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• Page 3, Eq. 1.2: “1.054573” → “1.054572”.

• Page 5, line 4 of item 2: “what is to be measured” → “what has to be
measured”.

• Page 7, footnote 11: “Nature 40” → “Nature 401”.

• Page 26, second equation in footnote 3: “+” → “−”.

• Page 53, Figure 2.7(b): on the vertical axis, “0.06” → “0.08”.

• Page 57, footnote 42, line 3: “Equation 2.102” → “Equation 2.103”.

• Page 71, Eq. 2.154: “(0 < x < a)” → “(−a < x < a)”; “(x < 0)” →
“(x < −a)”.

• Page 75, Problem 2.43(c): “Equation 2.99, or” → “Equation 2.99 for the
classical (or group) velocity, or”.

• Page 76, line 6: “Figure 2.20” → “Figure 2.19”.

• Page 88, Problem 2.63: rewrite as follows:

Problem 2.63 It is a fundamental result in statistical mechan-
ics that the average energy of a system at (Kelvin) temperature
T is68

Ē =
1

Z

∑
states

Estate exp

[
−Estate

kB T

]
(2.202)

where the sum is over all the stationary states of the system,
Estate is the energy of the particular state, kB is Boltzmann’s
constant, and the partition function Z is given by

Z =
∑

states

exp

[
−Estate

kB T

]
. (2.203)

The average in Equation 2.202 (written Ē) is an average over
all the possible states of the system; it should not be confused
with the average (written 〈E〉) over all the possible outcomes of
a measurement due to quantum indeterminacy. Quantum me-
chanics enters the problem only through determining the sta-
tionary states and their energies.

68See, for instance, Daniel V. Schroeder, An Introduction to Thermal Physics, Pearson,
Boston (2000), Section 6.1.
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The heat capacity tells you how much energy (in the form
of heat) a system can absorb before its temperature increases
by 1◦ Celsius; it is given by

C =
∂Ē

∂T
. (2.204)

The heat capacity of a solid—which we will investigate in this
problem—is due in large part to the energy stored in the vibra-
tions of the atoms.69

(a) The calculation of the heat capacity is facilitated by noting
that

Ē = − ∂

∂β
lnZ , (2.205)

where β ≡ 1/kB T . This identity allows you to obtain Ē directly
from Z instead of having to sum another series. Verify Equation
(2.205).
(b) Consider a system consisting of a single quantum harmonic
oscillator of frequency ω. In this case, the stationary states are
labeled by the quantum number n, the sum over states becomes
a sum over n = 0, 1, 2, . . ., and the energies of the states are just
the En from Section 2.3. Show that the partition function for
this system is

Z =
e−β h̄ ω/2

1− e−β h̄ ω
. (2.206)

[Hint : The sum can be expressed as a geometric series.]
(c) For the system considered in (b), find Ē and the heat ca-
pacity C.
(d) A solid consisting of N atoms may be crudely modeled as
a collection of N independent oscillators, each with the same
frequency ω.70 The energy and heat capacity of such a system
at temperature T are 3N times as great as the corresponding
quantities you found in part (c) for a single oscillator. The factor
of 3 is because the atoms can oscillate in three dimensions.71

69Strictly speaking, Equation 2.204 is the heat capacity at constant volume Cv , meaning
that the system’s volume is held fixed while it’s heated. Because solids expand when they’re
heated, it is more typical to actually measure Cp, the heat capacity at constant pressure.
That said, the two values Cv and Cp are very similar for a solid (though not for a gas) and
we don’t really need to worry about the distinction in this context.

70A less crude model would take into account the fact that the oscillators are coupled and
the independent degrees of freedom are the normal modes of oscillation; see Problem 5.38.

71The Hamiltonian for an oscillator in three dimensions is

H =
1

2m

(
p2x + p2y + p2z

)
+

1

2
mω2

(
x2 + y2 + z2

)
which is just the sum of three one-dimensional oscillator Hamiltonians, and the average energy
is therefore three times as large as the one-dimensional case. The details are worked out in
Problems 4.46 and 4.47.
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Express your answer for the heat capacity of a solid in terms of
the Einstein temperature72 θE = h̄ ω/kB and make a plot of
C/NkB vs T/θE . It should look something like the heat capacity
shown in Figure 2.24.
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Figure 2.24: Heat capacity of diamond, based on data from
W. Desorbo, J. Chem. Phys. 21, 876 (1953) and A. C. Victor,
J. Chem. Phys. 36, 1903 (1962).

For a classical oscillator the internal energy at temperature
T is simply Ē = kB T , in accordance with equipartition of
energy,73 and a solid consisting of N independent classical os-
cillators would have a heat capacity of 3N kB , independent of
temperature. For materials with a large Einstein temperature,
as is the case in Figure 2.24, the quantum nature of the material
is evident in the significant departure of the heat capacity from
this classical value.

• Page 90: Change the Equation number from (2.208) to (2.207) and the
footnote number from 69 to 74.

• Page 90, Problem 2.64(b): change the ending to read “. . . will diverge for
x > 1 (it also diverges at x = 1; for a proof, see Arfken, Weber, and
Harris, footnote 33, page 9).”

• Page 131, two lines above Eq. 4.6: “d3r = dx dy dz” → “d3r ≡ dx dy dz”.

• Page 157, three lines after Eq. 4.96: erase extra “the” at beginning of line.

• Page 167, Problem 4.28: rewrite as follows:

72Known now as the Einstein model, the calculation of the heat capacity that you are
exploring in this problem was originally published in A. Einstein, Annalen der Physik 22, 180
(1907). An english-language translation is available at einsteinpapers.press.princeton.edu.

73See R. Shankar, Principles of Quantum Mechanics, 2e, Springer, New York (1994), Ex-
ercise 7.5.4, for an extended version of this problem that also guides you through the classical
calculation.
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Problem 4.28 Suppose the electron were a classical solid sphere,
with radius

R =
3

5
rc, where rc ≡

e2

4πε0mc2
(4.138)

is the so-called classical electron radius. (R is the radius
you get by assuming the mass of the electron is attributable to
the energy stored in its electric field, via the Einstein formula
E = mc2. For a spherical shell the factor would be 1/2 in-
stead of 3/5.) Suppose also that its angular momentum is h̄/2.
How fast would a point on the “equator” be moving? Does
this model make sense? (Actually, the radius of the electron is
known experimentally to be much less than R, but that only
makes matters worse.39

• Page 169, top line: “or course” → “of course”.

• Page 213, four lines from end of first paragraph: “horizonal” → “horizon-
tal”.

• Page 222, footnote 26: “3nd” → “3rd”.

• Page 249, footnote 17: add “Here (and below) a repeated index (k, in
Eq. 6.33) is to be summed from 1 to 3, by the Einstein summation
convention.”

• Page 262, second line of Eq. 6.66: first subscript on first C on the right
should be “m1 + 1”, not “m+ 1”.

• Page 267, footnote 39: insert “ih̄” in front of “Û†”.

• Page 299, footnote 13: “Yi-ding” → “Yi-Ding”.

• Page 360, line above Eq. 9.25: insert space between “let” and “r”.

• Page 362, Problem 9.4, 4 lines after Eq. 9.31: “relevant nuclear masses”
→ “nuclear (or atomic) masses”.

• Page 438, Problem 11.31: replace the whole problem (but keeping the
three stars) with the following:

Problem 11.31 In Eq. 11.38 I ignored the spatial variation of
the electric field, and in constructing the Hamiltonian (11.39) I
used the electrostatic formula for the energy of a charge; more-
over, I neglected magnetic forces entirely. These approximations
lead to the so-called “allowed” (electric dipole) transitions,
which typically dominate. But the whole truth is more com-
plicated, and includes “forbidden” transitions, which are or-
dinarily much weaker, but can be significant—especially when
selection rules block the electric dipole route.

4



(a) Starting with Eq. 11.127, but keeping the next term in the
Taylor expansion of eik·r, show that the correction to the matrix
element is

∆Vba =
e

mω
〈b|(k · r)(E0 · p)|a〉. (11.128)

(b) Show that this can be written in the form

∆Vba =
ieω0

2ω
〈b|(k·r)(E0·r)|a〉+ e

2mω
(k×E0)·〈b|L|a〉. (11.129)

The first term gives rise to electric quadrupole transitions,
and the second to magnetic dipole transitions.39 Hint: First
prove the following (for (iii), note the hint in Prob. 11.30c):

(i) [(k · p), (E0 · r)] = 0 (you can write them in either order),

(ii) (k×E0) · L = (k · r)(E0 · p)− (k · p)(E0 · r),

(iii)
im

h̄
[H0, (k · r)(E0 · r)] = (k · r)(E0 · p) + (k · p)(E0 · r).

(c) By analogy with Eq. 11.63, obtain the spontaneous emission
rate for electric quadrupole transitions (don’t bother averaging
over polarization and propagation directions). Answer:

A =
e2ω5

0

4πε0h̄c5
|〈b|(k̂ · r)(n̂ · r)|a〉|2. (11.130)

(d) Show that for a one-dimensional oscillator the electric quadrupole
transitions go from level n to level n−2, and the transition rate
(suitably averaged over n̂ and k̂) is

A =
h̄e2ω3

0n(n− 1)

60πε0m2c5
. (11.131)

Find the ratio of this “forbidden” rate to the “allowed” rate,
and comment on the terminology.
(e) Show that the 2S → 1S transition in hydrogen is not possi-
ble even by these “forbidden” mechanisms. (As it turns out, this
is true for all the higher multipoles as well; the dominant decay
is in fact by two-photon emission, and the lifetime is about a
tenth of a second.)40

39For a systematic treatment see David Park, Introduction to the Quantum Theory, 3rd
edn. (McGraw-Hill, New York, 1992), Chapter 11.

40See Masataka Mizushima, Quantum Mechanics of Atomic Spectra and Atomic Structure
(Benjamin, New York, 1970), Section 5.6.
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• Page 459, footnote 21, add (at the beginning): J. L. Park, Found. Phys.
1, 23 (1970);”.

• Page 475, three lines up from bottom: erase extra “the”.

• Page 480, line below Eq. A.87, add the following: “(If b(i) = Va(i) = 0,
it’s not an eigenvector of T, but a(i) is still an eigenvector of V—with
eigenvalue 0.)”

• Page 488, “effictive mass → “effective mass”; add subheading for “Ehren-
fest’s theorem”: “generalized 110”; “Fourier’s trick”: “102” → “103”;
under “Einstein” add subentry “summation convention 249”.

• Page 490, “linear transformation”: “94468” → “94, 468”.

• Page 493, add “summation convention 249”.

• Page 494: “Uncertainty principle/angular momentum”: erase “132”.

• Inside back cover: move “Law of cosines” and “Exponential integrals”
slightly left, for consistent alignment.
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