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Delay dynamics occur in a wide variety of natural and man-made systems. Even simple delay
systems can generate complex dynamics whose exploration is rewarding. To allow such exploration
as part of advanced undergraduate laboratory courses and be able to utilize systems that operate at
convenient timescales, it is necessary to delay analog signals by several milliseconds. In this paper,
we describe an implementation of a programmable digital circuit capable of delaying DC-coupled
analog signals up to 262 ms at a 1 MHz sampling rate. The initial history of the system may also be
arbitrarily programmed, enabling the study of transient behavior. As an application, we discuss the
use of this programmable delay in a feedback circuit that produces period-four triangular solutions, in
complete agreement with theoretical predictions. © 2020 American Association of Physics Teachers.
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I. INTRODUCTION

Delay dynamics have wide relevance in fundamental sci-
ence and technology. This is due to the ubiquitous presence
of feedback loops in which delays arise because of natural
processes1 or control interfaces,z’ none of which are instan-
taneous. For example, many actuators, sensors, and commu-
nication networks contain feedback control loops that have
non-negligible delays due to control loop processing times,
buffering, and signal propagation delays. In addition, delays
arise via model reduction techniques as simplified descrip-
tions of complicated physical phenomena.'*

In delay systems, the rate of change of a system will
depend not only on its present state but also on its past states.
This makes the dynamic behavior of delay systems rich and
their exploration rewarding,” yet the implementation of con-
venient bench-top platforms to experimentally study delay
dynamics can be challenging.

One challenge arises from the trade-off between experi-
mentally convenient timescales of the dynamics and the ease
of implementation of a programmable delay. One of the sim-
plest ways to implement a delay is via signal propagation.
However, delays achieved over reasonable propagation
lengths are usually well below one microsecond because
electronic signals in coaxial cables and optical signals in
fibers propagate at roughly two-thirds the speed of light in a
vacuum. This means that propagation delays are significant
only if the internal dynamics of the delay system as a whole
are fast, which, in turn, requires the use of sophisticated test
and measurement equipment. An example of such fast
bench-top systems is optoelectronic oscillators,”” which
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may produce oscillations with frequencies in excess of
1 GHz. In contrast, for bench-top experiments that exhibit
oscillations at convenient frequencies of a few kilohertz, the
required delays are on the order of several milliseconds.
Controllable millisecond-delays of analog signals are diffi-
cult to achieve via propagation but can be obtained by dedi-
cated delay circuits.

In this paper, we detail the implementation of one such
delay circuit. Our controllable delay circuit (see Fig. 1) is
based on first in, first out (FIFO) memory, and achieves precise
and large delays up to several hundred milliseconds. While
commercial audio equipment with programmable millisecond
delay is available, these devices are mostly AC-(:oupled.23 One
of the advantages of our circuit is that it is DC-coupled, allow-
ing constant voltages to pass through. Our circuit is also able
to program the initial memory of the FIFO, giving the experi-
menter full control over the initial state of the system.

The paper is organized as follows: in Sec. II, the imple-
mentation of the programmable delay is explained and its
performance is characterized; in Sec. III, an application is
described in which the delay circuit is used to create a simple
delay dynamical system; and in Sec. IV, possible extensions
of this work are discussed.

II. APROGRAMMABLE DELAY FOR ANALOG
SIGNALS

Our circuit delays signals by a user-set number of periods
of an external clock input. Each clock cycle, the circuit’s
analog to digital converter (ADC) samples the input signal
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Fig. 1. The assembled time delay circuit, mounted on top of an Arduino
Due.

and stores the resulting 14-bit word in FIFO memory. After
the specified number of clock cycles, the word is read from
the FIFO and converted back to an analog signal by a digital
to analog converter (DAC). This path is depicted in Fig. 2.

The number of words of the delay (i.e., number of clock
cycles) can take any value within the allowed range of
11-2'® words and is set by the user either via an optical
encoder on the circuit or via a computer that is connected
through a USB cable to the Arduino Due (see Fig. 1). The
value of the chosen delay is displayed on a screen. The user
also provides the external clock signal, which sets both the
sampling rate of the analog input signal and the actual delay,
the latter being the product of the clock period and the cho-
sen number of words. The circuit has been verified to pro-
duce the expected delays for clock frequencies up to 6 MHz.

The delay is perfectly linear over the full delay range of
possible delays, as demonstrated in Fig. 3.** The uncertainty
in the delay is found to be one clock period or less, as seen
in the inset of Fig. 3 by the shaded region between the maxi-
mum and minimum measured delay with a vertical extend of
20 us, corresponding to the clock period of (50kHz) '. This
uncertainty unavoidably occurs because one clock period is
the resolution limit with which the circuit can determine the
time of level transitions of a square wave input signal, such
as the one used for the delay measurement in Fig. 3.

The circuit also supports programming of the initial mem-
ory of the FIFO, giving the experimenter full control over
the initial history of the system being studied (Fig. 4). An
analog switch and additional control logic allow the analog
output from an Arduino Due to be connected to the input of

Input
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| | |

Arduino Due

Clock Control Circuitry

Fig. 2. Block diagram of the circuit. The input signal is digitized by a 14-bit
ADC, delayed by the FIFO, and then converted back to an analog signal by
a 14-bit DAC. The Arduino Due and other control circuitry configure the
number of delay words and enable the initial memory of the FIFO to be pro-
grammed through the ADC.
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Fig. 3. Measured extrema of delay as a function of the number of words
specified. A 10 Hz square signal and a clock of 50 kHz were used. The time
delay is precisely linear in the number of words. The shaded region (visible
in the zoom shown as the inset, essentially invisible in the main figure) is the
measured uncertainty in the delay, which is no more than that introduced by
sampling the input signal (see the text).

the ADC. The Arduino Due is sent the initial memory words
from a computer. The Arduino Due then alternately outputs
and clocks in the words to the ADC and FIFO, filling the
memory. Finally, the Arduino Due returns the analog switch
back to the default position, connecting the external input to
the ADC, sets the delay, and lets the external clock input
control the timing of the delay circuit, as explained above.
The output from the DAC inherently has glitches when
many bits of the output change, such as when the signal
crosses zero. These glitches and some noise are removed by
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Fig. 4. The delay circuit was programmed with 6000 words of history and
then switched into the self-feedback circuit that is depicted in Fig. 7 and dis-
cussed in Sec. III. The clock rate was 6 MHz, such that the 6000 word delay
corresponds to a physical delay of 1 ms. The transient signal shown was
measured at the output of the delay circuit (V; in Fig. 7), such that the first
millisecond of the signal is the programmed history, whereas the subsequent
triangular-type signal is due to the feedback-circuit delay-dynamics resulting
from this history. Inset: beyond approximately 3.6 ms, the output becomes a
regular triangle wave with a period of 4 ms.
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adding a low-pass filter to the output. Whereas a simple
100 kHz single-pole low-pass filter was able to remove the
glitches, we used an active 121 kHz fourth-order Bessel low-
pass filter for its improved attenuation and maximally flat
group delay. This provides good filtering with minimal dis-
tortion of the signal, as demonstrated in Fig. 5.

In summary, our programmable delay circuit is conve-
nient, flexible, and produces high-quality delayed analog
signals. Additional details about the circuit operation can be
found in the supplementary material.*®

III. APPLICATION: EXPLORING THE DYNAMICS
OF DELAY DIFFERENTIAL EQUATIONS

As a possible use of the programmable delay in advanced
undergraduate laboratory classes, we discuss a circuit that
incorporates the delay and generates triangle waves. Not
only is the circuit straightforward (aside from the delay cir-
cuit), but the circuit dynamics are described by a simple
delay differential equation for which, rather remarkably,
solutions can be found analytically. The study of this circuit
and its dynamics provides, therefore, an excellent point of
departure for exploring the rich landscape of delay systems.

A. Theory

Delay differential equations (DDEs) are differential equa-
tions where the derivative depends on the solution at prior
times. Autonomous scalar DDEs with a single constant delay
are a simple example and have the form

%sz(x(t’),x(t'—r’)), (D
dr

where the time delay 7’ is a positive constant and f is a func-
tion of both x at this time and x a time 7’ in the past. In con-
trast to ordinary differential equations, for which it is
sufficient to specify initial values at a single initial time,
DDE:s require an initial history function. That is, to obtain a
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Fig. 5. (a) A SkHz, 1 Vpp sine wave is delayed by 1000 periods of a 5 MHz
clock. The glitches in the output (black, zoom in the inset) are removed by a
fourth-order Bessel filter (result in gray), which adds an additional delay of
its own. (b) Residual, i.e., input—output difference after filtering and shifting
by the total delay. This difference (depicted) has a mean of —7.5 4V and a
standard deviation of 3.0mV, which are indicated by horizontal lines. The
essentially flat residual (up to random noise) demonstrates that our circuit
does not significantly distort signals.
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unique solution of Eq. (1) for times # > 0, one needs to spec-
ify the functional form of x(#) on the entire interval [—7’, 0].

As one of the simplest nonlinear DDEs, consider the fol-
lowing scalar DDE with negative feedback

dy
o = o1, 2

where f'is defined as

~1 ify<0

TO=Y 1 ity so 3

In order to keep the theory general, Eqgs. (2) and (3) are
written in terms of dimensionless quantities. The signal is
represented by the dimensionless variable y, which is scaled
such that the step nonlinearity f has an output of *1.
Dimensionless time has been introduced as t = ' /7, result-
ing in a dimensionless delay of 1= 1.

Step nonlinearities, such as Eq. (3), arise in certain control
problems with so-called relay controllers. Relay control pro-
vides a simple “on” or “off” feedback, which allows the use
of simple and inexpensive actuators and imposes minimal
requirements on the measurement of the system because
only the sign of the signal needs to be observable. Although
versions of the above system are therefore of practical inter-
est, our motivation for considering Eq. (2) is that this DDE is
easy to implement as a circuit and can be solved explic-
itly,'®!! thereby providing a good introduction to DDEs and
a convenient test case for the programmable delay.

In the following, we will show that solutions of Eq. (2)
can be found by piecewise integration: we assume that a con-
tinuous initial function is specified on the interval [—1, 0].
One observes that solutions of Eq. (2) for # > 0 are piecewise
linear in ¢, because the right-hand side of Eq. (2) is equal *1
with the timing of sign switches determined by zero cross-
ings of the solution a delay time 7 =1 in the past. It turns out
that the solutions of interest have a period that is larger than
the delay. They are called slowly oscillating, which is
defined as follows: a continuous function y: R — R is
called slowly oscillating at ¢ if either [y| > O on [t — 7, ], or
y has precisely one zero at r* € [t — 7, 1], y(¢*) exists and
y() # 0.

Consider Fig. 6(a), where a slowly oscillating initial func-
tion is shown that is zero at =0 and negative on [—1, 0).
Then, as depicted, piecewise integration of Eq. (2) results in
the slowly oscillating period-four solution

~>

, 0<i<l1
1<f<3,

— 1, where = rmod 4.
_4, 3<i<4

go(t) =

~ N

“

Next, we argue that any bounded slowly oscillating function
will remain slowly oscillating and will converge in finite
time to go(¢ + ¢), where ¢ is a phase shift. To show this, we
consider in turn three possible cases of slowly oscillating ini-
tial functions:

@D If the initial function is zero at =0 and negative on
[—1, 0), then piecewise integration results in go(¢) for
t > 0, as already shown. If the initial function is zero
at t=0 and positive on [—1, 0) (Fig. 6(b)), then

Perez et al. 1008



1+ 1+
. . | ot . /\ 't
_1| ‘|I é\,’l?/' - -I1 :1 2 3I ‘i
1L 4
(C) yﬂ (d) yﬂ
1+ 1+
. /. t\ 4 ¢
'll I to 2I 1I

il

3\/ _1\/

\

Fig. 6. Slowly oscillating solution (7 = 1): (a) case I with a negative initial function, (b) case I with a positive initial function, (c) case II, and (d) case III.

piecewise integration results in go(¢ + 2). The same

solution but shifted by ¢ = 2.
(IT)  If the initial function is nonzero on the entire interval
[—1, 0] (Fig. 6(c)), then, under forward integration,
the magnitude of y for ¢+ > 0 will decrease from the
value |y(0)| at r=0, such that the solution will first be
zero at the instance 7y = |y(0)|, reducing this case to
case I. The solution is y = go(t + ) for ¢ > 1y with
either ¢ = —¢ if y is negative on [—1, 0] or ¢ =2 —
if y is positive on [—1, 0].
Finally, if the initial function has one zero crossing ¢
on the interval [—1,0) but is nonzero at =0
(Fig. 6(d)), then the solution has the next zero cross-
ing at the instance of time 7y = 2 — 2|¢*| + |y(0)| and
no zero crossing on [fo — 1, fy). As in case II, the solu-
tion is y = go(t + ) for t > 1y with either ¢ = —1 if y
is negative on [—1,0] or ¢ =2 — 1, if y is positive on
-1, 0].

This shows that a slowly oscillating initial function can
never yield a solution with more than one zero crossing on a
unit time interval, the solutions remain slowly oscillating.
More importantly, any slowly oscillating initial function con-
verges to the period-four solution (4) in finite time.
Moreover, it can be shown that any bounded continuous ini-
tial function, slowly oscillating or not, will converge in finite
time to the period-four solution; the only exception is a set
of unstable so-called fast oscillating periodic solutions. This
can be demonstrated using familiar tools from linear algebra
(as shown in the supplementary material*®). Therefore, any
experiment described by Eq. (2) should yield the period-four
triangle solution gy in Eq. (4) after initial transients have
died out.

(IIT)

B. Experiment

The DDE circuit shown in Fig. 7 consists of three func-
tional blocks: the delay, nonlinearity, and integrator. The
dashed block implements the step-nonlinearity f given by
Eq. (3). Within this block, the first operational amplifier’s
output is the negative (positive) rail voltage for positive
(negative) inputs. The second operational amplifier centers
the rail voltages with respect to ground and scales the output
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amplitude to Vy = 500 mV. The resulting signal is integrated
by the third operational amplifier. Finally, the integrator out-
put is fed back and delayed by 7’ via the programmable
delay. The integrator output is given by

Vo

Vout(t/) = RC

J f(Vou(s — 7'))ds. 5

It should be noted that Eq. (5) maps onto Eq. (2) if one
differentiates Eq. (5) and introduces the dimensionless time
t = ¢ /7’ as well as the dimensionless variable

_ VewRC
B V() T '

(6)

One therefore expects the circuit to produce the triangular
solutions predicted by Eq. (4) in Sec. IIT A.

Figure 8 shows the measured output voltage V,, for three
delay values with the three time series aligned such that
Vouw =0V at ¢/ = 0s. It is seen that the experiment indeed
produces triangular period-four slowly oscillating solutions
in full agreement with theoretical predictions. Furthermore,
the amplitude of V,, scales with the delay in accordance
with Eq. (6).

Further agreement with theory is found by looking at
the startup behavior of the circuit. An example is shown in
Fig. 4, which depicts the output V; (see Fig. 7) for a delay of
1 ms. The initial history that was programmed into the delay
circuit corresponds to the first millisecond of output. After
that, the data corresponds to the dynamics generated by the
autonomously running circuit. In perfect agreement with the-
ory, the circuit produces a constant positive slope when the

10.1 nF.

Fig. 7. Schematic of the DDE circuit. R = 9.98 kQand C =
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Fig. 8. Output generated by the DDE circuit for three values of the delay.

signal one millisecond prior is negative and produces a con-
stant negative slope when the signal one millisecond prior is
positive. As a guide to the eye, intervals in the initial data
that are negative are indicated in Fig. 4 by light gray U
shapes, whereas positive initial voltages correspond to dark

gray [ shapes. The resulting pattern LIM is repeated under-
neath the output one millisecond later, confirming correct
temporal alignment of the positive and negative slopes. As
shown in the inset of Fig. 4, in just a few milliseconds, the
circuit converges exactly to the expected 4 ms triangular
period-four slowly oscillating solution.

IV. CONCLUSION

The delay circuit described in this work is a simple to use,
flexible, and highly accurate implementation of a program-
mable analog signal delay. It is DC-coupled and allows the
programming of the initial waveform residing in the delay
memory; both of these features are lacking in most commer-
cially available delays. The circuit is designed to strike a bal-
ance between accuracy and ease of use on the one hand and
technical sophistication of implementation on the other
hand. Designed to operate at clock rates below 6 MHz, a
standard four-layer printed circuit board and proper layout is
sufficient to guarantee signal integrity on a single analog-
digital mixed signal board that includes the ADC, FIFO, and
DAC chips. This makes the circuit relatively compact and
inexpensive but limits the frequency of analog signals that
can be delayed to below 100 kHz.
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Fig. 9. Output generated by a DDE circuit with Rulkov—circuit nonlinearity: periodic dynamics [(a), (c), and (e)] and non-periodic, potentially chaotic,
dynamics [(b), (d), and (f)]. Segment of the measured time series [(a) and (b)], estimate of the power spectral density [(c) and (d)], and delay embedding with

Ay = 0.51ms and A, =2 ms [(e) and (f)].
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There are many potential uses of the delay circuit. In this
paper, we have shown one example, the exploration of a
simple nonlinear delayed feedback circuit. The feedback
circuit’s behavior is modeled accurately by a simple scalar
delay differential equation, Eq. (2), which has the remark-
able feature that it can be solved exactly. Our simple exam-
ple is meant to demonstrate that delay systems are ripe for
numerical, analytical, and experimental exploration that
offer exceptional research projects for junior- or senior-level
students.

Going beyond the simple example in Sec. III, more inter-
esting and complex dynamics can be generated with
the feedback circuit quite simply by changing the type of
nonlinearity or by bandpass filtering the feedback signal.>®
The resulting delay dynamical systems tend to have rich
bifurcations, nontrivial basins of attraction,® and can gener-
ate signals ranging from periodic and quasi-periodic oscilla-
tions'? to chaos.

An illustration of such rich behavior is shown in Fig. 9.
The depicted dynamics were generated by the DDE circuit in
Fig. 7 but with the step-nonlinearity replaced by a Rulkov-
circuit nonlinearity.'* Short segments of two measured time
series are seen: a periodic waveform in Fig. 9(a) and a non-
periodic waveform in Fig. 9(b). The periodicity of the first
waveform is confirmed by the power spectral density esti-
mate, shown in Fig. 9(c), which has a dominant peak at
0.49kHz that rises well above the noise floor. Periodic
dynamics is furthermore confirmed by the limit-cycle attrac-
tor that is seen when delay-embedding the time series by
plotting the signal y(f) versus a delayed version y(r — A;)."”
In contrast, the second waveform has the experimental hall-
marks of chaos. Namely, the spectrum has power at all fre-
quencies well above the noise floor [as seen by comparing
Figs. 9(d) and 9(c)] and a plot of the signal versus a delayed
version shows a complicated (potentially fractal) attractor.
The two time series are from the same circuit, the only dif-
ference being an increase in the delay time from 0.5 ms to
1.3 ms. The great variety of other dynamics that is generated
by this circuit remains to be explored.?

Not only can delayed feedback destabilize systems,
leading to complex dynamics, but it can also have the oppo-
site effect and be used as control,18 stabilizing desired solu-
tions,>1%20 Going even further, several such feedback
systems could be coupled to form a network, enabling stu-
dents to explore chaos synchronization?'*? and other non-
trivial emergent behaviors of networks. Clearly, the range of
possible projects is vast and many of these projects will
quickly reach the edge of what is currently known, allowing
students to contribute original research.
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