Name: _____

There are **three questions** to complete.

1. Determine the magnitude |Z| of the total impedance Z of the following circuit

What are the limits on your expression for |Z| as the angular frequency ω approaches 0 and ∞ ? Can you explain these limits intuitively?

Plot qualitatively the expected behavior of V_{out} (or the gain) as a function of the input frequency $f[v_{in} = V_{in} \cos(2\pi ft)]$ if the black box contains

- (a) a resistor,
- (b) an inductor,
- (c) a capacitor,
- (d) an inductor and capacitor in parallel,
- (e) an inductor and capacitor in series.

For a black box containing a capacitor C and an inductor L that are connected in series, derive the resonance frequency f_0 and the FWHM (full-width-half-maximum) value Δf of the resonance peak that is seen when plotting $|v_{out}|^2/|v_{in}|^2 = V_{out}^2/V_{in}^2$. Give your answer in terms of L, C, and R.