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Laboratory IV: Filter

Reading: Simpson Chapter 11.1 - 11.6

1 Introduction

In this lab we will explore some simple analog electronic filters. Filters are often used to
separate a desired analog signal from the noise-background and they are essential to avoid an
effect called aliasing when interfacing an experiment with a computer. For a given filter, its
passband is the frequency range over which signals are allowed to pass from the input to the
output, whereas its stopband is the frequency range over which input signals are significantly
attenuated. We may therefore distinguish the following basic filter types shown in Fig. 1

• Low-pass filter – Low frequencies are passed and high frequencies are attenuated.

• High-pass filter – High frequencies are passed and low frequencies are attenuated.

• Band-pass filter – Only frequencies in a chosen frequency band are passed.

• Band-stop (Notch) filter – Only frequencies in a chosen frequency band are attenuated.

• All-pass filter – All frequencies are passed, but the phase of the output is modified.

The steepness of the decrease of gain as a function of frequency in the stopband region is an
important characteristic of a filter. This decrease – that is, the change in attenuation per
unit frequency – is referred to as the filter rolloff.

Passive filters, such as RC low-pass and high-pass filters, allow only for a frequency-dependent
loss, i.e. the output voltage is always less than the input voltage. Additionally, their rolloff
is relatively modest. Active filters permit a frequency-dependent gain as well as loss, and
can have a steeper roll-off. Nowadays, single integrated circuits are available that will imple-
ment many of the sophisticated filters such as the Butterworth, Bessel and Chebyshev filters
described in Simpson. However, in this course we will focus on simple active filters that can
be build using operational amplifiers.

2 Jargon

Passband : Frequency range over which signals pass from the input to the output of a filter.

Stopband : Frequency range over which input signals are significantly attenuated.

Rolloff : Decrease of gain as a function of frequency in the stopband region.
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Figure 1: Examples illustrating the basic filter types. Shown are the gain (solid) and phase (dash-doted)
versus frequency (arb. units).
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dB (decibel) : A ratio of powers can be expressed in decibel by computing

power ratio in decibel = 10 log10

(
P

P0

)
(1)

Where P is the measured power of interest and P0 is a common reference power that
has to be specified. Since power is proportional to the square of the voltage P ∝ V 2, a
voltage ratio in decibels is computed as follows

voltage ratio in decibel = 10 log10

(
V 2

V 2
0

)
= 10 log10

([
V

V0

]2
)

= 20 log10

(
V

V0

)
(2)

A voltage gain is nothing but a voltage ratio. A factor of
√

2 decrease in voltage (factor
2 in power), meaning the output voltage has an amplitude that is 1/

√
2 times the

amplitude of the input voltage, Vout/Vin = 1/
√

2, implies a gain of -3dB, because dB =
20 log10(1/

√
2) = -3.01. If Vout/Vin= 1/2 , then dB = 20 log(1/2) = -6.02. If Vout/Vin=

1/10 , then dB = 20 log(1/10) = -20. If Vout/Vin= 1/100 , then dB = 20 log(1/100) =
-40.

20 dB per decade A function V (f) which is proportional to 1/f is said to “fall off” (or
“roll off”) at the rate of 20 dB per decade. That is, for every factor of 10 in frequency
f (every “decade”), the amplitude drops 20 dB because

20 log10

(
V (10 f)

V (f)

)
= 20 log10

(
1/(10 f)

1/f

)
= 20 log10

(
1

10

)
= −20 (3)

6 dB per octave A function V (f) which is proportional to 1/f is said to fall off 6 dB per
octave. That is, for every factor of 2 in the frequency f (every “octave”), the voltage
drops close to 6 dB. Thus, 6 dB per octave is the same thing as 20 dB per decade.

H - the transfer function Although Simpson uses a different notation, the standard no-
tation for the transfer function is H. A given H(ω) fully characterizes the gain and
phase of a linear filter. In our context

H(ω) =
Vout
Vin

. (4)

The filter gain at a given frequency is simply the magnitude of the transfer function

gain at ω = |H(ω)| = |Vout|
|Vin|

. (5)

f3dB - Corner Frequency The frequency at which the voltage gain falls to 1/
√

2 of its
maximum value (20 log10(1/

√
2) = −3.01).
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3 Passive Filters

RC filters are the simplest filters one can build (see Fig. 2). In these circuits the relationship
between the magnitudes of the output voltage and the input voltage, i.e. the gain, is given
by the voltage divider formula:

|HLP (ω)| =

∣∣∣∣Vout(ω)

Vin

∣∣∣∣ =

∣∣∣∣ 1
iωC

R + 1
iωC

∣∣∣∣ =

∣∣∣∣ 1

iωRC + 1

∣∣∣∣ =
1√

(ωRC)2 + 1
(6)

|HHP (ω)| =

∣∣∣∣Vout(ω)

Vin

∣∣∣∣ =

∣∣∣∣ R

R + 1
iωC

∣∣∣∣ =

∣∣∣∣ iωRC

iωRC + 1

∣∣∣∣ =
ωRC√

(ωRC)2 + 1
(7)

From these equations we see, that for the low pass filter the gain |H| < 1 for all nonzero
frequencies and max |H| = H(0) = 1, that is, the output amplitude is always less than or
equal to the input amplitude. This is generally true for passive filters, the maximum gain
|H| is one and for almost all frequencies |H| < 1. The 3 dB-frequency (corner frequency) is
given by f3dB = 1/RC for both the high-pass and low-pass filter (check this yourself).

3 

 

Figure 2: RC low pass and high pass filter (Adapted from John Essick)

The low-pass RC filter has a mild rolloff of “-6 decibels per octave” because in the stopband
(for f � f3dB) the gain is proportional to 1/f

|H(ω)| ≈ 1

ωRC
, for f � f3dB (, which is equivalent to the condition ωRC � 1).

For many filter applications, it is desirable to have a steep rolloff, i.e., to have an abrupt
transition between the filter’s passband and stopband. One way to achieve this is to cascade
two or more RC filters, one after another, to increase the sharpness of the rolloff, each stage



Physics 331, Fall 2008 Lab IV- Handout 5

adding another 6 dB per octave. In principle, we could build high-quality filters in precisely
this manner. However, passive filters have a couple of drawbacks. Because they provide no
gain, only a loss, signals can quickly get reduced in amplitude until they are lost in the noise.
Also, their input impedance is typically not as large as we might like, so they “load down”
the previous stage in the circuit. Furthermore, their output impedance is not very small, so
they are easily “loaded down” by the next stage. The straightforward solution is to place op
amps before and after the RC filter, to buffer it and add gain. But, at this point it would be
just as easy to use an “active filter.”

4 Active Filters

Active filters involve components that can add energy to the system, for example operational
amplifiers. The design of active filters is a deep topic and is studied widely in engineering
because filters can be designed to do an amazing amount of signal manipulation, analysis,
and processing. What happens on a basic level is that an input signal is put into a filter,
the filter reacts in some way and produces an output signal. Thus, from an input-output
perspective, the filter transforms (or processes) the signal. Engineers are then interested in
knowing how to design filters such that they perform a desired transformation. Traditional
filters, such as the ones discussed here, are linear devices and can therefore be analyzed
and understood completely using the tools of linear systems theory. However, this theory is
beyond the scope of this course. Fortunately, we can discuss the basic considerations using
simple circuits that can be analyzed without too much theory.

Vout

R
1

R
2

C

Vout

C

(b)

C

R R

Vin

(a)

Vin

Figure 3: (a) First order active low-pass filter. (b) Sallen-Key second order low-pass filter.

The first-order low-pass active RC filter shown in Fig. 3(a) has a gain

|H(ω)| =
∣∣∣∣Vout(ω)

Vin

∣∣∣∣ =
R2

R1

1√
1 + (ωR2C)2

. (8)

It is seen from this equation that the rolloff is -20dB per decade (-6 dB per octave). The
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Vout
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Figure 4: Sallen Key low pass filter.

Sallen-Key active filter shown in Fig. 3(b) is a second-order low-pass filter with a gain of

|H(ω)| =
∣∣∣∣Vout(ω)

Vin

∣∣∣∣ =
1

1 + (ωRC)2
. (9)

and a rolloff of -40dB per decade (-12 dB per octave). [Both Eq. (8) and Eq. (9) can be
derived using the Golden Rules for operational amplifiers. Try it!]

5 Second-Order Low-Pass Filters

Last week’s lab handout we showed the for the first-order low pass filter

t63% = τRC = RC =
1

2πf3dB

(10)

and

R.T. = ln 9 · τRC =
0.35

f3dB

(11)

holds. These equations relate the rise time and t63%, which are obtained through a time-
domain measurement, to the bandwidth (f3dB), which is obtained through a frequency-
domain measurement.

We would like to determine theoretically, what the equivalent relations are for the Sallen-Key
second order low-pass filter.
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5.1 Differential Equation

For the Sallen-Key circuit depicted in Fig. 4b) and reproduced in Fig. 4 we may use Kirch-
hoff’s laws and the Golden Rules for op-amps to obtain

IR
C

=
d

dt
vout

IR =
(v1 − vout)

R


(
RC

d

dt
+ 1

)
vout = v1 or (v1 − vout) = RC

d

dt
vout (12)

In addition we have the relations

Iin =
vin − v1

R
(13)

IC = C
d

dt
(v1 − vout) (14)

Iin = IC + IR (15)

Make sure you understand how to obtain above relations (Eq. 12 -15) from the circuit di-
agram. We may now derive the differential equation by multiplying Eq. 15 with R and
plugging in Eq. 12 -14.

RIin = RIC +RIR (16)

[vin − v1] =

[
RC

d

dt
(v1 − vout)

]
+

[
RC

d

dt
vout

]
(17)[

vin −
(
RC

d

dt
+ 1

)
vout

]
=

[
RC

d

dt

(
RC

d

dt
vout

)]
+

[
RC

d

dt
vout

]
(18)

Introduce as before
τRC = RC (19)

and simplify to get (
τ 2
RC

d2

dt2
+ 2τRC

d

dt
+ 1

)
vout = vin (20)

or equivalently (
τRC

d

dt
+ 1

)(
τRC

d

dt
+ 1

)
vout = vin (21)

We find that the second-order Sallen-Key filter connects the input and output via a second
order linear ordinary differential equation.

5.2 Frequency Domain

You should be able to derive the transfer function H(ω), gain |H(ω)| and be able to show
that the gain has a maximum of 1 at ω = 0 and a 3dB point at

f3dB =

√√
2− 1

2πRC
(22)
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(Try it!)

Note that this corner frequency is different from the corner frequency of a first-order low pass
filter.

5.3 Time Domain

Any solution to a linear ordinary differential equation is the sum of two parts: the solution
to the homogeneous equation and the particular solution. The general solution to the homo-
geneous equation, the equation with vin = 0, can be easily guessed because we showed last
week that C exp(−(t− t0)/τRC) is the solution to(

τRC
d

dt
+ 1

)
vout = 0 (23)

where C is a constant of integration depending on the initial value. The homogeneous second
order equation (

τRC
d

dt
+ 1

)(
τRC

d

dt
+ 1

)
vhout = 0 (24)

has a solution consisting of two linearly independent terms and therefore also has two con-
stants of integration. You may check that the solution is

vhout = C1 e
−(t−t0)/τRC + C2 (t− t0) e−(t−t0)/τRC (25)

As in last week’s derivation for the first order RC filter, the homogeneous solution decays
away quickly and does not matter for most measurements. It therefore does not need to be
taken into account. Formally this is again achieved by using the limit t0 → −∞.

What we are interested in is the particular solution for a step input(
τRC

d

dt
+ 1

)(
τRC

d

dt
+ 1

)
vout = θ(t)Vmax. (26)

For t < 0, when the right hand side is zero, the particular solution is vout = 0. For t > 0 the
right hand side is θ(t) = 1 and we can find the solution from Eq. 25. You may check that

vout
Vmax

= 1− e−t/τRC − t

τRC
e−t/τRC t > 0 (27)

is the particular solution for a step input. Having this solution at hand we can now calculate
the rise time and indeed the time it takes the solution to reach any desired voltage level
between 0 and Vmax. Of particular interest are

x = 1−
(

1 +
t

τRC

)
e−t/τRC with x =

vout
Vmax

= 10%, 63%, 90% (28)

Solving for tx is tricky. You can do it numerically or by using the Lambert W - function

tx = τRC ·
[
−1−W−1

(
x− 1

e

)]
(29)
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where W−1 is the −1 branch of the Lambert W function. In particular the rise time and
t63%-time are

R.T. = t90% − t10% = τRC · 3.36 ← Note that 3.36 6= ln 9 (30)

t63% = τRC · 2.15 ← Note that τRC 6= t63% (31)

5.4 Summary

From this little calculation we learn that for a second-order Sallen-Key filter the relation
between the RC time-constant, τRC = RC, and the R.T. as well as with the time to reach
0.63 of Vmax, t63%, changes. In addition, the relation determining the corner frequency, Eq. 22,
is new. We may combine these result to obtain

R.T. = τRC · 3.36 = RC · 3.36 =

√√
2− 1

2πf3dB

· 3.36 =
0.34

f3dB

(32)

For reasons that are either very deep and not obvious to me or just due to an accidental
coincidence, the equation that relates the rise time to the bandwidth (f3dB) is numerically
quite close to the first order low pass filter case (Eq. (9.17) in Simpson pg. 384 [2]). Again,
this relation is very useful because it allows one to compare results from a time-domain
measurement (R.T.) to a frequency-domain measurement (f3dB).

Table 1: Comparison of the results of an RC first-order low-pass filter and a Sallen-Key second-order low-pass
filter

First-Order RC Low-Pass Filter Second-Order Sallen-Key Low-Pass Filter

τRC := RC τRC := RC

f3dB = (2πRC)−1 f3dB =
√√

2− 1 (2πRC)−1

t63% = τRC t63% = 2.15 τRC

R.T. = ln 9 τRC = 2.20 τRC R.T. = 3.36 τRC

R.T. = 0.35 f−1
3dB R.T. = 0.34 f−1

3dB
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