Name:



Figure 1: The common-emitter amplifier with bypassed resistor:  $R_C = 7.5 \text{ k}\Omega$ ,  $R_E = 1.0 \text{ k}\Omega$ ,  $R_1 = 82 \text{ k}\Omega$ ,  $R_2 = 10 \text{ k}\Omega$ ,  $V_{CC} = +15 \text{ V}$ , 2N3904 transistor, 10  $\mu$ F emitter capacitor, 0.1  $\mu$ F blocking capacitor (on the input). Also shown are the 50  $\Omega$  signal generator and the voltage divider.

1. For the common-emitter amplifier circuit shown in Fig. 1 consider the DC-voltages and currents when no AC-input is present. Draw the equivalent "DC-circuit" and calculate the quiescent voltages  $V_B$  and  $V_C$  and the quiescent collector current  $I_C$ .

2. Derive the (small-signal) gain of the common-emitter amplifier shown in Fig. 1 (Assume, for simplicity, the circuit is biased to  $V_C \simeq 0.5 V_{CC}$ ). Note that the small signal gain refers to AC-voltages for which above amplifier becomes a grounded-common emitter amplifier. Comment on the role of the quiescent collector current (the DC-current  $I_C$ ).

**3.** In order to make the input signal small enough we will use a 100:1 voltage divider in between the signal generator (50  $\Omega$  output impedance) and the common emitter amplifier (with the resistance values shown in Fig. 1). Suggest resistor values  $R_A$  and  $R_B$  of the voltage divider that would work for this purpose and discuss why your choice is reasonable.

[Hint: Show (a) that the resulting AC-voltage is reduced by a factor of 100 and (b) that in this three-stage circuit  $Z_{out}^{previous\,stage} \ll Z_{in}^{next\,stage}$  for both cases. Part (b) requires that you calculate the input and the output impedance of the voltage divider as well as the AC-input impedance of the common-emitter amplifier (see example 6, page 16, handout).]