Name: \qquad

1. Calculate the current through the resistor r in the transistor switch shown below when the input is set to 5 V .

2.

For the voltage divider shown on the left, prove that the voltage V_{A} at point A is given by

$$
V_{A}=\frac{V_{\text {in }} R_{2}+V_{\text {out }} R_{1}}{R_{1}+R_{2}}
$$

When incorporated into a Schmitt Trigger, $V_{\text {out }}$ can only take on two possible values: 0 ("low") and $V_{D D}$ ("high"). A change in the output can only occur when the voltage V_{A} crosses through a threshold voltage V_{T}. Show that if the output is low, the input voltage required to switch to the high state is

$$
V_{\text {low-to-high }}=\frac{\left(R_{1}+R_{2}\right) V_{T}}{R_{2}}
$$

while, if the output is high, the input voltage required to switch to the low state is

$$
V_{\text {high-to-low }}=-\frac{R_{1} V_{D D}}{R_{2}}+\frac{\left(R_{1}+R_{2}\right) V_{T}}{R_{2}} .
$$

Thus, the hysteresis of a Schmitt Trigger is given by

$$
\Delta V=V_{\text {low-to-high }}-V_{\text {high-to-low }}=\frac{R_{1} V_{D D}}{R_{2}}
$$

