IntroGuide to FPGA’s Design Flow

=

Design code

*v

¢ N

Test Bench

*v

.

simulation

Software WebPack Xilinx

User Constraints file

*.ucf

1 B

Program

FPGA

Xilinx provides an integrated software environment (ISE) that can be used to program the FPGA’s (field-programmable

gate arrays) like the Spartan-3 which we’ll use in lab. It has a smart text editor for Verilog, a simulator, a compiler, and

will create the .bit-file that we’ll use to burn the FPGA.

The help menu within ISE is quite helpful and it is recommended that you use it.

Before you start Fill in the Table on the right

Exercise 1 Combinational Logic: Open Xilinx-ISE Design Suite-> ISE Design Tools 01

-> 32-bit Project Navigator

Close any open programs (File = Close Project)

Open a new Project (File > New Project)

Call the project Gates, and save it in a folder with your name, and press Next

Make sure that the properties are the same as these >
and press NEXT and then FINISH - ISE ijectNavigatoriP.@-C:\Usefs\w301765

File Edit View Project Source Process

DPAEHI|L[sbbXx|wa

~08 x

i - i i Design
nght C|ICk on the prOJECt name \ G jviEw: © {E:I}Implementaeon ® Slmdahon
and select New Source ‘ Haegchgy‘ -

— | & £3 xc3s100e-5¢cp132
]

Empty View

The view currently contains no files.
You can add files to the project
using the toolbar at left, commands

JR (W

A | B|OR | AND | XOR

1|0

11
Property Name Value
Evaluation Development Board 'None Specified
Product Category Ail
Family Spartan3E
Device | xC3s100€
Package CP132
Speed -75
Top-Level Source Type]—l:ibL
Synthesis Tool XST (VH
Simulator |ISim (}i
Preferred Lanquage \@6;)
Property Specification in Project File ‘Vsaa—l.liia:lﬁes
Manual Compile Order |
VHDL Source Analysis Standard M\/I:lf)i_»-éB

Choose “Verilog Module,”call it Gates and press Next ke

Select source type, file name and its location.

J IP (CORE Generator & Architecture Wizard)

[0) Schematic
MNext = =] User Document

NI B Verilog Module

] Verilog Test Fixture
(g VHDL Module
[VHDL Library
[F] VHDL Package ‘Gahs

File name:

(g VHDL Test Bench

Embedded Processor Loxation:

J176521p: P 313 Digital\Veril (sas)

Add to project

- - =5
. ———— —
@ New Source Wizard —
Define Module
Specify ports for module.
Give it 2 inputs (A and B) and three outputs (C, D, and E) Facieoars |t
| Port Name Direction Bus MSB LSB =
ran > input "\ o |
Click through all of the other options B input \l z|0 |
.. G output >| @
(Next, Finish) = | 5l E
£ outp M= £
input v [
input x| [E
input x| [E Tl
input v E] -
(e]
—_— —_— —-— —_—
Notice that the screen that is divided into four parts.
HierarChy & IS% Project Navigator (P.15x1) - C 785: 313 - Gatesyl
[2) Fle Edt View Proect Souce Process Took Window Layout Help
5 » : NPT S JH
Processes y [e Ty e A

O »c35100¢ Scpl22
(D% Gtes (Gates.v)

1
|
\ L
Main window -
*
Console

2 No Processes Rurning
Processes: Gates
£ Design Summary/Reports
& Design Utilities
5 User Constraints
0 €2 Synthesze - XST
© 02 Implemnent Desgn
) Geneeate Programmng File
@ Confrgure Terget Device
Anatyze Design Using ChipScope

OC|¥ ¥ ¥ »

o] Comoie @ Brers | 1L warwos | 86 Frein ofes ke

Lnl Coll Vesilog

To see your Verilog program, click the Gates.v tab at the bottom of the main window.

A 20 J///11777177777777

% 21 module Gates(

= 22 input A,

A 23 input B,

% 24 output C,

= 25 output D,

@ 26 output E

(5] 27):

— 28

Add these three lines 29 assign C = & |
30 assign D = A &
to Gates.v 31 assign E = & ~

32
33 endmodule
24

B; //A CR
B; //A AND
B; //A XOR

W tw

In the Processes panel, choose Synthesize-XST right-click on Check Syntax and select

Rerun All. 1t will ask if you want to save the unsaved files. Click YES
If Check Syntax doesn’t appear in the Processes panel make sure Gates.v is selected in the

Sources panel

If there is any problem with the syntax a note will appear in the Console panel below

In your program, change “endmodule” to “end module” to introduce an

purpose

Under Check Syntax, right-click and select Rerun All,

In the Console Panel, choose the Error tab

P | T2 No Processes Running 2 25
Processes: Gates - O] 2

® 27

X Design Summary/Reports — 28

Design Utilities 29

User Constraints E 30

F) Synthesize - XST 31

View RTL Schematic (4 32

View Technology Schematic 33

Generatq 4, Run
it [ReRun

|24 stop
| View Text Report
Force Process Up-to-Date

» Implement Top Module
Design Goals & Strateges..

J Cansle | 0 Eqors ’{ Process Propesties:

Rerun all steps to the

Read the errors
Change the command back to “e

SELECT JTAG CLOCK INSTEAD OF CCLK

:HDLCompilers:26 - "
:HDLCompilers:26 — "

" line 33 expecting
" line 34 expecting

‘end’
'ECF"

'endmodule’', found
'IDENTIFIER', found

—
& ISE Project Navigator (P.15xf) - C:\Users\w301

JTAG (Joint Testing Action Group) and CCLK (Composite Clock) are two

IEEE standards for coordinating timing between devices. The default setting for WebPack is CCLK and the

default for the Digilent Boards is JTAG. If you don’t make them consistent then you’ll get a warning

message when you program the FPGA. It’s never caused a problem for me but the warning get annoying,
so if you want to avoid it, change the setting on WebPack to JTAG. You only need to make thi

once. Here’s how:

Make sure Gates.v is selected

Right click on Generate Programming File and select Design Goals & Strategies...

Select the Edit Strategy button

Name your strategy

JTAG CLOCK

PP e Desin Strateqy) (X
_Strategy File: | Ci/Xin/14.1/15E_DS/ISE/data/JTAG CLOCK.xds ()

Design goal: | Balanced
Description:

> Strategy: | JTAG CLOCK

‘ File Edit View Project Source Proc

D2 EHI| | db x|®
Design B2 o8
E] | View: @ {{a} Implementation) 48 Simulatior
[Z| | Hierarchy
g‘il '»'5'1 Gates

= £ xc3s100e-5¢p132
uuu Gates (Gates.v)

S

—
&l
@
» | 2 No Processes Running
T, | Processes: Gates
{1‘: = Design Summary/Reports
— |29 Design Utilities
i 2 Create Schematic Symbol
e View Command Line Log File

View HDL Instantiation Temp.
User Constraints

The Default strategy provides a balanced optimization of performance resilts vs. runtime. The defauit property values correspond to the T
Select the Add ALL button default values of each of the underlying implementation tools. This strategy keeps all properties in an unlocked state so that you can modify Configure | 7{ Run
. the values as you wish. ArialyeDe
If it’s grayed out ReRun
) Strategy property settings [& Start Design ’ | Rerun All
you’ve probably already
Property Name Current Value In Strategy Strategy Value B f Stop
added all of the prope JTAG Pin TMS. Pull Up @ Pull Up IEI View Text Report
Unused IOB Pins Pull Down @ Pull Down Izl Force Process Up
UserID Code (8 Digit Hexadecimal) OXFFFFFFFF & A
Reset DCM if SHUTDOWN & AGHIGH perfo... &) @] e il
Scroll most of the way FPGA Start-Up Clock JTAG Clock MAGClock =] | |« Design Goals & S
Enable Internal Done Pipe] CCLK J Corisols o o
d own an d C h a nge Done (Output Events) Default (4) @ User Clock N E'}: Process Propertie
Enable Outputs (Output Events) Default (5) > S5 Slack
CCLK Release Write W Default (6) =] .
]

to JTAG Clock T 7ian | | ddseecied

[”] Display Only Strategy Properties

oo

J[Cgee]

Heo |

Hit Save and then OK and then make sure that JTAG CLOCK is selected as your preferred design goal strategy.

Assigning Pins
Right-click on Gates.v and choose New Source ->Implementation Constraints file and name it Gates and then hit

 IP (CORE Generator & Architecture Wizard)

Next and Finish & ISE Project Navigator (P.15xf) - C:A\Users\w3017652\Doc 313 Digi ilog ise - [Gates.]

DBEHP L ¥DDX[we| [A2LPR RN ZEI LR IPEL:Q
Deson 08X € 12 7/ Tool v st

N\ |View: @ {8} Implementation ©) [Smulation §=| 12 // Description:

? Pl 13

Ez "erarchy '8 N
@l & cas B
| & €3 xc3s100e-5¢p132

S uuu Gates (Gates.v)| & New Source Wizard

&

e Select Source Type
@
B Select source type, file name and its location.

— BMM File
v €* ChipScope Definition and Connecticn File
B[00 1o Pracesses hikving [@ Implementation Constraints File

{ | Processes: Gates QAE\M File
X Design Summary/Rj| [Schematic File name:
Design Utilities [B User Document
9 ; Verilog Module Gates|
User Constralnts V] Verilog Test Fixture
5-8) Synthesize - XST b 9 Location:

) VHDL Module
[} VHDL Library 13017652\p \P 313D ()
[¢] VHDL Package -
% VHDL Test Bench

Embedded Processor

] View Technolog

@ Check Syntax

€2 Generate Post-§|
G0y I Design
& Start | B3 Desgn | Fie

Errors

View RTL Sche|
=

[¥] Add to project

< il]
[[E] console | @ Errors |1\ Warnings [108 Findin Fies Resuits |

Add a new source to the project

& ISE Project Navigator (P.15xf) - C:\Users\w3017652\Documents\P 313 Digital\Verilog files\Gates\Ga

@ File Edit View Project Source Process Tools Window Layout Help
DAEP L XDDX(va| A 2LER RIS
Design 08X & 1 net & loc = "L3"
H |view: © {8} Implementation) fl Simulation 5= 2 net B loc = "P11" ¥
R So— 3 net C loc = "P7" ;
& [Mierarchy 4 net D loc = "M11" ;
5| 8 Gates “ 5 neggE loc = "
— | & €3 xc3s100e-5¢cp132 :
. . . o = [V]eh Gates (Gates.)
Double-click your new .ucf (user constraints file) = P Gates.uct

And enter this text in the main window

Note: Verilog is a case sensitive language
When it comes to variable names

NAME # Name # name

However, the .UCF file is not case sensitive

Verify that the board name (SW1) matches
the FPGA name (L3) and also matches the
name used in your Verilog module (A)

Also verify that LED#1 (LD1) corresponds to
the FPGA pin called M11 which the .ucf file
associates with the variable name D

Design “wOF x

7] | View: © {5} Implementation | @sﬂuaoon
&i] | Hierarchy ¥
I8 &) Gates
—’ xdlee -5¢pl32

Choose Gates.v
&l
P

P NoProcesses Running

1 | Processes: Gates

" Floorplan Area/10/Logic (...
—| = €D Synthesize - XST

9{ View RTL Schematic

= View Technology Schematic

€2 Check Syntax
€2 Generate Post-Synthesis Si...

Right-click on Generate Programming File T ca)%hplvf:.j:z?&gn
and select Rerun All. » - () ::::e&Rome
This will convert your program from .v to .bit ()0 e s L
So that it can be burned onto the FPGA

Program your FPGA .
Connect your FPGA to the computer, turn it on, and install the drivers automatically if G aint
prompted. | Magrifier

o Ve
Open the program Adept from the start menu. [Bz] 72 il Manager

> AllPrograms

[Isearch programs

" " "

(A, Digilent Adept e — —— i

BASYS 2} et b2 =]

Product: Basys2 - 100

Config |Test | Register /0 | File I/0 [170 Ex | Settings |

FPGA
tes.bit Browse... Program
casione | [catesibit _ ’» [] (]

Program

B.rowse for yf)ur program Gates.bit, ‘ ‘ [B —
(it should be in the folder that you created in part 1) and press
Program \

Device 2: XCF025 -
Set Config file for XC35100E: "C:\Users\w3017652\Documents\P 313 Digital\Verilog files\Gates\gates.bit™
Preparing to program XC3S100E...

Programming...
Verifying programming of device...
Programming Successful.

E

-

\’sm B3 Design |} Fles [Liranes| &

On the physical BASYS 2 Board, activate A and B (the switches SW1

& SWO0) and verify that the LED’s act correctly: _BE;bN >
LD2 should be “on” when SW1 OR SWO are on ps- LO LEZ LE!"‘ o Lo
LD1should be “on” when SW1 AND SWO are on ‘ S M52
LDO should be “on” when SW1 XOR SWO are on (but not ‘ = " TS

when both of them are on)

—_——————————
Create a test bench o ISE Project Navigator (P.15xf) - C:\Users\w3017652\Documents\P 313 Digital\Verilog files\Gates\Gates.xise - [Ga'
' File Edit View Project Source Process Tools Window Layout Help
DPEI|LXxDDX[0d]| rrp .
Go back to the ISE window Desin e e A loc -
[] | View: © {8} implementation) [Simulation 2 net B loc =
2 — 3 net C loc =
. . =] | Hierarchy -
Right-click on Gates.v and select New Source. g‘g & Gates 4 net ED ioc =
3 “) net oc =
—| = €3 xc3s100e-5cp132
a [=! R = - —
. S
E ‘@ Add Source...
} 5%] Add Copy of Source...
9 ‘ Open
. . New Source Wizard
Select Verilog Test Fixture 7 e
\.
name and s location.
Call it Gates— Test E gm:fs:::e Definition an ection File
(spaces are not allowed) R 1 (CORE Ganasator & Architctun
MEM File A
Schematic [
User Documen
Ch N xt _> Ver!log Modu_l: Gates_Test|
3 [y VHDL Library 3017652\Documents\P 313 Digital\Veriog fles\Gates | (...
4| |[£] vHDL Package
d) VHDL Test Bench
Next > LEm
|
|
K ql] Add to proj
and Finish———p» f toproct I
;

& ISE Project Navigator (P.15x) - CAUSers\w3017652\Doc \P 313 DigitahVenlog Ales\Gates\Gatesxise - [Gates_Testve] TN

File Edit View Project Source Process Tools Window Layout Help

Select the Simulation radio-button \7Q_}H@| fabbx[wal 2288 2RI =], P LS

D o088 x| & 36 // Instantiate the Unit Under Test (UUT)
[| View: © Implem¢ n @ [E Simulaton §= 37 Gates uut (
i 20 © e : L a(a)
Open Gates_Test and add these 4 lines before end |& B:f"’““':' a 38 B(3),
| i . (gz] | Hierarchy “ 40 .c(cy,
This means that the test bench will wait 100 ns, —| - & Gates a1 .D(D),
. N B £ xc3s100e-5¢p132 42 .E(E)
and then assign B a value of 1. & NG 1] Gates.Test (Gt Test) 2 43)
. . . — uut - Gates (Gates.v) — 44
Then it will wait another 100 ns and then put A = Al a5 initial begin
o 46 // Initial Input
to 1 and return B to 0; @ Al R bt
o . = A| a8 B =o0;
Then it will wait another 100 ns and put B to 1. B x| a9
50 // Wait 100 ns for global reset to finish
#100;

» | B2 NoProcesses Running

/@

Save the changes.

53 // Add stimulus here
gt Processes: Gates_Test
G¢ | @%@ ISim Simulator 55, #100 B = 1;
=y 56 #100 A = 1;
7 57 B =o0;
= 58 $#100 B = 1;
> 59
€0 end
61

62 endmodule
63

Design ~08 x| g
Select Behavioral from the drop down menu L e e @S'm“‘ﬂﬁ""m ;
| ehavioral -

é] Hierarchy 9
& Gates
£ xc3s100e-5¢cp132
= Gates_Test (Gates_Test.v)

uut - Gates (Gates.v) —

o

Select Gates_Test

|'«,§\gv<\

Right-Click on Simulate Behavioral Model
and select Rerun All

€2 No Processes Running

Processes: Gates_Test
=% ISim Simulator

When the ISim window opens,

click here to see the whole simulation.

%

Verify that the outputs make sense.

OO NWE Y

Exercise 2 Put one module into another

Before you start: Fill in the Truth Tables on the right based on the circuit below.

In this exercise, we are going to create a module (ANDOR) and then use two instances of it in

a larger module called LOGIC.

ANDOR has 3 inputs and one output. LOGIC has 5 inputs and 2

outputs.

Close any open projects and follow the instructions from exercise 1 to

create a new project in ISE® called LOGIC.

Right-click on the name ->Create a new source ->Verilog module

Call it LOGIC

Your project should have 5 inputs (J, K, L, M, N) and two outputs(P, Q)

Enter the rest of the program as shown in the box below.

The command ANDOR U1 (J, K, L, P); means:

Create an instance of the ANDOR module Within the module LOGIC

Call this instance U1.

schematics shows.
Check the syntax and save the file.

In the sources panel, note that you can click the + sig
on the side of LOGIC to see the two instances of
ANDOR.

Two ways to connect modules: ordered mapping or

named mapping

In the above example we used ordered mapping to
make the connection between the names of
ANDOR (which are A, B, C, F) and the names of
LOGIC(J, K, L, P) and (P, M, N, Q). We used
ordered mapping so J, KL, P are assigned in the
same order as A, B, C, D.

J K L M| NJ|P|Q
0 0 0 0 0
0 0 0 0 1
0 0 0 1 0
A|B|CI|F 0 0 0 1 1
0 0 1 0 0
0|0]|0 0 0 1 0 1
0 0 1 1 0
0|01 0 0 1 1 1
0 1 0 0 0
0/1)0 0 1 0 0 1
ol111 0 1 0 1 0
0 1 0 1 1
1/0]0 o |1 |1 |o |o
0 1 1 0 1
1/0(1 0 1 1 1 0
0 1 1 1 1
111]0 1 0 0 0 0
1 1 1 1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1
LOGIC

. P

RNDOR r =
- Ul T\mnok 9
M ’, U2

nodule LOGIC (J, K, L, M, N, P, Q);
input J, K, L, M, N;
output P, Q;

ANDOR Ul (J, K, L, P);
ANDOR U2 (P, M, N, Q);

endmodule

module ANDOR (A, B, C, F);
input A, B, C;
output F;

assign F = (A & B) (&5

endmodule

The other method is named mapping.

ANDOR U1 (.A(J), .B(K), .C(L), .F(P)); //this means that the output F of instance U1 of the module ANDOR

ANDOR U2 (.A(P), .B(M), .C(N), .F(Q)); //is equal to wire P in Module LOGIC. Verify this with the schematic above.
NOTE: | like using ordered mapping for simple cases. If the modules are more complex it’s safer to use named mapping.

Software vs. Hardware.

Now we are going to create a test bench to verify that the program is functioning correctly (just like we did for the Gates
module), but before doing so I'd like to talk a little bit about the difference between writing a program in software
and coding hardware. We will use the same tool (Verilog) to do both of them, but there are some things that you
can do in hardware that you can’t do in software and visa versa.

The program LOGIC that we just made is synthesizable, which means that it can be converted into hardware. The test
bench that we will write now (LOGIC_TEST), won’t be synthesized into hardware but rather it’s software that we will
use to verify that LOGIC works.

Unlike synthesizable programs, LOGIC_TEST doesn’t have inputs or outputs because all of its variables will be generated
internally. What’s more, we can use commands that don’t make sense in hardware, for example, the command
initial doesn’t make sense in hardware. The hardware can’t start over, it simply is.

Also, we can take certain liberties with software that we can’t take with hardware. For example, FOR loops can be
synthesized as repeated structures in hardware, but one has to be sure that the limits of the loop are fixed. For
example, Verilog can realize this “for” loop

for (i=0, i<=7, i=i+1)
in hardware by copying the circuit the correct number of times (in this case 8).

On the other hand, although it’s ok to use “while” in simulations (software) in general it’s not synthesizable and will
not work in hardware because there’s no way to know how many times it has to run.
while (error_flag==0)

Create a Test Bench. In the Hierarchy panel make sure that the Implementation radio button is selected and then right-
click on the Verilog program (LOGIC.v) and choose New Source. Choose Verilog Test Fixture and call it LOGIC_TEST. Then
push Next, Next, Finish, Finish.

Note that LOGIC TEST does not appear in the Hierarchy panel when the Implementation radio-button is selected. This is
because LOGIC _TEST isn’t a synthesizable program, but rather a test bench. Now choose Behavioral Simulation
from the drop-down menu in the Hierarchy panel, find LOGIC TEST, and right-click on the plus (+) next to it, and
verify that the module LOGIC is below it (and therefore part of it).

In the main window, click on the LOGIC _TEST tab, and note that ISE has created a framework. Add the following
command just before endmodule at the bottom always #100 {J,K,L,M,N}={J,K,L, M, N} +1;

This command means, wait 100 units of time (in this case nanoseconds) and then add one to the concatenation of the
variables J, K, L, M, N. The symbol {} represents concatenation which means that the program will treat the 5
variables as a single variable with 5 digits. This allows us to cycle through every possible input value so that we can
compare the output with the truth table.

In the Hierarchy panel verify that the Simulation radio button is selected and that LOGIC_TEST is highlighted. In the
Processes panel, make sure that the Design tab is selected and then choose
Behavioral Check Syntax. If there is any error, a note will appear in the Console panel at the bottom of the screen
indicating the line number of the program where (or near where) the error is located.

When you have corrected all of the errors, choose Simulate Behavioral Model which will open a new window with the
values of all of the inputs and outputs. Press this button to see the whole simulation.

You can add time to the simulation v o | % QIR H :
using this button. momcmmmﬁﬁ ~o0# x\‘i
DRERED « B
Verify that your program is working ~ Object Name Value | 2
correctly by comparing the if; ; : 8
values to those found in the Jj ; 2 ls
“previous work” truth tables at : i] | ‘;

the beginning of exercise 2.

Note that all of the options change depending on what is selected in the various panels. If for example LOGIC is selected
in the Sources panel, ISE will try to run the simulation using LOGIC instead of LOGIC_TEST and it will not work.

Exercise 3: 7-Segment Displays

Introduction In this exercise we will create a Verilog

module to control a 7-segment display.

There are two types of displays. In order to illuminate

a segment on a common-Cathode-display one must

write a 1 to that segment. But if the display is a

Common-Anode-type, then you must write a 0 to

illuminate each segment.

Before you start: The displays on the Basys2 board have

common anodes so we will write 0’s to turn on each

segment. So to display the number 2 all of the

segments should be low (0) except for segments “c”
and “f” which should be high (1). Fill in the truth table below.

Common Cathode Common Anode
a f Gnd a b g f Ve a
1 1 1 [l n [Il | nl
—
a
f b
s |
——
e c|
d 1
Lﬁ” @
| 0o U
& H Gnd ¢ é%

Create an ISE project = call it Seven_Segmen t-> right-click on the name choose “Add
copy of source...” and select hex7seg.v (it's shown below). You’ll have to change the X’s
to represent the values in your truth table.

New keyword :

always @ (*) this means thatthe block will execute whenever any

of the variables in the block changes (in the case below the block will run every time

there’s a change in one of the switches sw.)

wire and reg are the two most common variable types. In
Verilog. Wires do not store values so they can only be
used for combinational logic. reg stands for Register and

can be used to model a flip flop.

Module is a

\

keyword that

display.)

[3:0] indicates that the variable sw is a 4-bit bus. sw(3] is
the most significant bit and sw[0] is the least significant
bit. a_to_g is a 7-bit bus (one for each segment on the

indicates the start —
of a new program
(called a module)

in Verilog

— 7

Keywords appear
in blue in the ISE
smart editor.

This is one way to
make an if/than
structure in
Verilog. If the
switches (sw)
have a value of 0
then the 7-
segments
(a_to_g) will have
a value of 000
0001 i.e., all “on”
except for the
center segment.

AN

input wire

always @ (*)

a to g

endmodule

[3

module hex7seg (
:0]
/butput reg [6:0] a to g);

sw,

(sw==0)
(sw==1)
(sw==2)
(sw==3)
(sw==4)
(sw==5)
(sw==6)
(sw==T7)
(sw==8)
(sw==9)
(sw=="hA)
(sw=="hB
(sw=="hC
(sw=="'hD
(sw=="hE

=

Each command ends in a semi-
colon in Verilog. I've broken this
command into three lines of
code to make it easier to read.

//abc_defg
7'b000_0001
T'DXXX XXXX
T'DXXX XXXX
T'DXXX XXXX
T'DXXX XXXX
T'DXXX XXXX
7T'DXXX XXXX
7T'bXXX XXXX
7T'DXXX XXXX
7T'bXXX XXXX
T'DXXX XXXX
T'DXXX XXXX
T'DXXX XXXX
T'DXXX XXXX
T'DXXX KXXX

T'DXXX XXXX ;

o

|
-

Commented text starts with //
and appears in green in the ISE
smart editor.

You can comment large sections
of code by highlighting it and
right clicking

7’b000_0001 means we have a 7-bit
number in binary whose value is 000 0001
(which corresponds to the top line in the
truth table). The underscore in the
number is ignored but makes the number
easier to read.

U

0|0 0|0 0
1
2
3
4
5
6
7
8
9
A
b
C
d
E
F
I I

e Right-click on the file name select “Add Copy of Source...” and choose “Universal.ucf”
e Uncomment sw[3:0] and a_to_g[6:0] by right clicking.
e Create the .bit file by clicking on “Generate Program File”

e Program your FPGA, and verify that it’s working correctly.

Exercise 3b: Writing four different values to the displays: Normally we will not want all four displays to show the same
number. Now we are going to figure out how to write different values to each display.

In order to control the four displays separately we should have 32 outputs (7 segments + 1 decimal point) * 4 displays
=32. Butin order to conserve inputs/outputs on the FPGA we will multiplex the controls so that the displays can share
the same controls. The basic idea is that we will use one line to turn on the first display then we will write the desired
number to it. Then we'll wait a few microseconds, turn off the first display, turn on the second display, write its value,

wait, etc. — —_—
1 ogJucCc

For example, in order to write the number 1234 to the display, we’ll do | | | | | | | I_I I

the following. Segment “a” is off for display’s 1 and 4 and is “on” for — —

numbers 2 and 3. This means that we’ll put segment “a” high when I I I I I I I_ I I_

anode 1 and anode 4 are on, and we’ll put segment “a” low when I I | | | | | I |_| I I

anode 2 and 3 are active.

Draw the waveforms below so that the number 1234 will appear in the four 7-segment displays. Segments “a” and “b”
are done for you. In reality, it doesn’t matter exactly when the transitions are as long as the segments have their
correct value when the corresponding anode is active.

Anode #1 |

Anode #2 |

Anode #3 |

Anode #4 | |_

Seg “a” | I_

Seg llbll

Seg llc”

Se é wer

Seg llgll

Create a new project called x7segb (the b stands for the fact that this version will blank leading zeros).

Right-click on the file name, select “Add copy of source” and choose x7segb_top.v

This is the TOP module. All it does is pass a 16-bit number (x) to the sub-module (x7segb) to be displayed.

module x7segb_top(//You can download this program from D2L.

input wire mclk, //After opening a new Project in ISE right-click on D

input wire [3:0] btn, // the name of your Project and select “Add Copy of Source”
input wire [7:0] sw, // Also add the sub-module .UCF universal below.

output wire [6:0] a_to_g,
output wire [3:0] an,
output wire dp);

wire [15:0] x; // the number that appears on the display is a concatenation of the switches,
// three of the buttons, and one constant with a value of A.

assign x = {sw, btn[2:0], 5'b01010}; //digit0=A

x7segb X2 (.x(x) , .mclk(mclk), .clr(btn[3]), .a_to_g(a_to_g), .an(an), .dp(dp)); // this submodule is copied below

endmodule

Then right-click on the file name, select “Add copy of source” and choose x7segb.v which is shown on the next page.
Add another source (Univeral.ucf) and uncomment all of the inputs and outputs that appear in the top module.
Generate Programming File

Install onto your BASYS2 Boards

Verify that the correct numbers appear on the 7-segment displays.
What position do the switches and buttons have to be so that the display reads CACA?

How would you change how “x” is assigned in the top module to spell out the word FACE?

module x7segb(

input wire [15:0] x,,
input wire mclk,

input wire clr,

output reg [6:0] a_to_g,
output reg [3:0] an,
output wire dp);

wire [1:0] s;

reg [3:0] digit ;
wire [3:0] aen;
reg [19:0] clkdiv ;

assigndp=1;

assign s = clkdiv[19:18] ;
assign aen[3] = | x[15:12] ;
assign aen[2] = | x[15:8];
assign aen[1] = | x[15:4] ;
assignaen[0]=1;

//this program can be downloaded from D2L

//This is the 50 MHz clock

//Turn off the decimal point

//Count every 5.2 ms = 190.7 Hz = 50,000,000 Hz / 2*® = 50,000,000 Hz / 262,144
//Does the first digit have a value? (If not, let’s turn it off, called “Blanking”.)
//Do the first two digits have a value?

//Do the first three digits have a value?

//We will not turn off the 4th digit even if it’s zero. So we’ll always leave it on.

// Quad 4-to-1 MUX: mux44

always @(*)

case(s) // “s” serves as a clock with two bits that is a lot slower (190.7 Hz) than mclock (50MHz)
0: digit = x[3:0]; // there are four possibilities for “s” 00, 01, 10, y 11
1: digit = x[7:4]; // “X”is a 16 bit number. Every 4 bits group of “x” represents on of the numbers displayed.
2: digit = x[11:8]; // when “s” has a value of 10, we’'ll copy bits [11:8] to the variable digit.
3: digit = x[15:12];
default: digit = x[3:0];

endcase

// 7-segment decoder: hex7seg

always @ (*)
case(digit)
0: a_to_g =7'b0000001; //when “digit” has a value of zero, we will turn on (write to zero) all of the segments except “g”.
1:a_to_g=7'b1001111;
2:a_to_g = 7'b0010010;
3:a_to_g = 7'b0000110;
4:a_to_g=7'1001100;
5:a_to_g = 7'b0100100;
6:a_to_g = 7'b0100000;
7:a_to_g=7'b0001111;
8:a_to_g = 7'b0000000;
9:a_to_g = 7'b0000100;
'hA: a_to_g = 7'b0001000;
'hB: a_to_g = 7'b1100000;
'hC: a_to_g = 7'b0110001;
'hD: a_to_g = 7'b1000010;
'hE: a_to_g = 7'b0110000;
'hF: a_to_g = 7'b0111000;
default: a_to_g = 7'b0000001;
endcase
always @(*)
begin
an=4'b1111; // We'll start by turning all of the display’s off. .
if(aen[s] == 1) // 1f the value of the “s” bit isn’t blanked
an[s] = 0; // then we’ll turn it on
end
//Clock divider
always @(posedge mclk or posedge clr)
begin // this is the big counter
if(clr==1) clkdiv <= 0; // in this case we are using bits

else clkdiv <= clkdiv + 1; // [19:18] to make our slow clock
end

endmodule

Exercise 4: Reg’s (make a counter) Introduction:

input with the highest priority is “Reset.”

Clock
A ReZTt4C Loadable
ChipEnable Q
- Up/Down +
Load COUNTER 8
Up_Down
Data +
8

Up until this point we have been dealing with combinational logicwhere the output

only depends on the current value of the inputs. we are going to sequential

logic where the outputs depend not onl e current value of the inputs, but also

on their past values. In order €member what the past value was we’ll use a new
variable type called a reg (short for register and pronounced that way).

The default variable type is wire.

Whenever, “Reset” is 1,”Q” will be set to zero.

If “Reset” is zero and the circuit is enabled it is possible to load a number into the
counter. If “Load” is high then the value of “Data” will be transferred to “Q”.

Before you start: Sketch-in below the value of the output for the inputs shown.

Reset
Activate
Load

|
Up_Dow |1
p» W Data[7:0]

A note on Regs: If you want to assign a value to a variable in an always or initial block
you have to use a reg. On the other hand, inputs have to be wires. Also, if something
receives its value using the keyword assign (like we used in exercise 3) then it has to
be a wire. My program for the counter is on the right. Note that Verilog uses the key
words begin and end to form hierarchies.

Create a Test Bench

Right-Click on the name of your file and select New Source. Select Verilog Test Fixture.
You can add the code on the right to the test bench. Choose Simulate Behavioral
Model. Look carefully at the result. Was your prediction correct?

Program your FPGA: As always, you must create a .ucf to define the pins. | used the
switches for Data, the LED’s for Q,C8 for Clock, and the buttons for Reset,
_ChipEnable, Load, and Up_Down. | called my file COUNTER.ucf

This circuit is a counter. It has 6 inputs and one output “Q”. The

module COUNTER(
input Clock,
input Reset,
input _ChipEnable //active low
input Load,
input Up_Down,
input [7:0] Data,

/%reg [7:0]1 Q

always @(posedge Clock or
posedge Reset)
if (Reset) Q=0;
else
begin
if (~_ChipEnable)
begin
if (Load) Q = Data;
else
begin
if (Up_Down) Q=Q + 1;
elseQ=Q-1;
end
end
end
endmodule

// Add stimulus here
#100 Reset = 1;

Data = 8'b1010_0101;

#50 Reset=0;

#1000 _ChipEnable = 1;

#100 Load = 1;

#100 Load = 0;

#200 _ChipEnable=0;

#100 Load = 1;

#200 Load = 0;

#1000 Up_Down = 1;
end

always #100 Clock= !Clock;

endmodule

Exercise 4b: Blocking vs. non-blocking. Verilog uses two signs for
equals. They are called blocking (=) and non-blocking (<=). The
difference is that all non-blocking assignments in a block occur at
the same time (usually with the clock), while blocking assignments
happen in sequential order.

In the example on the right, the values of flop1 and flop2 will
interchange. But if we had used the blocking “=" then the program
would execute in order and both flops would end with the value of
flop2.

It's good practice to use non-blocking assignments (<=) with
triggering on a positive or negative edge (posedge and negedge)

Create a .ucf file and install the program onto your board. Does it
work?

Save your Project as BLOCKING and change all of the <=to =

module nonb (

input wire

input wire

input wire

output reg

output reg
) i

always @ (posedge reset or posedge clock)

clock,
reset,
enable,
flopl,
flop2

if (reset)

begin

end

flopl <= 0;
flop2 <= 1;

else 1f (enable)

endmodule

begin

end

flopl <= flop2;
flop2 <= flopl;

Did the behavior change?

Exercise #5: Design an arithmetic logic unit (ALU)

Write a module for an 8-bit ALU that completes the following arithmetic and logical operations. The output of the ALU
(F) should be registered (made from clock-triggered flip flops). The outputs Cout and Equal should not be registered

(they should be purely combinational and change asynchronously with A and B).
The use of case is used to select the different operations of the ALU.

It is good practice to create a default-case so

that the output will be predictable even when none of the case values matches. Note that parameters have been used

to make the code more readable.

J N\
Op N Equal
Cout
8
A 9
module ALU(T 9/ 8/ 8/
i s F
input Clock, B /_ 7 S 7 7
input [7:0]A, 78 7
input [7:0]8, \ 9 J > .
input [3:0]Op, 7 6 5 4 3 2)
output reg [7:0]F, A E] [A J
output Cout,
output Equal); shift left [Ade—F <A To]
reg [8:0]Tmp;
parameter Three = 3; //When the word Three is used in this program shift right E] o] A >]
//it will represent the number 3.
parameter Twelve = 12; //When the word Twelve is used rotate left @(_H <« A lag]
//it will represent the number 12.
assign Cout = Tmp[8]; //Unlike regs, wires like Cout and Equal can rotate right E] [Ad] A > N

assign Equal = (A==B); //be continuously assigned outside of always blocks

0 (o]
always @(A or B or Op)
case (Op) -1
4'b0000: Tmp <={1'b0,A} + {1'b0,B}; //although not strickly necessary,
// 1 wanted to make
4'pb0001: Tmp <={1'b0,A}- {1'b0,B}; //explicit the fact that Tmp has
//one more bit than A or B
2: Tmp <= {1'b0,B} - {1'b0,A}; //decimal is the default format for numbers
Three: Tmp <= {!A[7], ~A}; //the word Three was declared as a parameter
//that represents he number 3
4'pb0100: Tmp <= {A[7],A}; //repeating A[7] maintains the sign
4'b0101: Tmp <= {B[7],B};
4'b0110: Tmp <=-A;
4'b0111: Tmp <=-B;
4'b1000: Tmp <= {A[7:0], 1'bO};
4'b1001: Tmp <= {2'b00, A[7:1]};
4'b1010: Tmp <= {A, A[7]};
4'b1011: Tmp <= {1'b0, A[0], A[7:1]};
Twelve: Tmp <= {!A[7],”A} + 1'b1; //finding the 2's complement
13: Tmp <= {lA[7],!A} + 1'b1; //notice the difference between logical negation (!)
//and bitwise negation (™)
4'b1110: Tmp <= 9'b000000000;
default: Tmp<=9'b111111111; //it's always a good idea to use default as the last case
endcase
endmodule Shows equal and C out
Shows the output (F) of the ALU Y _A — —
f A O o
e Y P
® & © ©o
ooty 2929
N~ —_— -7 Reset SaveA saveB SaveOp

Enter A, B, or Op

[e o 0 0 0 o o o]

lllllllj

Operation Code
A+B 0000

A-B 0001

B-A 0010
Your choice 0011
A 0100

B 0101

-A 0110

-B 0111

Shift left A 1000
Shift right A | 1001
Rotate left A | 1010
Rotate right A | 1011
Your choice 1100
Your choice 1101
F=0 1110
F=-1 1111

module ALU_Top(

input mclk,

input [7:0]sw,
input [3:0]btn,
output [7:0]ld,
output [6:0]a_to_g

wire [7:0]F;

wire Cout, Equal, Clock, SaveA, SaveB, SaveOp;
reg [7:0]A, B;

reg [3:0] Op;

assign Clock = mclk;

assign Reset = btn[3];

assign SaveA = btn[2];

assign SaveB = btn[1];

assign SaveOp = btn[0];

assign Id = F[7:0];

assign a_to_g[0] = !Cout ;

assign a_to_g[1] = !Equal;

assign a_to_g[6:2] =5'b1_1111; //to turn them off.

ALU U2 (.Clock(mclk), .A(A), .B(B), .Op(Op), .
F(F), .Cout(Cout), .Equal(Equal)) ;

always @ (posedge Clock or posedge Reset)
if (Reset) begin
A <=8'b0000_0000;
B <=8'b0000_0000;
Op <=4'b0000;
end
else if (SaveA) A <=sw;
else if (SaveB) B <=sw;
else if (SaveOp) Op <= sw(3:0];

endmodule

module Loop_4(a, b, c, reset, clock, d);
. . input [3:0] a, b:
Exercise 6: Understanding For Loops input: [1:0] c:
reset, clock;
For Loops can be created in hardware utput reg [7:0] d;:
. . . integer 1i,3;
(synthe5|zed) Only if they execute a fixed always @ (posedge reset or posedge clock)
number of times. In the case on the left, the L5 (reser), hou=i0s
else case (c)
loop executes six times. Since “a” has a value of 00: d = a + b;
. 01z d -=a-Nbg
3 in my test bench, we would expect that “d” R
would have a value of (3)° = 729 = 2D9.,. But Q=i ,
. . for (i =0; 1 <=5; 1i=1i+l1l) d=d * a;
since “d” only has 8-bits, we only have D9. end
. . . . default: begin
Likewise (4)4 = 256 = 100, Which is rounded to ;A
00 and so everything after that will be zero too. dfcr (¥ =0 Fx=r5s 3= 3H) a=dxb;
You might think that executing the loop six endcase
. endmodule
times would require six clock cycles, but since it g
is performed by six separate circuits they all
happen in one clock cycle. o fimien

Change the end of your |\>
Test bench to match
this
end
always #50 clock = ~clock;
endmodule
Show the whole Run simulation for X
Right-click on selected variables simulation amount of time (X =
to change the Radix to value on the right).
Hexadecimal. (or make the This is often safer the
change your default under Edit -> “run” button which
Preferences -> ISim Simulator Go back to the may get caught in an
Click on UUT (unit start of the endless loop
under test) to show cimuilatinn \ /
integers land i .
Mo oM P BRI LRALD A eh-Ra
& X |Obj.. «08& X J 903.543 ns

Simulation Object...

Proces:| =

»

Instance a

B2 d[7:0]

{0} TEST \pop4 Il Object Name | B a3:0]

I uut aBo] | B b3:0)
() Alway| b[3:0] T)

(2 Initial 47| o] | s

() Always_68|| L reset j 14 reset
1F albl ; g dock | 16 clock
‘ ﬁ ‘ B iB31:0] 00000006
Lo ‘ i 3
25 iBro] | B j31:0) 00000006

Verilog Instruction QuickSheet Xilinx-ISE is available free (search for ISE WebPack at www.xilinx.com)

Adept is also available free at www.digilent.com

Names

May contain letters (a-z, A-Z) digits (0-9), underscores (_) and dollar signs ($)
Must begin with a letter or an underscore.

Verilog is case sensitive so lower case and uppercase letters are seen as different
Can have up to 1024 characters.

MiISC.

Verilog doesn’t distinguish between different white spaces (spaces, tabs, and carriage returns are all equal).

Every command in Verilog ends with a semicolon (;) But often you can make code more readable by making a single command span several lines.

The keywords always, if, else, else if set up a single command. To introduce several commands, they must be bookended with the keywords begin and end.

It’s a good idea to represent numbers like this 8b0000_1111 (which means 8-bits of binary with a value of 15) because it forces you to think about how exactly the

number will be represented in hardware (with 8-bits). Other formats include h (hexadecimal), d (decimal), o o (octal). The default is decimal.

The symbol // introduces single-line comments. (except in the .ucf files where comments start with the number sign (#)

For comments that require more than one line use /* to start and */ to end the comment.

Algebraic operations.

+ - */

%

* %k

Arithmetic

Modulus (what remains after division).

Raising to a power.

Bitwise and reduction operators

bitwise negation (complement)
logical negation

4’b1111 + 4’b0001 = 4’b0000

~4'h1010 =4’b 0101 (if there is only one bit ~ and ! are the same)
14’b1010 =1'b0 (since every number except for zero is logically true)
14’b000 = 1’b1

| or 4’b0101 | 4’'b1100 = 4’b1101
| 4b0101 = 1b1

& and 4’b0101 & 4’b1100 =4'b0100
& 4’b0101 = 1'b0 If there is only one bit then there is no difference between & and &&

n X OR 4’b0101 ~ 4’b1100 = 4’b1001
A4’b0101 = 1'b0 (Parity)

~& NAND

~| NOR

~A XNOR (same as a ™)

<< Shift left

<< Signed shift left (maintains sign)

>> Shift right

>>> Signed shift right (maintains sign)

Binary Operators

Every number except for zero is considered logically true

&& logical and 4’b0101 && 4’1100 = 1'b1

il logical or

> greater than

>= greater than or equal to

< less than

<= less than or equal to

== equal to

1= logical inequality

=== case equality == is different than === which compares x (unknown) and z (high impedance) states
== case inequality x and z states are used only in simulations.

A?B:C conditional if Athen B else C

{A, B, C} concatenation A =2'b10,B=2b00, C=2'b11 {A,B,C}=6b10_0011
{N{A}} replication {N{A}} repeats the number A, N times

