Name: \qquad

Figure 1: The common-emitter amplifier with bypassed resistor: $R_{C}=7.5 \mathrm{k} \Omega, R_{E}=1.0 \mathrm{k} \Omega, R_{1}=82 \mathrm{k} \Omega, R_{2}=10$ $k \Omega, V_{C C}=+15 V$, 2N3904 transistor, $10 \mu F$ emitter capacitor, $0.1 \mu F$ blocking capacitor (on the input). Also shown are the 50Ω signal generator and the voltage divider.

1. For the common-emitter amplifier circuit shown in Fig. 1 consider the DC-voltages and currents when no AC-input is present. Draw the equivalent "DC-circuit" and calculate the quiescent voltages V_{B} and V_{C} and the quiescent collector current I_{C}.
2. Derive the (small-signal) gain of the common-emitter amplifier shown in Fig. 1 (Assume, for simplicity, the circuit is biased to $V_{C} \simeq 0.5 V_{C C}$). Note that the small signal gain refers to AC-voltages for which above amplifier becomes a grounded-common emitter amplifier. Comment on the role of the quiescent collector current (the DC-current I_{C}).
3. In order to make the input signal small enough we will use a 100:1 voltage divider in between the signal generator (50Ω output impedance) and the common emitter amplifier (with the resistance values shown in Fig. 1). Suggest resistor values R_{A} and R_{B} of the voltage divider that would work for this purpose and discuss why your choice is reasonable.
[Hint: Show (a) that the resulting AC-voltage is reduced by a factor of 100 and (b) that in this three-stage circuit $Z_{\text {out }}^{\text {previous stage }} \ll Z_{\text {in }}^{\text {next stage }}$ for both cases. Part (b) requires that you calculate the input and the output impedance of the voltage divider as well as the AC-input impedance of the common-emitter amplifier (see example 6, page 16, handout).]
