
6 Chapter 1. Reservoir Computing

Figure 1.3: A visualization of a reservoir computer RNN. The red layer represents the
input, u(t), the green layer organized in the reservoir represents the network, x(t),
and the blue layer represents the output, y(t).
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This gives us a much easier equation to minimize,
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and is just a linear regression task for each input dimension.
The reservoir itself is defined by a few characteristic properties; the density, and

the number of nodes or neurons, and the spectral radius. The density of the reservoir
is simply the fraction of non-zero entries in the connection matrix W, which we
denote dW . The density is not very important to reservoir function, though lower
densities are less computationally expensive with the use of sparse matrix algebra
[1]. The number of nodes is the previously defined N . Finally, we have the most
important property, the spectral radius, denoted ⇢ or ⇢(W). The spectral radius is
the eigenvalue of W with the largest absolute value [2].

We say the spectral radius is the most important property because it is tied to
the “echo state property” of the reservoir, essential for the RC to function properly.
The spectral radius must be less than one for the RC to function, ensuring that in
the absence of an input to the reservoir, the output eventually decays to zero (a short
proof of which is shown below). If the largest eigenvalue of the connection matrix,
W is even just slightly over one, the output will saturate, or oscillate between values
of ±1.

Similar to the connection matrix properties, we can define analogous properties for
the input matrix, Win. We can define a density, din, and an input radius, �in. Ideally,


