Name: \qquad

There are two questions to complete.
1.

(a) Determine the effective complex impedance $Z_{\|}$of the parallel combination of R_{s} and C_{s}.

Now assume you can measure R_{s} and choose R, in the circuit shown above, such that $R=R_{s}$. Assume furthermore that you can measure and vary the frequency f of the input signal such that the magnitude of the capacitor's impedance equals the resistance, $\left|Z_{C}\right|=R=R_{s}$.
(b) Determine the ratio of the amplitudes $V_{\text {out }}$ and $V_{\text {in }}$, i.e. the ratio of $\left|v_{o u t}\right|$ and $\left|v_{\text {in }}\right|$.
(c) What is the value of the capacitance C_{s} in terms of the measured quantities R and f ?
2.

$\mathrm{f}(\mathrm{kHz})$	$V_{\text {out }}(V)$
0	10.0
10	10.0
50	8.90
100	7.11
200	4.49
300	3.16

Given $R=1 \mathrm{k} \Omega$ and $V_{i n}=10 \mathrm{~V}$, graph the above data on a straight line plot and determine the value of the capacitance C.

