1. Consider a triangle wave of period T and amplitude A (peak to peak amplitude: $2 A$).

$$
f(t)= \begin{cases}-2 A-\frac{4 A}{T} t & -\frac{T}{2} \leq t<-\frac{T}{4} \tag{1}\\ \frac{4 A}{T} t & -\frac{T}{4} \leq t<\frac{T}{4} \\ 2 A-\frac{4 A}{T} t & \frac{T}{4} \leq t<\frac{T}{2}\end{cases}
$$

Develop the Fourier Series of the triangle wave.

Solution:

We introduce $x=\omega \cdot t=2 \pi / T \cdot t$, which implies that the relevant break points of the function are at $x_{1}=\omega \cdot(T / 4)=\pi / 2$ and $x_{2}=\omega \cdot(T / 2)=\pi$.

$$
f(x)= \begin{cases}-2 A\left[1+\frac{x}{\pi}\right] & -\pi \leq x<-\frac{\pi}{2} \tag{2}\\ 2 A \frac{x}{\pi} & -\frac{\pi}{2} \leq x<\frac{\pi}{2} \\ 2 A\left[1-\frac{x}{\pi}\right] & \frac{\pi}{2} \leq x<\pi\end{cases}
$$

The function is odd, $f(-x)=-f(x)$, so no constant terms or terms of the form $\cos (n x)[=$ $\cos (2 \pi n t / T)$ in the original coordinates] may appear in the solution,

$$
\begin{equation*}
a_{0}=a_{n}=0 . \tag{3}
\end{equation*}
$$

It remains to determine the b_{n} coefficients. Again due to the symmetry we get equal contribution from the intervals $x=\omega t \in[-\pi, 0]$ and $x=\omega t \in[0, \pi]$.

$$
\begin{align*}
b_{n} & =\frac{2}{\pi} \int_{0}^{\pi / 2}\left(2 A \frac{x}{\pi}\right) \sin (n x) d x+\frac{2}{\pi} \int_{\pi / 2}^{\pi}\left(2 A\left[1-\frac{x}{\pi}\right]\right) \sin (n x) d x \\
& =\frac{4 A}{\pi} \int_{\pi / 2}^{\pi} \sin (n x) d x+\frac{4 A}{\pi^{2}}\left[\int_{0}^{\pi / 2} x \sin (n x) d x-\int_{\pi / 2}^{\pi} x \sin (n x) d x\right] \\
& =\frac{4 A}{\pi}\left[-\frac{\cos (n x)}{n}\right]_{\pi / 2}^{\pi}+\frac{4 A}{\pi^{2}}\left[\frac{\sin (n x)}{n^{2}}-\frac{x \cos (n x)}{n}\right]_{0}^{\pi / 2}-\frac{4 A}{\pi^{2}}\left[\frac{\sin (n x)}{n^{2}}-\frac{x \cos (n x)}{n}\right]_{\pi / 2}^{\pi} \\
& =\frac{4 A}{\pi}\left[-\frac{\cos (n \pi)}{n}+\frac{\cos (n \pi / 2)}{n}\right]+\frac{8 A}{\pi^{2}}\left[\frac{\sin (n \pi / 2)}{n^{2}}-\frac{\pi \cos (n \pi / 2)}{2 n}\right]+\frac{4 A\left[\frac{\pi \cos (n \pi)}{\pi^{2}}\left[\frac{8 A}{n}\right]\right.}{} \\
& =\frac{8 A}{\pi^{2} n^{2}} \sin \left(\frac{n \pi}{2}\right) \\
& =\frac{8 A}{\pi^{2} n^{2}} \begin{cases}(-1)^{(n-1) / 2} & n \text { odd } \\
0 & n \text { even }\end{cases} \tag{4}
\end{align*}
$$

Therefore, the Fourier Series of a Triangle wave is

$$
\begin{equation*}
f(t)=\frac{8 A}{\pi^{2}} \sum_{n=1,3,5, \ldots}^{\infty} \frac{(-1)^{(n-1) / 2}}{n^{2}} \sin \left(\frac{2 \pi n}{T} t\right) \tag{5}
\end{equation*}
$$

