Name: _

There are **two questions** to complete.

1.

(a) Determine the effective complex impedance $Z_{||}$ of the parallel combination of R_s and C_s .

Now assume you can measure R_s and choose R, in the circuit shown above, such that $R = R_s$. Assume furthermore that you can measure and vary the frequency f of the input signal such that the magnitude of the capacitor's impedance equals the resistance, $|Z_C| = R = R_s$.

(b) Determine the ratio of the amplitudes V_{out} and V_{in} , *i.e.* the ratio of $|v_{out}|$ and $|v_{in}|$.

(c) What is the value of the capacitance C_s in terms of the measured quantities R and f?

0	
4	٠

f (kHz)	$V_{out}(V)$			
0	10.0		$ _{\rm R}$ $\stackrel{>}{\leq}$	
10	10.0			
50	8.90	$v_{\rm in} = V_{\rm in} \exp(i\omega t)$		
100	7.11			$(M) v = V \exp(i\omega t + \omega)$
200	4.49			Cout Yout exp(100000)
300	3.16	0-		

Given $R = 1 \text{ k}\Omega$ and $V_{in}=10 \text{ V}$, graph the above data on a straight line plot and determine the value of the capacitance C.

