x0 + x̂1 + x1, (6)

with the assumption that the corrections x̂1 and x1 are small
compared to x0. The nonlinearity in Eq. (4) can then be
expanded to first order,

F
[
xτ

0 + (
x̂τ

1 + xτ
1

)] ≈ F
[
xτ

0

] + F ′[xτ
0

](
x̂τ

1 + xτ
1

)
, (7)

where F ′ denotes the first derivative. Since the argument xτ
0 =

x0(t − τ ) of the nonlinearity is an even periodic function with
respect to the delayed time t − τ [see Eq. (5)], the nonlinearity
can be written in terms of a cosine Fourier series. For example,
we may write the first term on the right-hand side of Eq. (7)
as

F
[
xτ

0

] =
∞∑

n=0

Cn cos(nω[t − τ ]), (8)

with the Fourier coefficients Cn given in the Appendix.
We note that constant terms in the Fourier series of F do

not contribute because only the time derivative of F appears
in Eq. (3). Of the oscillating terms in the expansion of F [xτ

0 ],
the ω term may be presumed to be largest for reasons of
self-consistency; one expects that the large amplitude solution
x0 has a frequency ω close to the filter’s center frequency,
whereas higher-harmonic terms are smaller due to the sup-
pression by the filter.

In our solution approach of Eq. (3), we therefore order con-
tributions as follows: The dominant zeroth order approximate
solution x0 is paired with the dominant C1 term in Eq. (8),
yielding

ẍ0 + μẋ0 + x0 = μγ
C1

A ẋτ
0 , (9)

where we used the identity cos(ω[t − τ ]) = xτ
0 /A. This equa-

tion implicitly determines the amplitude A and frequency ω of
the dominant solution x0 in Eq. (5).

To next order, the higher-harmonics correction x̂1 is paired
with the higher-harmonic expansion coefficients Cn (n > 1)
of F [xτ

0 ] in Eq. (8), yielding

¨̂x1 + μ ˙̂x1 + x̂1 = −μγ

∞∑
n=2

nωCn sin(nω[t − τ ]). (10)

This equation expresses the fact that the nonlinearity shifts
power from the frequency ω (the x0 solution) to higher-
harmonic frequencies nω (the x̂1 correction). In principle,
there is also a contribution to frequency nω of x̂1 from mixing
of mω components of x̂1 (m �= n) with the main signal x0 as
expressed in the F ′[xτ

0 ]x̂τ
1 term in Eq. (7). We assume that this

is a higher order effect that can be neglected.
Finally, the x1 correction at nonharmonic frequencies satis-

fies an equation that is obtained by pairing x1 and the mixture
of x0 and x1 as expressed by the F ′[xτ

0 ]xτ
1 term in Eq. (7),

yielding

ẍ1 + μẋ1 + x1 = μγ
d

dt

[
F ′[xτ

0

]
xτ

1

]
. (11)

This equation is a linear second order delay differential equa-
tion with time-varying coefficients. It determines the stability
of the periodic solution x0; x0 is stable (unstable) if the trivial
solution x1 = 0 of Eq. (11) is stable (unstable).
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We have separated the nonlinear DDE (3) into three linear
differential equations: Eqs. (9), (10), and (11). We solve them
in turn.

A. Sinusoidal periodic solution

The dominant periodic solution x0 satisfies Eq. (9). After
substituting the solution ansatz Eq. (5) into the DDE (9),
inserting the Fourier coefficient C1 as given by Eq. (A3), and
separately equating the cos(ωt ) and sin(ωt ) terms, we find

1 = γeff cos(ωτ )
J1(2A)

A , (12a)

ω−1 − ω = μγeff sin(ωτ )
J1(2A)

A , (12b)

where Jk denotes the Bessel function of the first kind and we
have defined the effective feedback-gain parameter,

γeff = −γ sin(2φ). (13)

For all our results, γeff is the relevant parameter with φ

just rescaling the gain. This holds as long as sin(2φ) is
sufficiently large. In contrast, if sin(2φ) ≈ 0, then the linear
term in the Taylor expansion of the nonlinearity F [x] becomes
negligible compared to the quadratic term, invalidating our
approximation scheme. We set φ = −π/4 in both numerics
and experiment in which case γeff = γ .

Equations (12a) and (12b) determine the angular-frequency
ω because they imply

ω−1 − ω = μ tan(ωτ ). (14)

To this order of approximation, the angular frequency is
independent of the oscillation amplitude and is determined
solely by the filter through μ and by the delay τ . With ω at
hand, the amplitude A is determined by Eq. (12a).

The solutions ω of the transcendental Eq. (14) corre-
spond to potential delay oscillation modes, but for any given
feedback-gain γeff only a finite number of modes also satisfy
Eq. (12a) with a positive amplitude A. Indeed, it is has been
shown [24] that periodic solutions only exist if γeff has a mag-
nitude larger than one. As an example, consider the kth delay
oscillation mode for the special case of integer delay τ = 2πk

(with k as a positive integer). Then the mode frequency is
ω = 1, and one finds from Eq. (12a), after expanding the
Bessel function for small argument A, that A needs to satisfy

A√
2

≈
√

1 − 1

γeff
. (15)

Physically relevant solutions with a positive real amplitude A
exist only if γeff > 1.

B. Harmonics

The higher-harmonic first order correction x̂1 is easily com-
puted from Eq. (10), which is a damped harmonic oscillator
equation with harmonic drive terms. Explicitly, we may write
Eq. (10) as

¨̂x1 + μ ˙̂x1 + x̂1 =
∞∑

n=2

[an sin(nωt ) + bn cos(nωt )]. (16)

with coefficients,

an = nωμγeff cos(nωτ )�nJn(2A), (17a)

bn = −nωμγeff sin(nωτ )�nJn(2A), (17b)

where the factor �n stands for

�n =
{

(−1)(n+1)/2, n = 3, 5, . . . ,

(−1)n/2 cot[2φ], n = 2, 4, 6, . . . .
(18)

Integration gives the solution,

x̂1 =
∞∑

n=2

[cn cos(nωt ) + sn sin(nωt )]. (19)

The coefficients in Eq. (19) are

cn = bn + annμω − bnn
2ω2

1 + n2(−2 + μ2)ω2 + n4ω4
≈ bn

1 − n2ω2
, (20a)

sn = an − bnnμω − ann
2ω2

1 + n2(−2 + μ2)ω2 + n4ω4
≈ an

1 − n2ω2
. (20b)

The approximation in Eq. (20) is due to the assumption that
μ � 1.

The harmonics are generated because the nonlinearity in
the time-delay-feedback loop shifts power from the dominant
solution to its higher-harmonic frequencies. The amplitude of
the harmonics scales approximately as μγeffJn(2A)/(nω) for
large n, i.e., the amplitudes fall off as 1/n and decrease as the
filter bandwidth is narrowed (μ → 0). Noting that Jn(2A) ≈
An/n! for small A, i.e., close to oscillation onset, we find that
the harmonics are negligibly small and the signal is of high
spectral purity. However, as the oscillation amplitude A of the
dominant solution grows with increasing feedback strength,
the higher-harmonic frequency terms noticeably distort the
sinusoidal solutions as shown in Fig. 4.

C. Stability of periodic solutions

The numerical results of Sec. II suggest that the periodic
oscillations lose stability in torus bifurcations, i.e., Andronov-
Hopf bifurcations of the amplitudes that lead, generically, to
quasiperiodic oscillations. In terms of our theory, a change
in stability of the periodic solution x0 corresponds to a loss of
stability of the steady-state solution of Eq. (11). Since Eq. (11)
is a linear DDE with periodic coefficients, Floquet theory
can be used to determine stability, but such analysis requires
numeric computations [25,26]. Instead, we will utilize the
fact that the narrow bandpass filter suppresses solutions with
frequencies away from the filter’s center frequency to reduce
the problem to a linear DDE with constant coefficients for
which the stability analysis is straightforward.

Due to narrow-band filtering, the x1 perturbation has most
of its power close to the frequency ω and, therefore, we write
the perturbation x1 as

x1 = R(t ) cos(ωt ) − T (t ) sin(ωt ), (21)

where we presume that the in-phase amplitude R (radial
perturbation) and out-of-phase amplitude T (tangential per-
turbation) are small and vary slowly, i.e., with frequencies less
than ω ≈ 1.
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Our approach is to expand the right-hand side of Eq. (11)
in a Fourier series and to only retain terms that oscillate with
frequencies close to ω. That is, this step mirrors the approach
that gave rise to the equation for x0 [Eq. (9)]. We obtain [see
Eq. (A6) in the Appendix]

ẍ1 + μẋ1 + x1 = μγeff
d

dt
[cR Rτ cos(ω[t − τ ])

− cT T τ sin(ω[t − τ ])], (22)

with the A-dependent coefficients cR and cT given by
Eq. (A7). Taking advantage of the smallness of μ and the
slow variation of R and T , we may drop terms R̈ and T̈ and
terms μṘ and μṪ (slowly varying envelope approximation).
It also follows that one may equate separately the cos(ωt ) and
sin(ωt ) terms because R and T do not change significantly
over one period. After some algebra and use of Eqs. (14) and
(A9), we obtain a linear DDE with constant coefficients,

ż(t ) = Az(t ) + Bz(t − τ ). (23)

Here, z = [T ,R]T is a two-dimensional column vector, and
the constant matrices are

A = −μ

2

(
1 − tan(ωτ )

tan(ωτ ) 1

)
, (24a)

B = −μ

2

(
−1 cR

cT
tan(ωτ )

− tan(ωτ ) − cR

cT

)
. (24b)

The stability of the steady state of Eq. (23) is determined by
the complex-valued spectrum of eigenvalues � that are the
roots of the characteristic equation,

det(�I − A − Be−�τ ) = 0, (25)

where I is the identity matrix. The steady state is stable if all
(infinitely many) roots have negative real parts. Starting with
parameters for which the steady state is stable, a destabilizing
bifurcation occurs if roots cross the imaginary axis as param-
eters of the system are varied.

For the stability analysis we consider μ fixed, leaving two
bifurcation parameters: the feedback delay τ and the effective
feedback-gain γeff . For notational convenience we introduce

g1 = −μτ

2
, g2 = −μτ

2
[1 + tan(ωτ )2]. (26)

These quantities depend on the delay τ but are independent of
γeff . The dependence on the effective feedback-gain γeff arises
through the amplitude A of the zeroth order solution x0 [see
Eq. (12a)] and is encoded by α, defined as

α =
(

1 + cR

cT

)
= 2AJ0(2A)

J1(2A)
. (27)

With these definitions, the characteristic equation (25) be-
comes

0 = (�τ )2 − 2g1�τ + g1α�τe−�τ

+ g1g2(1 − e−2�τ − αe−�τ + αe−2�τ ). (28)

We note that � = 0 is a solution of Eq. (28) for any
choice of parameter values. The corresponding eigenvector is
z = [1, 0]T (for positive amplitudes A), implying that x1 =

−T0 sin(ωt ) for some constant T0 such that x0 + x1 is simply
a phase shifted periodic solution. In other words, the � = 0
solution of Eq. (28) does not indicate a bifurcation but is due
to the time-shift invariance of Eq. (3).

To find Andronov-Hopf bifurcations of the steady-state
z = 0, we set � = iω1, separate real and imaginary parts, and
solve for α to obtain

α = (ω1τ )2/g1 − g2 + g2 cos(2ω1τ )

ω1τ sin(ω1τ ) − g2 cos(ω1τ ) + g2 cos(2ω1τ )
, (29a)

α = 2ω1τ − g2 sin(2ω1τ )

ω1τ cos(ω1τ ) + g2 sin(ω1τ ) − g2 sin(2ω1τ )
. (29b)

Eliminating α from Eqs. (29a) and (29b) yields a transcenden-
tal equation for the frequency ω1 of R(t ) and T (t ) that only
depends on μ and τ and is independent of the feedback-gain
γeff . That is, the feedback delay alone determines both the
frequency ω of the periodic oscillation and the secondary
frequency ω1 that arises in the torus bifurcation.

Numerical root finding allows one to determine ω1 for a
given feedback delay τ and then calculate the corresponding
feedback-gain γeff using Eq. (12a) after first utilizing Eq. (29a)
to find α and Eq. (27) to obtain A. Among the infinitely many
positive roots ω1 of the transcendental equation, the lowest
frequencies that give rise to positive γeff are the frequencies
of interest. The solutions thus obtained are torus-bifurcation
curves γeff (τ ) that bound regions of stable oscillations. The
result is shown in Fig. 5 and discussed in Sec. V.

IV. EXPERIMENTAL SETUP

The theory depends on frequency ratios only. In light of
this, we chose to perform experiments at low frequencies for
ease of implementation.

In the experiment, schematically shown in Fig. 1,
continuous-wave light from a 1554 nm fiber-coupled semi-
conductor laser passes through a polarization controller and
is injected into a JDSU Z5 LiNbO3 Mach-Zehnder modula-
tor. The optical power P transmitted through the modulator
is a nonlinear function of the applied voltages Pout/Pin ∼
cos2[x(t ) + φ], where x(t ) = πV (t )/(2Vπ ) with Vπ = 2.7 V
is the dimensionless variable corresponding to the time-
varying voltage V (t ) coming from the feedback loop and
φ is a dimensionless parameter corresponding to a constant
bias voltage. For all data shown in this paper, φ = −π/4
(positive feedback). The optical output of the nonlinearity is
detected and converted to an electrical signal by a ThorLabs
PDA20CS InGaAs photodetector. The adjustable delay is
achieved through a Symetrix 402 delay, which delays audio-
frequency signals by up to 885 ms with fine adjustable delay
steps of approximately 0.88 ms. The audio-delay output is fed
into an amplifier controlled by a digital potentiometer that
ensures precise control of the loop gain. The signal is then
passed through a bandpass filter with center-frequency �0 =
2π × 8.38 Hz and bandwidth �� = 2π × 1.86 Hz. Finally,
the filtered output is added to a dc bias voltage that sets
φ, and the sum signal is fed into the dc input port of the
Mach-Zehnder modulator.

The filter transfer function as well as the absolute values
of the total loop delay and gain are measured in an open

062207-5



YUNJIA BAO, ELLA BANYAS, AND LUCAS ILLING PHYSICAL REVIEW E 98, 062207 (2018)

  0 100 200 300 400 500

0.8

0.9

1

1.1

1.2

0 5 10 15 20 25 30
0

0.5

1

τ (arb. units)

A
(a

rb
.

un
it

s)

τD (ms)

ω
(a

rb
.

un
it

s)

(a)

(b)

FIG. 3. Sinusoidal periodic solutions: (a) frequency, (b) ampli-
tude for γeff = 2.28 (dotted horizontal line in Fig. 2). Data: increas-
ing delay (solid triangles) and decreasing delay (open circles). The-
ory: stable (solid lines) and unstable (dashed-dotted lines) periodic
solutions x0(t ). Horizontal axis: both the dimensionless delay τ and
the corresponding measured delay τD are given.

loop configuration. Thus, all parameters are known, and no
fits are performed when comparing the closed loop dynamics
generated by the experiment with theory.

V. RESULTS

The results in Fig. 3 are obtained by fixing the effective
feedback gain and varying the delay thereby scanning along
the dotted horizontal line in Fig. 2(a). We find good quantita-
tive agreement between measurements and theoretical predic-
tions both in terms of oscillation frequencies and amplitudes.
The close match of the oscillation amplitudes is especially
noteworthy because it confirms the sufficiency of the two-pole
bandpass filter model; details of filter roll-off behavior far
from the filter’s center frequency has a negligible effect on
the dynamics.

It is seen in Fig. 3(a) that the mode frequency of the
observed sinusoidal signal decreases for each delay oscilla-
tion mode as the delay increases. Approximately, the period
increases linearly with delay, T ≈ τ/k for integer k. As shown
in Fig. 3(b), the amplitudes are maximum for delays that lead
to oscillation frequencies near the maximum transmission
frequency of the bandpass filter (ω = 1, corresponding to
8.38 Hz) but decrease for larger delays because the mode
frequency shifts toward the low-frequency end of the filter.
As the delay is increased further, the next harmonic mode has
a higher net feedback loop gain, and a mode jump occurs.

Figure 3 clearly shows that stable single-frequency os-
cillation modes coexist for certain delays. For example, the
larger period (lower-frequency) τ/3 mode and smaller period
(higher-frequency) τ/4 mode coexist for delays τ ∈ [21, 23].
Experimentally, the two modes are accessed by entering the
delay interval of multistability by either increasing the delay
(triangles, τ/3 mode) or decreasing the delay (open circles,
τ/4 mode).
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FIG. 4. Periodic solutions and higher harmonics for a de-
lay τ = 6.27, corresponding to 119 ms [dotted vertical lines in
Figs. 2(a) and 5]. (a) Amplitude of periodic solution x0 (solid blue
line) and x0 + x̂1 (dashed red line) and local maxima of experimental
time series (gray squares and colored circles). Theoretical torus
bifurcation value (dotted line at γ tor

eff = 4.05). The inset: Poincaré
section of delay-embedded experimental time series at γeff = 4.24.
(b) Experimental time series (circles) and x0 + x̂1 (solid lines) for
γeff = 1.06, 1.74, and 3.85, corresponding to the circles in panel (a).

Figure 4 displays results obtained by fixing the feedback
delay and increasing the feedback gain thereby scanning along
the dotted vertical line in Figs. 2(a) and 5. Experimental
observations are in remarkable agreement with theoretical
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FIG. 5. Stability regions of periodic oscillations from theory and
numerics. Numerics: color shaded regions with thick gray solid line
boundaries. Theory: unshaded region bounded by thick colored solid
lines. Dotted vertical line: τ = 6.27.
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results; both the measured amplitudes of the stable periodic
solutions [Fig. 4(a)] and the waveform shape [Fig. 4(b)]
are visually indistinguishable from the theoretical predictions
with the exception of the large feedback-gain time series in
Fig. 4(b) (green curve, γeff = 3.85).

The effect of the higher-harmonic correction on the os-
cillation amplitude is small as seen by the near coincidence
of the solid blue line (no correction) and dashed red line
(with correction) prediction that are shown in Fig. 4(a). The
higher-harmonic correction does, however, lead to a notice-
able shark-fin like distortion of the signal as the feedback gain
is increased as seen in Fig. 4(b).

The data shown in gray in Fig. 4(a) are the local maxima
of the recorded time series. The creation of stable periodic
oscillations in a supercritical Andronov-Hopf bifurcation at
γeff ≈ 1 is clearly seen as is the destabilization of the periodic
solution in a secondary supercritical Hopf bifurcation (torus
bifurcation) at γ tor

eff ≈ 4.05 ± 0.03. Our experimental results
confirm the creation of stable torus attractors at the upper
threshold. As an example, we show in the inset of Fig. 4(a) the
Poincaré section of a torus attractor. The plot is obtained by
delay embedding [27] the experimental time series in a three-
dimensional space and then plotting the one-way intersections
of the system trajectory with a two-dimensional Poincaré
plane. The result is the closed curve shown, demonstrating
that the attractor is indeed a torus. The width of the curve is
due to measurement noise.

The torus bifurcation value found numerically is γ tor
eff =

4.04, whereas the theoretical result is γ tor
eff ≈ 4.05 [see the

dotted line in Fig. 4(a)]. Both values agree with the experi-
mentally determined threshold of γ tor

eff ≈ 4.05 ± 0.03 within
experimental uncertainties.

One does not necessarily expect a first order perturbation
theory to yield such quantitatively accurate predictions and in-
deed as shown in Fig. 5, whereas the agreement between torus
bifurcation curves determined numerically and theoretically is
excellent for a delay value of τ = 6.27, there are noticeable
differences for other delay values. Nevertheless, the theory
correctly reproduces the general structure of bifurcations. It
not only finds the delay-dependent upper gain threshold, but
also finds the torus bifurcation curves that emanate from the
Hopf-Hopf bifurcation points.

VI. DISCUSSION

In this paper we show that OEOs with a single time-
delayed narrow-band feedback loop can produce stable peri-
odic solutions if signal amplitudes are small. The presented
theory provides approximate analytic periodic solutions and
their stability boundaries. Our analytical predictions agree
closely with both numerical results and experiments.

Of note is the significant delay dependence of the stability
boundaries as well as the existence of regions of multistability.
Not only do stable periodic solutions coexist, but also stable
quasiperiodic solutions may coexist with stable periodic os-
cillations, depending on the chosen parameters.

We note that the critical value of γ tor
eff ≈ 2.31 obtained

by Chembo et al. [16] is recovered from our theory by
considering the spectrum of Eq. (23) in the limit of large
delays [28]. This asymptotic value provides a good estimate

of the upper stability threshold’s minimum value already for
medium delays, such as the T ≈ τ/16 delay mode whose
stability region is depicted at the center of Fig. 2(b).

Independent of the chosen delay, one finds that sinusoidal
signals become distorted as the feedback gain is increased and
the signal amplitude grows, resulting in additional harmonic
frequencies in the signal’s spectrum. Upon further increase
in the feedback gain, the periodic oscillations undergo a
torus bifurcation. Although the torus bifurcation will give rise
to quasiperiodic oscillations generically, we do expect that
frequency locking regions (Arnold tongues) exist but have
not attempted to locate these regions. We also note that the
torus bifurcation curves that limit the parameter region of a
stable τ/k oscillation mode intersect. It would be interesting
to understand what the dynamics are for parameters close to
those intersections.

Finally, we would like to emphasize that the stability
analysis in this paper is purely local. The local theory correctly
predicts the global dynamics at τ = 6.27, shown in Fig. 4(a).
There, the torus bifurcation is supercritical and the periodic
solutions at gain values smaller than the upper stability thresh-
old appear to be either globally attracting or, at least, have a
large basin because they are the only solutions observed in
experiment. Yet, we have no reason to expect that the same is
true for all delays.
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APPENDIX: JACOBI ANGER EXPANSION OF THE
NONLINEARITY

The nonlinearity in Eq. (4) with the dominant solution
[Eq. (5)] as an argument is given by

F
[
xτ

0

] = 1
2 + 1

2 cos[2A cos(ω[t − τ ])] cos(2φ)

− 1
2 sin[2A cos(ω[t − τ ])] sin(2φ), (A1)

and may be written as a Fourier series,

F
[
xτ

0

] =
∞∑

n=0

Cn cos(nω[t − τ ]) (A2)

by utilizing the Jacobi-Anger expansion,

cos(z cos θ ) = J0(z) + 2
∞∑

n=1

(−1)nJ2n(z) cos(2nθ ),

sin(z cos θ ) = −2
∞∑

n=1

(−1)nJ2n−1(z) cos[(2n − 1)θ ],

where Jk is the kth order Bessel function of the first kind. We
find the Fourier coefficients to be

C0 = 1
2 + 1

2J0(2A) cos(2φ), (A3a)

Cn =
{

(−1)[(n+1)/2]Jn(2A) sin(2φ), n = 1, 3, . . . ,

(−1)n/2Jn(2A) cos(2φ), n = 2, 4, . . . .
(A3b)
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We also need the term F ′[xτ
0 ]xτ

1 with x0 given by Eq. (5) and
x1 given by Eq. (21). The Fourier series of the first derivative
of the nonlinearity is again obtained via the Jacobi-Anger
expansion,

F ′[xτ
0

] = − sin(2x0[t − τ ] + 2φ), (A4a)

=
∞∑

n=0

Ĉn cos(nω[t − τ ]) (A4b)

with coefficients,

Ĉ0 = −J0(2A) sin(2φ), (A5a)

Ĉn =
{

(−1)(n+1)/22Jn(2A) cos(2φ), n = 1, 3, . . . ,

−(−1)n/22Jn(2A) sin(2φ), n = 2, 4, . . . .
(A5b)

We are looking for a solution x1 with frequency close to
ω and assume slowly varying R and T . Accordingly, the
most relevant terms in the Fourier series of F ′[xτ

0 ]xτ
1 are

terms with frequencies close to ω. Contributions at frequency
ω arise due to two terms in the Fourier series (A4b): the
constant term (coefficient Ĉ0) and the 2ω term (coefficient
Ĉ2). Neglecting both slowly varying as well as high-frequency

terms of F ′[xτ
0 ]xτ

1 , we find that

γF ′[xτ
0

]
xτ

1 ≈ γeffcRRτ cos(ω[t − τ ])

− γeffcT T τ sin(ω[t − τ ]), (A6)

where we made use of the definition of γeff given by
Eq. (13) and introduced cR and cT , which are functions of
the amplitude A of x0,

cR = J0(2A) − J2(2A) = dJ1(2A)

dA , (A7a)

cT = J0(2A) + J2(2A) = J1(2A)

A . (A7b)

We further rewrite Eq. (A6) by noting that Eq. (12a) implies

γeff cos(ωτ ) = 1

J1(2A)/A = 1

cT

, (A8)

which, upon expanding the trigonometric functions, yields

γF ′[xτ
0

]
xτ

1 ≈
[
cR

cT

Rτ + T τ tan(ωτ )

]
cos(ωt )

+
[
cR

cT

tan(ωτ )Rτ − T τ

]
sin(ωt ). (A9)
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