Name: \qquad

Figure 1: (a) First order active low-pass filter. (b) Sallen-Key second order low-pass filter.

1. Derive Eq. (8) and Eq. (9) in the handout, the equations for the first order low-pass active filters described in the handout for this lab and shown in Fig. 1.
2. Derive an expression for the 3 dB -point $\left(f_{3 d B}\right)$ for each of the filters described by Eqns. (8) and (9) in terms of their resistances and capacitances.
3. Assume that you have a lot of $0.01 \mu \mathrm{~F}$ capacitors. Commercial resistors have values $m \times 10^{n} \Omega$, where n may range from 0 to 6 and available values for m are $10,11,12,13,15,16,18,20,22,24$, $27,30,33,36,39,43,47,51,56,62,68,75,82$ and 91 . To make a unity-gain first-order low-pass RC active filter with $f_{3 d B}=1600 \mathrm{~Hz}$, what value resistors should you choose for R_{1} and R_{2} (Fig. 1a)? To construct a second-order Sallen-and-Key low-pass filter with the same 3 dB-frequency (Fig. 1b), what value R should you choose?
