Parameter estimation for neuron models
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Abstract. Methods for estimating parameters of the Hindmarsh-Rose (HR) neuron model from a
single time series are investigated. Two approaches, (1) synchronization based parameter estimation
and (2) adaptive observer, are presented. Both methods are applied to membrane potential data
recorded from a single lateral pyloric neuron synaptically isolated from other neurons.

INTRODUCTION

In neuroscience research, nonlinear dynamical systems approach to understanding neu-
ronal activity has recently drawn a great deal of attention [1]. The methods of nonlinear
time series analysis [2, 3] applied to isolate neurons from the stomatogastric ganglion
of the California spiny lobster Panuliru interruptus revealed that the number of degrees
of freedom in their membrane potential oscillation ranges typically from three to five
[4]. Based on this observation, models of the action potential activity in this biologi-
cal system have been developed using the framework of Hindmarsh and Rose (HR) [5].
The HR model is represented by three or four dimensional ordinary differential equa-
tions (ODEs), in which the complicated current-voltage relationships of the conductance
based models [6] are replaced by polynomials in the dynamical variables. The HR model
has been further implemented into an analog electronic neuron (EN) [7], whose proper-
ties are designed to emulate the membrane voltage characteristics of individual neurons.
Using the EN, synchronization and regularization properties between EN and real bio-
logical neuron have been reported [8].

Although the numerical and the analog circuit studies have already demonstrated
feasibility and consistency of the HR model with the real neurons, the model equations
yet have some free parameters. For a systematic construction of the HR model that
best matches individual neurons, parameter estimation of the model equations from real
data is desired. Here, we present two approaches, (1) synchronization based parameter
estimation and (2) adaptive observer, to matching dynamical variable of the HR model
to membrane potential data recorded from real neurons.
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SYNCHRONIZATION METHOD

Suppose we have a single time series s(¢) measured from an unknown dynamical
system. Our goal is to find parameters of a model dynamical system y = F(y,a)
(F : RYxR™—R?) so that the dynamics of y is commensurate with the unknown dynam-
ics that revealed s. The assumption here is that the general form of F has been derived
as a physiological neuron model but there remain parameter values that are matched to
the data s recorded from real neurons. Our approach [9, 10] is to minimize, over free
parameters a, b, and Yo
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where ®@(s,b) is a smooth potentially nonlinear static map with free parameters b.

There is a significant literature in numerical least-squares parameter estimation in
ODEs with unperturbed constraint equation, i.e K = 0. With long chaotic orbit, this
problem becomes progressively ill-conditioned. On account of the exponential separa-
tion of trajectories the error surface J grows increasingly bumpy with very large gradi-
ents dJ/d(a,b,y,). Our idea is that, by inducing dynamical synchronization between
the signal and the model (y,~®, (s,b)), the error surface will be smoothed and regu-
larized. With this constrained dynamics, trajectory of the model equations does not run
away from the signal even with chaos and numerical process of minimizing the error be-
comes stable. Among various techniques to minimize the constrained error function J,
the quasi-Newton method [11} combined with line search is employed. For computation
of the gradients dJ/d(a,b,y,), variational equations of the constrained dynamics (2)
are solved numerically. In order that the model finally reproduces qualitatively similar
dynamics as the forcing signal in an autonomous condition, the forcing term of equation
(2) must be weakened as J—0. We realize this by eventually decreasing the coupling
strength K nearly to zero in the optimization process.

Let us apply the synchronization technique to 4-dimensional version of the HR equa-
tions {7, 8]
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This HR model has 8 free parameters {b,d,I, f,g, 14, v, 7} (including time scaling pa-
rameter 7 to match with the real time), where all the 8 parameters were optimized by
the synchronization method. For simplicity, the transformation was set to be an iden-
tity map, i.e. ®,(s) = s. As the forcing signal s, membrane potential data {s(i-A¢) : i =
1,...,22000} (sampling frequency: Ar = 0.5 msec) recorded from a single lateral pyloric
neuron synaptically isolated from other neurons were used. As initial condition of the
free parameters, parameter values of ref. [8] were used. The coupling strength was ini-
tially set as K = 1 and with every 250 optimization steps weakened as K = 0.9, K = 0.8,
... K=0.1,K=0.1x0.5,...,K =0.1x0.5%

Figure 1 shows simultaneous drawing of the real neuron data and the HR dynamics
without the forcing term, i.e. K = 0. Qualitatively, similar behavior has been reproduced
by the HR model. The HR dynamics obtained by the synchronization method is chaotic
in the sense that it has a positive first Lyapunov exponent A, = 0.0027 with a Lyapunov
dimension djy = 2.001. This is in a good agreement with the real data, which was shown
to have a positive Lyapunov exponent by nonlinear time series analysis [4]. Quantitative
disagreement between the HR model and the real data such as increasing and then
decreasing spike amplitudes present in the data but not in the model might be due to
(a) limitation of the simplified model to describe exact physiological process and (b)
recording or dynamical noise.
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FIGURE 1. Simultaneous drawing of real neuron data (thick line) and HR dynamics (thin line).
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FIGURE 2. Chaotic attractor in (y,,y,,ys)-space obtained by the synchronization method.
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ADAPTIVE OBSERVER

In this section we present an adaptive observer, i.e. a dynamical system that is driven by
the given time series and that possesses additional ODEs governing (slow) variations of
mode] parameters. Once the parameters have converged to the “right” values the model
oscillations synchronize with the driving time series.

The observer is based on a 3-dimensional HR model

v = Fv)+y—z
¥ = by4bpt—by ®)
¢ = by—bsz

where F(v) = ay+a,v+a,v? +a;v*. In the above normalized model, redundant param-
eters present in the original 3-dimensional HR equations [5] have been removed. With
this parametrization the model is able to adapt to arbitrary time scale and range of the
voltage variable v. To build an observer some extra terms are added to implement driving
by an external voltage s

v = F(s)+y—z+k(s—v) ®
) = bys+bys’—byts—v (10)
2 = bys—bsz—(s—v) (1

and suitable ODEs for all parameters a, ...,a; and b, ..., bs.

g = s—v (12)
a = (s—v)s (13)
a, = (s—v)s* (14)
a; = (s—v)s3 (15)
by = —0.1(s—v) (16)
b, = 0.1(s—v)vz (17)
by = —0.1(s—v)y (18)
b, = —0.1(s—v)z (19)
by = —0.1(s—v)yz. (20)

Note that the right hand sides of all parameter ODEs vanish in the case of perfect
synchronization v = s. Figure 3 shows the temporal evolution of the measured signal
s and the corresponding voltage variable of the HR-observer (9)-(20). The underlying
parameter estimation process is shown in Fig. 4. As can be seen in Fig. 3 model variable
v converges to the driving neuron voltage s with a small synchronization error s — v
(Fig. 3a and section Fig. 3b). The fact that some of the estimated parameters do not
converge to fixed values but oscillate with small amplitude may be interpreted as an
indication for some limited capability of the HR-model toc describe the dynamics of the
real neuron quantitatively.

254

Downloaded 28 Apr 2004 to 152.3.182.39. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp



(a)

s and v

© e . . ' . . . —
0.4
02

s and v

-0.2-

i

. . . ) : L
8000 8100 8200 8300 8400 8500 8600 8700

FIGURE 3. (a) Synchronization of the measured voltages s from a real neuron and the corresponding
variable v of the Hindmarsh Rose observer (9)-(20). Within the graphical resolution both curves are not
distinguishable. (b) Synchronization error s — v vs. sample number. (¢) Section of (a) where the driving
signal s is plotted using filled circles.
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FIGURE 4. Model parameters ay,...,a; and b, ...,b5 vs. sample number (time). After some transient
the parameters converge to fixed values or oscillate with small amplitude.
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CONCLUSIONS

Two approaches have been presented for parameter estimation of the HR models to
match with the real neuron data. Both the synchronization technique and the adaptive
observer technique utilize synchronized dynamics between the model and the data so
as to suppress the modeling error expansion induced by chaotic property inherent in
the neuron data. Disadvantages of the synchronization technique are (i) it has a limited
basin of attraction that leads to feasible solutions especially when the number of the
free parameters is large and (ii) its convergence is rather slow. The adaptive observer,
on the other hand, has fast convergence property. There is, however, no systematic way
to construct an adaptive observer to optimize all model parameters. Except for some
special cases, global convergence of the adaptive observer is not guaranteed.

Alternative approach to the parameter estimation is the multiple-shooting (MS)
method [12], which is one of the standard methods for parameter estimation of ODEs.
According to our numerical study, as the number of the free parameters is increased,
basin of attraction leading to feasible solutions gets much smaller in the MS method
and further modifications are necessary in order to apply for the real data. In our future
work, combination of the MS method with the idea of synchronization will be examined.
Considering the effect of dynamical and observational noise, extended Kalman filtering
technique for stochastic nonlinear modeling [13] will be also investigated.

Limitation of the HR modeling of the real neuron data might also be due to an
incapability of the simplified HR model to reproduce complicated physiological process.
Modified models with (a) nonlinear transformation for adjusting spiking amplitudes to
bursting amplitudes and (b) addition of delayed feedback process will be considered in
our next study.
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