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Sammaury 

Combined with well known facts about  the afline structure of color space ,'-2, a local homogeneity 
hypothesis maptitm that :~ = G / K  is equivalent to either R"  x R § • R* or R+ x SL(2,R)/SO(2). The 
G-invariam metrics yield in the first ca.~ Stiles' generalization o f  Heimhoitz '  color metric, in the 
second a new color metric with respect to which # is not  isometric to ~t Euclidean spa(:*. The paper 
contains an extensive historical introduction. 

1, Historical Introduction 

The current theories of color perception provide an interesting and important 
example of the application of mathematics to the description and elucidation 
of physical and psychophysical phenomena. Although many great thinkers have 
held that an analytical or mathematical treatment of the subject is impossible or 
even undesirable, they have gradually deserted the field so that today and indeed 
throughout the past 50 years tt has been generally recognized that a theory or" 
color perception must be, both in form and content, a mathematical theory. 
Plato is no doubt the most prominent representative of the earliest opinion 
of our subject, that the mystery posed by the mutability of color transcends 
the possibility of human comprehension. In Timaeus he wrote (off MacAdam 
1970) 

The law of proportion according to which the several colors are formed, even if a man knew he 
would be foolish in telling, for he could not  ~ve  any necessary reason, nor indeed any tolerable 
or probable explanation of  them. 

and concerning the mixtures of colors. 

. . .  He. however, who should attempt to verify all this by experiment would forget the difference 
of' [he human  and the divine nature. For God only has the knowledge and also the power whmh 
are able to combine many things into one and again resolve the one into many. But ao man 
either is or  will be able to accomplish either the one or the other operation. 

Apart from its presumptive aspects, this passage is a concise and accurate 
description of the celebrated experiments performed more than 2000 years later 
by Isaac New~on, experiments which mark the inception of the modern and 
fundamentally mathematical view of color perception. 
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Plato's strictures obviously could not lead anywhere, and they play no further role 
in the development of the understanding of the perception of color. Aristotle's 
opinions, however, continued to influence thinkers until the middle of the nine- 
teenth century, and are responsible in part for some of the most disgraceful and 
counterproductive diatribes of scholars (we cannot say "scholarly diatribes") 
ever to have appeared in print. Thus one finds the influential French Jesuit Louis 
Bertrand Castet accusing Newton of bad faith and stupidity, as well as faulty 
observation (Schier 194l), and, in the next century, Goethe (Goethe 1810), who, 
as Helmholtz remarks, was usually even-tempered and courtierlike, was stirred 
to refer to Newton as "'incredibly impudent", a "'Cossack Hetman", to call his 
work "mere twaddle", "ludicrous explanation", "admirable Ibr children in a 
go-cart", and, ultimately, to attack his veracity: "but t see nothing will do but 
lying, and plenty of it". Evidently the study of color was then pursued with g ea t e r  
passion than is now considered necessary. 

The Aristotelian theory which called forth such vigorous defense and extensive 
explication is set forth in On the Soul, Sense and the Sensible, and the 
Meteorologica (cfo MacAdam 1970). In the first work Aristotle concludes the 
necessity of a medium between the eye and an object it views; in the second he 
asserts that 

... as vision would be impossible without light [between the object and the eye], so atso would 
it be impossible if there were no light inside [the eye]. 

and goes on to propose the theory, adopted by Goethe much later, that color is 
a mixture of white and black. We need not review here the typical train of mis= 
leading deductions founded on straightforward observations which led him and 
his numerous followers to this unfortunate conclusion. The third work concludes, 
insofar as color is concerned, that the rainbow exhibits precisely the three colors 
red, green, and violet, in that order. The 

appearance of yellow is due to contrast, for the red is whitened by its juxtaposition with green. 

These passages in Meteorologica foreshadow in a curious way the three color 
theory of Thomas Young {vide infra) and locus, perhaps for the first time, on the 
mutability of perceived colors as a function of the colors of their surroundings. 

We shall return to this issue in the mathematical portion of the present work. 

It is important to recognize that not only was Aristotle's theory (that color is 
a mixture of white and black) wrong, but it never led, and never could lead. to any 
quantitative description of the results of color mixing experiments; his theory, 
and those based upon it, never rose above the stage of verbal classificatory 
descriptions. 

The first theory which associated distinct colors with distinct and quantifiable 
physical states appears to be due to Descartes. In assessing his work it is well 
to bear in mind that he lived in an age of great intellectual ferment due to 
events which greatly altered the prevalent conception of the structure of physical 
reality. The discovery of the Americas and their pagan civilizations, the circum- 
navigation of the globe, the invention of the telescope and consequent observation 
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of the miniature solar system constituted by Jupiter and its moons all conspired 
to destroy scholasticism and to demand the erection of a new world order. Des- 
cartes undertook this task. When faced with the particular problem of accounting 
for the mutual interactions of bodies not in contact with each other, such as 
magnets or the moon and earth as evidenced by the tides, he was forced, in order 
to remain within the realm of experiental certainty, to conclude that there 
cannot be action at a distance, but only the well understood contact threes of 
pressure and impact. He was consequently led to postulate the existence of a 
pervasive medium - -  the aether - -  by means of whose mechanical properties 
forces were transmitted from one point to another. The constituent particles 
of the aether were presumed to be continually in motion, but, due to the 
latter's pervasiveness, the motion of one particle entailed the motion of a chain 
of others. When applied to the rainbow with its "diversities of color and light", 
this theory suggests that 

. , .  the various colors are connected with differenl rotatory velocities of  the globules, the particles 
which rotate most  rapidly giving the sensation of red, the slower ones of yellow and the slowest 
of  green and blue --, the order of  the colors being taken from the rainbow. The assertion of the 
dependence of color on periodic time is a curious foreshadowing of a great discovery which 
was not fully established until much  later (Whittaker 1951; cf Descartes 1638). 

We note that according to this theory, each perceived color must correspond to a 
state of rotation and that distinct hues correspond to distinct angular velocities. 
Thus there is, according to Descartes, a bijective correspondence between a certain 
set of rotation states and the set of perceived hues. That  this claim is false could 
readily have been determined by Descartes from elementary observations, but 
he and many others as well were misled by the presumption that the human senses 
faithfully transform distinct physical stimuli into distinct sensory responses. 
The development of the theory of color perception was hindered until the 19th 
century when it was realized that such a theory must necessarily be distinct from 
a theory of the physical properties of light whose correlates are the perceived 
c o l o r s .  

Although Descartes' theory admits quantification, nothing seems to have been 
done to determine the rotatory velocities which were presumed to correspond to 
particular colors, nor was any attempt made to provide a more precise description 
of the physical distinctions which give rise to the subjective discrimination between 
hue and saturation. Thus, according to the theory as stated above, one must pre- 
sume a bijective mapping of the two dimensional continuum of colors of varying 
hue and saturation onto an interval of the real line whose points are identified 
with the various rotational velocities ("brightness" is readily associated with the 
number of light quanta, and need not concern us here). We know today how 
necessarily complicated such a bijection is, and, armed with this knowledge, we 
might prefer to forgo bijectivity in favor of avoiding the introduction of so 
complicated a function. This simply amounts to the recognition that the visual 
sensory system does not provide a faithful representation of physical reality. 

In elaboration of his theory of color, Descartes supposed that the rotatory motion 
perceived as color was acquired through successive refraction of the light impulse 
as it was transmitted through the aether by static pressure. This notlon, and the 

7 t 
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entire conception of color to which it corresponds, was attacked by Robert Hooke 
in 1665 in his Microqraphia. By his study of the colors of thin plates, that is, 
the colors seen when light falls on a thin layer of air bounded by two parallel 
transparent plates, Hooke demolished Descartes' theory and then turned to the 
presentation of his own views. Hooke's theory is transitional between Descartes ~ 
theory and the fully developed wave theory of light. He concludes the light "must 
be a Vibrative motion" (Hooke 1665), propogated in waves, and that the origin 
of color lies in the deflection of the wave front from the perpendicular to the direc- 
tion of motion of the light pulse due to characteristic refractions and reflections. 
In this instance, the light pulses may be supposed 

. . .  oblique to their progression, and consequently each Ray to have potentially superinduc'd 
two properties, or colours, viz. a Red on the one side, and a Blue on the other, which not withstand- 
ing are never actually manifest,  but when this or that Ray has the one or the other  side of it bordering 
on a dark or unmov ' d  medium, therefore as soon as those Rays are entred into the eye, and so 
have one side of them each bordering on a dark part of  the burnouts  of  the eye, they will each of 
them actually exhibit some colour. 

. .  we may collect these short  definitions of  Colours:  That Blue is an impression on the Retina o f  
an oblique and confus'd pulse o f  light, whose weakest part precedes, and whose strongest follows. 
(Hooke 1665, p. 64), 

A similar definition of red follows, in which the roles of the "'weak" and "strong'" 
part are interchanged. Hooke recognizes that according to this theory there are 
"but two Colours" and argues (Hooke 1665, p. 67) 

that the Phantasm of  Cotour  is caus 'd  by the sensation of the oblique or uneven pulse of  light 
which is capable of  no more varieties than two that arise from the two sides of  the oblique pulse, 
though each of those be capable of  infinite gradations or degrees (each of them beginning from 
white, and ending the one in the deepest Scarlet or Yellow, the other in the deepest Blue). 

The colors are thereby identified with the real line as a geometrical continuum, 
and may be parametized, for instance, by the tangent of the angle of obhquity 
of the incident wave front, with white corresponding to normal incidence. Although 
Hooke's theory of color perception is false in most respects, it does mark an 
important milestone along the path toward recognition that the "Phantasm" 
of colors is in part subjective. 

Hooke's theory was short-lived, for in 1671 Newton published the results of his 
elegant and decisive experiments which showed that by means of a transparent 
prism, a beam of light could be decomposed into primitive "spectral" constituents 
which resisted further decomposition, that superposition of the constituents of 
a light resulted in the reconstitution of the original light, and that there are 
perceived colors - -  specifically, white - -  which do not occur as spectral 
constituents. From our viewpoint, Newton discovered a means tbr determining 
the absolute value of the Fourier transform of a visible light signal, and, by means 
of the principle of superposition, established that the space of physical light 
stimuli can be identified with the subset of non-negative functions in the Hilbert 
space of square integrable functions whose domain is a closed interval of real 
numbers. In particular, the space of physical lights is an open cone in an infinite 
dimensional vector space, a result which could not be more clearly in contradiction 
with Aristotle's theory of the constitution of color from black and white, or with 



Differential Geometry and Color Perception 101 

Hooke's more profound mechanically conceived two-color theory. Hooke's 
subsequent attack on Newton is no doubt responsible in part for the delay before 
the appearance of the latter's Opticks (Newton 1704). 

Newton's color circle, which will be of importance in what follows, makes its 
first appearance in the solution of Proposition VI Problem II of the Opticks, 
to wit: 

In a mixture of primary colors, the quantity and quality of each being given, to know the color 
of the compound, 

By "'compound" is meant "'superposition". The problem asks for that primary, 
i.e. spectral, hue which perceptually matches the superposition, and also for a 
quantitative measure of 

its distance from whiteness, 

that is., of the perceptual saturation of the resultant color. Newton's solution ranges 
the spectral hues along the circumference of a circle in their natural order of 
occurrence in the spectrum with the red and indigo extremes conceived as 
gradually passing into a common violet. White is placed at the circle's center. If 
various spectral hues be given, Newton constructs circles whose centers are the 
given hues and whose areas "are proportional to the number of rays of each color 
in the given mixture". The centroid of the resulting configuration specifies a point 
in the color circle whose distance from the origin (white) is a measure of the 
saturation of the superposed resultant; its spectral hue is determined by the inter- 
section with the circle of spectral hues of the radius which passes through the 
centroid. The quantity of the resultant light is the sum of the areas of the circles 
corresponding to its constituents, so that a light depends on three variables: 
quantity, hue, and saturation, Newton's assertions mean that the set of lights 
forms a three dimensional Euclidean manifold which can be identified with 
the set of pairs ((a, x)} where x denotes a point in Newton's color circle and 
:~ is a positive real number which corresponds to the quantity of light; this manifold 
can be equivalently conceived as a cone m three dimensional Euclidean 
space. 

It is an immediate consequence of this procedure that infinitely many distinct 
mixtures of light must be perceived as identical and therefore that a theory of 
color perception cannot be simply a theory of the physical properties of light; 
the nature of the visual sensory system itself must play an essential role. 

Newton was aware that his geometrical rule is but an approximation; it was 
he said, 

. . .  accurate enough for practice, though not mathematically accurate (Newton 1704). 

Although Helmholtz asserts that the comparison between the spectrum colors 
and musical notes was first suggested by Newton (Helmholtz 1866), according to 
Ernst Mach (Mach 1913) an analogy of this type had already been drawn by the 
astronomer Ptolmey (circa + 150), and a parallelism between color and the pitch 
of sound appeared probable to Descartes as a consequence of his dynamical 
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theory. But Newton was certainly the first to attempt to detail the hypothesized 
correspondence. His color wheel is partitioned into seven sectors derived from 
the widths of the colored areas in the spectrum of a glass prism which are meant 
to correspond to the notes of the diatonic scale. As the spectrum is a continuum, 
this partition is arbitrary and does not have any intrinsic meaning. Indeed, if one 
broadly classifies the subject matter of mathematical theories as geometrical in 
the sense of the study of continuous manifolds, or arithmetical in the sense of the 
study of discrete systems, then in general a specific problem will partake of the 
characteristics of one or the other but not both of these classes. Now since the 
time of Pythagoras the theory of musical harmony has been known to lie 
distinctly in the arithmetical class; therelbre, Newton's effort to identify his 
strikingly successful geometrical theory of color with the arithmetical theory of 
the diatonic scale was as strange as it was doomed to failure. Nevertheless, this 
idea continued to intrigue lesser minds for more than a century. Thus, Castel 
attempted to apply the supposed analogy to the construction of an "ocular 
harpsichord", intended to produce pleasing effects by a display of colors calculated 
to correspond to the particular notes, both sound and color to be called forth 
simultaneously by the play of the keys. His efforts, spanning the period 1725 to 
1754, were greeted with enthusiastic anticipation by the French intelligentsia and 
drew financial support as well as encouragement from celebrated figures such as 
Montesquieu. A prototype instrument containing 60 colors was ultimately 
constructed but, based as it was upon an unreal analogy, it was no more than a 
short-lived curiosity. Spurred by Frauenhofer's measurements of the wave-length 
of light of various colors, elaborate efforts were once again made, particularly 
by Drobisch and later by Unger, to find a connection between the musical scale 
and the variation of color; the interested reader should consult Helmholtz. The 
main result of these speculations has simply been to establish that a description 
of the phenomena of color must be essentially geometrical, not arithmetical, and 
that one must seek for further substantial improvements in their mathematical 
description amongst the more novel and deeper aspects of geometry. 

In Newton's work there is still confusion between physics and psychophysics; he 
supposed that the eye as an instrument measures physical differences perceived 
as color by means of a bijective correspondence between the set of physical input 
light signals and the set of sensory responses. This confusion persists in Euler, 
who identified the variation of physical color stimuli with frequency variation 
but failed to recognize that the frequency of a light wave is not determined by its 
subjective color (Euler 1752). 

The formulation of a theory which explicitly recognized the distinction between 
the physical properties of light and the correlated subjective sensations it pro- 
duces is the achievement of the multi-faceted Thomas Young. The physiological 
mechanism tbr converting light into the sensation of color which he proposed has 
been confirmed in its essential features and is the tbundation upon which current 
theory has been erected: 

As it is almost  impossible to concelve each sensitive point of the retina to contain an infinite 
number  of  pamcles,  each capable o( vibranng in perfect unison wLth every possible undulat ion.  
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it becomes necessary to suppose the number limited, for instance to the three principal colors... 
Each sensitive filament of the nerve may consist of three portions, one for each principal color. 
(Young t80l; cp. Young 1845.) 

Young's theory lay dormant  for 50 years until Helmholtz in Germany and James 
Clerk Maxwell in England rescued it from oblivion. They confirmed and 
strengthened its essential features in numerous ingenious experiments (Helm- 
holtz 1852, 1866; Maxwell 1856, 1857, 1860), and thereafter the development 
of the theory of color perception proceeded rapidly. In 1853 the mathematician 
Grassmann stated the results of color mixture experiments in a form very nearly 
equivalent to the assertion that the set of colors is a convex cone in 3-dimensional 
affine space; the following year in his Habilitationsschrift "'Ueber die Hypothesen, 
welche der Geometric zu Grunde liegen', Riemann observed that 

The positions of the objects of sense, and the colors, are probably the only familiar things whose 
specifications constitute multiply extended manifolds (Riemann 1854), 

a pregnant remark whose implications remained hidden until Helmholtz brought 
them to light in 1891. Thus, although Maxwell was probably familiar with 
Riemann's conception of metrical geometry, in his 1857 paper "The diagram 
of colors", he retained the Euclidean nature of Newton's color space, identifying 
Newton's color circle (and his own modification of it) with a 2-dimensional Eucli- 
dean subspace corresponding to lights of a fixed brightness, and failed to 
realize that the measure of brightness need not be a multiple of the measure of 
physical light intensity. It was undoubtedly Fechner's solution of this latter prob- 
lem that made the significance of Riemann's remark clear to Hetmholtz. In his 
study of the apparent magnitude of stars, Fechner was led to conclude that the 
measure of perceived brightness varies as the logarithm of the incident light 
intensity (Fechner 1877; cp. Resnikoff) We may therefore say that the physical 
metric of the intensity continuum is different from the psychophysical metric of 
the continuum of perceived brightness, and that the logarithm function provides 
the means for transtbrming the former magnitude to the latter. In terms of 
Riemannian geometry, the two l-dimensional spaces are isometric, and therefore 
not essentially distinct. Helmholtz (Helmholtz 1891, 1892) had the happy idea of 
extending this notion to the entire 3-dimensional color space, that is, of 
defining a Riemannian metric on the space of perceived colors which would mea- 
sure the perceptual difference between any two colors. Color space with this 
metric need not be isometric to Euclidean space, although it is in the particular 
model introduced by Helmholtz. 
According to observations of Abney IAbney and Festung 1886. Abney 19t3) 
brightness is a linear function of perceived lights. Geometrically, this means that 
the surfaces of constant brightness are portions of planes in the 3-dimensional 
Euclidean space in which the color space is embedded. The surfaces of constant 
brightness derived from Helmholtz's metric are not planar; this disagreement 
with Abney led Schr6dinger to undertake a re-examination of the entire affine 
and metrical theory of color perception and resulted in his proposal of a new 
metric compatible with both Abney's and Fechner's results but with respect to 
which color space is not isometric to Euclidean space (Schr6dinger 1920). More 
recent experimental studies have shown that in fact brightness is not a linear 
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function (Graham 1965), so this one time pillar of Schr6dinger's theory has 
become one of its several serious drawbacks. Nevertheless, his paper is still of 
methodological importance and is a model of elegance. 

In 1946 Stiles introduced an improvement of the Helmholtz metric which amounts 
to a change of the unit of measure of each coordinate in the underlying 
Euclidean space (Stiles 1946, Graham 1965, Stiles and Wyszecki 1967), but this 
simple modification significantly improves the accuracy of the description which 
the metric provides. The consequences of Stiles' metrical theory have been 
worked out in elaborate detail in the publications noted above and are in generally 
fair agreement with observations. 

2. Introduction to this Work 

The path from Plato to Stiles by way of Newton, Young, and Helmholtz has led 
to an increasing geometrization of the theory of color perception and to the 
introduction of Riemannian differential geometry as a basic tool for the analysis 
of subjective color phenomena. Nevertheless, there remains an element of 
arbitrariness in the selection of a color metric and there are various well known 
observational phenomena which play no role in the current theory. 

One of the most important of these phenomena is the invariance of relative color 
perception. Already in t876 Helmholtz brought attention to the paradox of the 
painter's ability to represent greatly different states of illumination intensity with 
pigments. It is evident that the painter of a picture in the classical style does not 
attempt to produce the same distribution of light and color that would be 
incident upon the eye if the original scene were viewed. Indeed, if two pictures 
be hung adjacent to each other in a gallery, one of a bright desert scene exhibiting 
various degrees of whiteness and dark shadow and the other of a moonlit night 
or other dark interior scene with whitish highlights, then the actual quantities of 
light reflected by the bright (resp., dark) parts of either picture to the eye of a 
beholder will be approximately the same since in both cases the same white 
(resp, black) pigment will have been used. Moreover, the brightest white on a 
picture in a gallery as ordinarily lit is perhaps but 1/40-th the brightness of that 
white directly lit by the sun; if viewed in the desert, the painting of the desert as lit in 
the gallery would appear dark grey. More remarkable still, the brightest white pig- 
ment reflects only about 100 times as much light as the darkest black whereas the 
sun's disk is about 80,000 times as luminous as the disk of the full moon. The artist 
consequently has no hope of reproducing the true light distribution of the 
original scene with his palette of limited hues and range of brightness, and 
therein lies his art. For according to b'eehner's work. the perceived brightness 
b(x) of a light of intensity x is proportional to log x and consequently the 
relative brightness b(xt)-b(x2) of the lights of intensity x I and x, will be 
proportional to 

/ \ 

\ x z /  
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We conclude that relative brightness is invariant under the simultaneous 
modification of light intensity (Cornsweet 1970) 

x~ ~ . x ~ ,  x2 ~ . x 2 ,  2 > 0 ;  

Hence, ou the whole, the painter can produce what appears an equal difference for the spectator 
of his picture, notwithstanding the varying strength of light in the gallery, provided he gives 
to his colours the same ratio of brightness as that which actually exists. (Helmholtz 1876.) 

And moreover it is this ratio which characterizes the state of illumination of 
pairs of familiar objects and thereby enables us (exclusive of extremes states of 
illumination for which Fechner's Law fails) to recognize both the real conditions 
of illumination and their artistic representations. 
If X denotes a topological manifold and G a group of continuous trans- 
formations of X onto X, and if G acts transitively on X, that is, if to every pair 
of points x and y of X there corresponds a transformation g ~ G which carries 
x to y, thus g(x)=y,  then X is said to be a homogeneous space of G. The 
possible degrees of intensity of illumination can be identified with the set R-  
of positive real numbers; R + is a topological manifold and also a group. Since 
y = (~) x = ~.x for arbitrary x, y ~ R ~, X = R + is a homogeneous space of G = R +, 
and the remarks about brightness offered above show that relative brightness is a 
G-invariant function defined on X. What is more, up to selection of the unit of 
measure, Fechner's Law defines the unique G-invariant metric on X. 

The purpose of the present paper is to generalize this construction to the entire 
color space. It will be shown that only two types of homogeneous space are 
compatible with a small number of well attested hypotheses and, what is more 
surprising, that a metric mvariant under the action of the transitive group is 
essentially uniquely determined and perceptual measures are two-point invariant 
functions. In the one case the metric is that of Stiles, but the other case 
appears to be new. 

Common experience provides considerable evidence that the entire color space 
is homogeneous with respect to some group. Thus, since not only the intensity 
but also the color of illumination in a daylight-lit gallery varies depending on 
the time of day, the cloud cover, and the season without significantly affecting 
the relative hues, saturation, or brightness of components of the exhibited pain- 
tings, we must conclude that their relative properties are independent of the 
state of illumination throughout  a large region of color space which includes 
all normal conditions of illumination. That  it is not necessary to relearn color 
relations when one uses tinted sunglasses or drives an automobile with a tinted 
windshield provides additional corroboration,  and the essentially interchange- 
able use of incandescant and fluorescent illuminants supports this contenuon in 
still another way. But the most convincing evidence of homogeneity and its 
fundamental role in the visual perception process is found in an important and 
striking series of recent experiments (Riggs et at. 1953, Cornsweet t970) concerned 
with fixated vision. These experiments showed that if the small involuntary 
continuous ("saccadic") motions of the eye relative to a fixed and unvarying scene 
are cancelled by an ingenious system of mirrors, so that the image of the visual 
scene is motionless on the retina, the stabilized image 



I06 H.L. Resnikoff: 

when first turned on, looks very sharp and clear, but then it rapidly t'ades out and disappears 
and the field looks uniformly grey. Stabilized patterns disappear within seconds, or even fracuons 
of a second after being presented. After the image has disappeared if it is moved across the 
retina . . . .  it will reappear and then quickly disappear again.. {Comsweet t970.) 

This is just the result that would be anticipated if color space is homogeneous, for 
in that case single colors are not discriminable and the stationary neural activity 
of each light receptor in the retina is construed as a fixed neutral color inde- 
pendent of the actual composition of the physical illumination of the retina. In 
other words, there does not exist a color which can be absolutely discriminated 
by the human visual system, all colors are equivalent, and only certain functions 
of pairs of colors presented to the retinal light receptors within sufficiently brief 
time intervals have any perceptual significance. 
The remainder of this paper is devoted to the mathematical development of a 
theory of color perception based upon the presumed homogeneity of color space 
subject to certain limitations of the scope of the inquiry to which we now turn. 
We will be concerned solely with the establishment of a phenomonological 
theory of color perception. It is not the purpose of this work to connect the 
observed absorption properties of the cone and rod pigments with geometrical 
properties of color space, nor will the structure of the neural processing network 
be considered here. 
These questions (especially the former), the explicit connection between the geo- 
metrical quantities introduced here and the usual parameters of color vision re- 
search, and, not least important, the quantitative aspects of the agreement of the 
theory herein proposed with experimental results, will be taken up in a sequel to 
this work. Fhe justification for presenting a mathematical theory of a physical 
phenomenon without a discussion of its quantitative agreement with observation 
is twotbld: first, the theory does appear to be in qualitative agreement with 
observations, and second, it is grounded on accepted experimental results of so 
qualitative and general a nature that it cannot be expected to provide a great 
degree of numerical agreement throughout the entire range of color vision 
phenomena. Yet, because the experimental results which underlie the theory are 
fundamental, the theory is likely to provide an essentially correct description of 
the phenomena of color vision even if it is not quantitatively accurate. The pro- 
posed theory may therefore be thought of as a first-order approximation to a 
"'correct" mathematical description of phenomenological color vision in much 
the same way as the more far-reaching and subtle Newtonian theory of dynamics 
is but an approximate mathematical description of the mouon of material 
bodies. 
By a 'phenomenological" theory of color perception we mean a theory which 
interposes a transducer (.whose internal structure will not be of interest to us in 
the present account) between an input color signal (a "'light") and an output 
perceptual response. Moreover, this paper will be concerned only with perceptual 
responses which are elicited from physically steady-state color configurations 
(but the saccadic eye motions are of course permitted); excluded, for instance, 
are the results of flicker photometry experiments but the results of spiitfield 
photometric experiments are admitted. The distinction will be of special 
importance in what follows because the so-called "'Abney's Law" is confirmed by 
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flicker photometric experiments but contradicted by split-field experimentsl; 
the theory can be expected to agree with at most one of these results. 

The perception of colors by "normal" observers differs in detail from one 
observer to another. To the extent that a theory of color perception is independent 
of the particular normal observer, it fails to be a description of the color perception 
of any particular real observer but instead constitutes a theory of color perception 
for a i%ticious idealized observer. Following the thought of a previous paragraph, 
this remark already shows that strict quantitative agreement of the theory with 
experimental results of measurements of the perceptions of a small number of 
observers cannot be expected. 

We will think of all real normal observers as approximations of varying degrees 
of accuracy of a ficticious ideal normal observer whose perceptual capabilities 
include but will not be entirely limited to the normal range of perceptual 
abilities exhibited by real observers. Thus, the ideal observer will be assumed 
capable of perceiving certain ficticious hues more highly saturated than spectral 
hues: perceptions of this type can be induced by selective bleaching of one of 
the photopigments of the retina, but the physiology of the possible production 
of such ficticious saturations will not be considered in adherence with our 
phenomenologicat viewpoint. Similarly, although each real human color per- 
ception transducer has a maximum admissible energy intensity beyond which the 
transducer experiences irreversible failure due to the destruction of its constituent 
parts, one may assume that the ideal human color perception transducer does 
not suffer this deficiency but can accept arbitrarily large input intensities 
without experiencing destructive failure. Finally in this regard, we are here 
interested only in a theory of color perception Ibr daylight vision. The well-known 
effects of the quantum nature of light which become significant for inputs of low 
intensity will not be mcluded in the range of applicability of the theory proposed; 
on the contrary, we will suppose that the ideal human color perception 
transducer perceives light inputs of arbitrarily low, as well as high, intensity 
according to the principles established by experiment for daylight vision at 
intermediate intensities. 

3. Notation and Terminology 

Our knowledge of the properties of light comes to us through the medium of one 
type of transducing system or another: if the system ~s ~hat constituted by the 
human eye--brain combination, we speak of color perception, whereas if the 
transducer ts conceived as the collection of all apparatus currently used in 
physical optics, we speak of the "'physical" or "'optical" properties of the light. 
The task of a theory of color perception is to relate the output signals of the ideal 
perception transducer to the physical properties (i.e., the output of the optical 
transducing system) tbr a common input light. 

t Personal communicanon from Prof, H. G. Sperling,. 
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We will denote lights by lower case gothic letters, ~, ~, etc., the corresponding 
physical light by the corresponding bold face font lower case roman letter, and 
perceptual lights by corresponding lower case roman letters. Thus 

~ x  (~)--x 

denotes the correspondence of the light z to the optical transducer output x, 
and 

~ x  (~)--x 

denotes the correspondence of ~ to the output x of the ideal human color percep- 
tion transducer. The lights x are abstractions whose properties are known only 
in terms of the corresponding transducer outputs; they play little direct role 
in what follows. A theory of color perception is concerned with the relationship 
between x (x) and x (z) as ~ varies through the set of lights. 

Physical optics provides a description of x (x) as an element of a real Hilbert 
space defined on an interval I=[v~in, v~,axJ~R, vmi . and v~,x are called the 
"minimum visible frequency" and the "maximum visible frequency" respectively. 
Each physical light x is an equivalence class of non-negative functions (other 
than the zero function) x: I ~ R  which differ only on a set of Lebesgue measure 0 
(we will identify an equivalence class with any of its representatives without 
fear of confusion) such that 0 < [ x 2 < oo with respect to Lebesgue measure. 

The value of the physical light function x (x)(v)= a,lx (v) for v ~ I is the intensity 
of the physical light at frequency v; J" x is the intensity of x. 

Denote the Hilbert space of square integrable functions or1 I by .)f, and let 
2 ' = { x s o ~ :  x is a physical light}. -~ spans r Addition of elements m 
corresponds to physical superposition of the underlying abstract lights (by the 
use of a system of mirrors, for instancet. Scalar multiplication by positive real 
numbers can be expressed in terms of physical superposition: this is clear for 
multiplication by positive integers; for multiplication by rational numbers, 
fractionation of a light signal by fractionation of a mirror suffices and the 
general case follows in the same way, or as a limit of rational fractionation. 

It is known that ~ is not finite dimensional because, as Newton discovered, there 
exist lights ~ so called "'spectral lights" - -  for which the corresponding physical 
light function is supported at v s I for any given v (there is in fact some small 
spread of frequencies in the support of a spectral light, but it is not a significant 
restriction to take this into account), but no physical spectral light is the sum 
(=superposition) of distinct physical spectral lights. 
Let two elements x, y e  ~ be called equivalent, denoted x ~ y ,  if they are 
perceived as the same perceptual light. This introduces a relation on L a which 
is obviously reflexive and symmetric. That it is also transitive, i.e., that x ~ y  and 
y ~  z implies x-,, z. is a consequence of experiment (Graham 1965, Grassmann 
1853). Therefore " '~"  is an equivalence relation, and the equivalence classes 
~ / ~  can be identified with the set .~ of perceptual lights. 

The vector space addition of .,/t ~ restricted to L~, that is, superposition of lights, 
and multiplication of elements of ~ by positive real numbers can be transferred 
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to the set ~ of perceptual lights by defining ~ ( x ) + f l  (.V)= ( a x +  fly), where 
(x )  denotes the perceptual equivalence class of the physical light x. These 
definitions can be extended to multiplication by arbitrary real numbers, from 
which it follows that there is a real vector space ~ spanned by z9 such that the 
correspondence 

induced by x ~ ( x } - - x  is a homomorphism of vector spaces, where equality 
in ~ means color matching equality. The most important single experimental 
fact about color perception is that ~ is finite dimensional. From this it follows 
that infinitely many physically distinct lights must coincide perceptually. 

4. Affine Properties of Color Space 

When we think of the perception of a light z we have the following observational 
arrangement in mind: ~ is presented to the observer's eye as a small central 
illuminated area seen against a uniformly illuminated background. The ob- 
servation of x therefore implicitly assumes the presence of some background illu- 
minant. It will further be assumed that the color perception transducer of the 
observer has reached a steady state before its output is sampled, by, say, a color 
matching procedure. 

We will formulate various standard experimental results as axioms delimiting 
the geometry of the set ~ of perceived lights. 

Axiom 1 : If x ~ z9 and ~ > 0, then ~x e ~ ,  

This axiom asserts that every positive multiple of a perceived light is a 
perceived light. The experimental results verify this statement only for a restricted 
range of positive numbers: if ~ is very large, the transducer will be destroyed, 
whereas if ~ is a sufficiently small positive number, quantum effects and "'back- 
ground noise" in the transducer conspire to destroy the relation between input 
and output which persists Ibr normal daylight intensities. Axiom 1 is an ideali- 
zation of the experimental results which is taken to describe the behavior of the 
ficficious ideal observer. Axiom 1 asserts that ,~ is a cone in ~ (Newton 17041. 
Axiom 2: If x e ~ ,  then there does not exist y e ~ such that x + y=O. 

That is, no superposition of perceived lights produces the absence of perceived 
light. Axiom 2 asserts that the cone ,~ does not contain any 1 dimensional 
vector space. 

Axiom 3: /Grassmann 1853, Helmholtz t866) For every x, y ~,~ and ~ _= I-0, i"], 
:~x + ( 1 . - ~ ) y ~ .  

That is, the line segment which joins perceived lights x and y consists entirely 
of perceived lights. The experiment consists of superposition of lights ,~x and 
( 1 - ~ ) y  for values of .:c~ [0, II, and consequent observation that :~x+(1-~ ' )y  
is always a visible light. This axiom implies (together with the previous ones) 
that the cone ~ is connected, hence simply connected and contractible. 
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Axiom 4: (Grassmann 1853) Any 4 perceived lights are linearly dependent. 

That is, if xk s ,~, k = 1 . . . . .  4, then there are ~ ~ R such that 
4. 

E ~ Xk~0, 

It follows from Axiom 2 that not all of the x~ can be of the same sign and therefore 
the difference between the number of positive and negative signs is either 0 or 2. 
If it is 2, then one perceived light is expressed as a superposition of the 
remaining three; if the difference is 0, then Axiom 4 asserts that the superposition 
of two perceived lights matches the superposition of the remaining two. As is 
well known, this case does occur: not every perceived light can be expressed as a 
superposition of 3 linearly independent perceived lights. 

Axiom 4 implies that dim ~ _< 3. dim f is a characteristic of each observer. 
Those observers for whom dim f = 3 ,  2, I, and 0 are respectively called 
"trichromate", "dichromate", "monochromate", and "blind" observers. 

Axioms 1--4 provide the affine structure of the set ~ of perceived lights, essentially 
following the elegant exposition of Schr6dinger (1920). The axioms which follow 
entail metrical consequences for ~.  

5. Homogeneity of Color Space 

Denote by GL (~) the group of orientation preserving linear trans(brmations of 
f" which preserve the cone 9 of perceived colors. An element g ~ GL (~) will be 
called a change of background illumination. Indeed, recalling the observational 
configuration envisioned in chapter 3, if x, (z) be the perceived light (an element 
of 9 )  when z is exhibited to the ideal observer displayed against the background 
illuminant r~, and if t) is replaced by an illuminant if, and ~ by z + .9'-~, then 
x,(~) will be replaced by x,,(~+~'-.~),  which is in general a perceived light 
distinct from x(~). On the perceptual level, if xy is written for x perceived against 
the background y, then the map y ~ y '  induces a map xy~tx-t-y ' -y)y,  and 
evidently g ( ~ ) = 9 ,  that is, the perceived light remains a perceived light. 
Conversely, if the illuminant y replaces y' in this way, the corresponding 
induced map is g-L and g-~ ( ~ ) = 9 ,  whence g preserves 9 .  Finally, each y' 
can be expressed as the image g (y) for some endomorphism of '~,  so 
g ~ GL (~). 

Examples of changes of background illumination are provided by the varying 
illumination provided by sunlight as a t'unction of the time of day and the 
cloud cover, by the transformation induced by replacement of a daylight 
illuminant by a typical incandescent or fluorescent illuminant, and by the 
transformation of background induced by the use of sunglasses or other filtering 
media. 

Axiom 5 : 9  is locally homogeneous with respect to changes of background 
illumination. 
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Consider " /  with its usual topology. Axiom 5 asserts that every x e ~ has an open 
neighborhood U = , #  such that every y e U can be expressed as y=gx for some 
g e GL (~). Thus Axiom 5 implies in particular that ~ is open in V and therefore 
inherits the structure of a different[able manifold from ~ .  The observational 
interpretation of this axiom is simply that any perceived light x can be trans- 
formed into any "sufficiently near" light y by an appropriate change of background 
illumination, and is known to be true, at least for neighborhoods of points in 
which lie near the image x (r of any typical daylight illuminant c. Compare the 
discussion of homogeneity in section 2. 

If .x and y are perceived lights and L is the line segment which joins x to y, then 
one might expect to be able to pass from x to y by a change of background 
illumination g constructed by selecting a sequence of perceived lights x = x t ,  
x2, x3, �9 . . . .  x,, x,~, t = Y, xk e L, such that consecutive perceived lights xk, xk+ 1 are 
so close to each other that there exists a change of background illumination g~ 
which carries xk onto x** t. If such a sequence exists, then the composition 

g : g . ~ g . - - 1  . . . . .  g t  

will be a change of background illumination which carries x to y, so .# would 
in fact be (globally) homogeneous with respect to GL (~9). The line segment L 
which joins x to y in # is compact. Let U: be a locally homogeneous 
neighborhood of z e L, whose existence is assured by Axiom 5. The sets {U:} 
cover L and hence by compactness there are finitely many points xk~ L, 

n + t  

t .<_ k < n + 1 such that L = ~ U.~ and the x, are a sequence of the desired form. 

Hence # is (globally) homogeneous if and only if it is locally homogeneous. 
We therefore formulate 
Axiom 5': .3 is Iglobatly) homogeneous with respect to changes of background 
illumination. 

GL (~) is a subgroup of GL (r and is therefore a Lie group. Hence, by standard 
results in the theory of homogeneous spaces, b ~ can be idenufied with the 
homogeneous space GL (~)/K, where K is isomorphic to the subgroup of GL (~) 
which leaves some point of ~ fixed, hence to a closed subgroup of the orthogonal 
group, and consequently to a compact subgroup of GL (~). Moreover, since the 
map x ~ a x ,  a e R* preserves ~9, it follows that each g e GL (~) can be uniquety 
expressed in the form g=.~oh where ~ E R  § and heSL(~)=GL(~)~SL(~I / ' ) ;  
SL (~//') denotes the elements of GL (~/) whose matrix representative relative to 
a basis for ~ has determinant + t. It follows that GL (~)=R~" x SL (~) and 
that K can be identified with a compact subgroup of SL (~). 

Now the dimension axiom, Axiom 4, insures that SL (~#~ is isomorphic to a sub- 
group of SL (1, R), SL (2, R), or SL t3, R) according as the dimension of ~ is 
t, 2, or 3.. As usual, SL(n, R) denotes the group of n x n real matrices with 
determinant equal to + 1. Unless otherwise stated, let us restrict our considera- 
tions to trichromate observers, i.e., to the case dim W = 3. From Helgason (1962), 
dim SL [3, R) = 8, and 

3 = d i m  . # = d i m  R + x SL (~)/K = 1 +d im  SL ( . # ) - d i m  K; (1) 
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hence 

8 > dim SL (~) = 2 + dim K (2) 

where K is a compact subgroup of SL (~) ~ SL (3, R). 

The simple real Lie groups have been classified. This permits one to determine, 
up to isomorphism, the possible forms which SL (~) and K may have. First 
remark that the contractibility of ~ implies that SL (~) is the exponential of its 
Lie algebra and the classification of Lie algebras (Jacobson 1962, Helgason 1962) 
shows that the simple noncompact  Lie groups of dimension <8 are just 
SL (2, R) and SL (3, R). Further, a nilpotent Lie algebra can be considered as a 
Lie algebra of upper triangular matrices, so the corresponding irreducible uni- 
potent Lie groups are of the form 

n ( n - t )  
Since dim T~ = 2 - - ~ '  only the range 2 < n < 4 is relevant. T~ has no compact 

subgroups. Hence there is a semi-simple group S and integers n~ such that 

dim SL  ( ~ ) = d i m  S + d i m  (T~I x ... x T~), S semi-simple or absent, (3) 

K is a compact subgroup of the semi-simple group S, and the dimensionalities 
of these groups must satisfy 

n~ (n i -  i) 
8 ~ dim S + ~ = 2 + dim K.  (4) 

i=I  

Then S=O, S = S L  (2, R), S = S L  (3, R), or S = S L  (2, R) x SL (2, R). 

If S = 0, then K = 0 and (4) reduces to 

n~ (n~- I) 
i=t 2 = 2  

with the unique solution n t = n 2 = 2, k = 2. Hence SL ( ~ ) / K  = T z • T z ~ R + • R + ,  

so as a homogeneous space, 

~ = G L  ( ~ ) / K = R *  x SL ( ~ ) / K = R  § x R + x R ~'. (5) 

We will show below that this case contains Helmhottz's original model for :~, as 
well as Stiles' modification of Helmholtz's model (Stiles 1946; Stiles and Wyszecki 
1967). 

Next suppose S = SL (2, R). Then dim S = 3 and (~t) becomes 

n~ (n~ - 1) = dim K - 1 
5 > ~  2 

The compact subgroups of SL(2, R) are isomorphic to the group with one 
element (hence of dimension 0) or to the orthogonal group SO (2) of matrices 
of the form 
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cos0 s in~)  0~:0<2rt ,  
- sin 0 cos ' 

of dimension 1. In the first case, 

ni (n~- 1) 
5 >_ 

i---1 2 = - 1 ,  

a contradict ion.  In the second case, dim K = 1 and 

n~ (n~- l) 
5 >_ i--t 2 =0  

is satisfied by choosing all n~ =0, that is, by the realization 

: = G L  ( : ) / K = R "  x SL ( : ) / K = R  ~ x SL (2, R)/SO (2). (6) 

Thus, in this case, ~ is equivalent as a homogeneous space to the product of R + 
(or, what is the same as a homogeneous space, R) and the Poincar6-Lobachevsky 
two dimensional space of constant negative curvature. The implications of this 
model for color perception will be explored in a later section. 

In order to complete the classification of realizations o f :  as a homogeneous space 
of Lie groups, consider S=  SL (3, R). Then (4) becomes 

8 > 8 + ~  n i ( n ~ - l ) = 2 + d i m K ;  
2 

hence, the n~ must all be0 and K must be a compact subgroup of SL (3, R) of dimen- 
sion 6. But a maximal compact subgroup of SL (3, R) is SO (3) with dim SO (3)= 3, 
which contradicts the existence of K. The final case is disposed of similarly. 

These results may be summarized by the assertion that Axioms l - -5  imply 
is a homogeneous space equivalent either to R + • R + • R ~, or to R + • SL (2, R)/ 
SO (2). 

6. Invariant Color Metrics 

We wish to introduce a Riemannian metric on ~ which will provide a measure 
of the (perceptual) dissimilarity of perceived lights. It is naturally desirable that 
the metric imposed on ~ be compatible with Axioms t - 5 ,  that is, with the 
structure of ~ as a homogeneous space. In order to motivate the choice, 
consider a pair of perceived lights x and y viewed with respect to a background 
illuminant b. It is common experience that a change of background illumination 
b ~ b '  produces a change in the perceived lights, x ~ x ' ,  y ~ y ' ,  but that, at least 
if the perceptual distance between b and b' is not great, the perceptual distance 
between x' and y' is the same as the perceptual distance between x and y; 
recall the discussion of this point in chapter 2, and the examples adduced 
there. 

Journ. Math, Biol. [/2 
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Let the Riemannian metric which provides the measure of perceptual dissimilarity 
be given in the usual infinitesimal form by a quadratic form ds'-, Following 
Schr6dinger (1920), suppose that the measure of dissimilarity of x and y ~ 7 is 

a (x, y)= i as (7) 

where the integral is calculated along a geodesic arc which connects x and y. 
In order that this definition be consistent, it is necessary that all geodesic arcs 
connecting x and y be of the same length, a condition which will be insured 
in what follows by the uniqueness of geodesic arcs between point pairs in ~.  
If the relative perceptual distances between point pairs remains unchanged upon 
changes of background illumination, as the previous paragraph suggests, then 

d(gx, gy)=d(x,y) for x, y s 7 ,  g sGL(7) ;  

the distance function is a point pair invariant with respect to the group GL (7) 
which acts transitively on 7 .  We formalize this as 

Axiom 6: The Riemannian metric on 7 which measures perceptual dissimilarity 
is a GL (N) - -  invariant metric. 

This axiom determines the perceptual metric (as we shall refer to the metric de- 
scribed in Axiom 6). Indeed, if x, y s ~ and g ~ GL ( 7 )  carries x ~ g x = y ,  and ff 
Gx is the metric on the tangent space .y"; to 7 at x induced by the given 
Riemannian metric on 7 ,  then the differential dg of g induces an isomorphism 
of , ~  on .~x, and Gox is defined by 

Gq.~[,IqX)=G,.IX) for X~,Y'~, 

Since GL 1~) is transitive on 7 ,  the metric is determined everywhere by the 
metric G.~ on ,Y~ for a fixed but arbitrary x s 7 .  Let us identify x with the 
coset K in the realization of 7 as the homogeneous space GL (7)/K. Then 
evidently 9x=x if 9 ~ K and therefore the metric Gx on the tangent space ..#~ 
must be K-invariant, that is, G~ (dgX)=Gx (X) for 9 ~ K and X s .Y..~. There 
are two cases to consider, corresponding to the two representations for 7 
as a homogeneous space. First, if 7 - - R  "~ x SL (Z R)/SO (2), then .Y'~=RG.7; 
where .7.~ is the 2-dimensional subspace of .~  which is tangent to SL (2, R)/SO (2) 
at K = SO (2). The restriction of the metric to .7; must be SO (2)-invariant, that 
is, invariant with respect to rotation about the origin in the 2-dimensional 
vector space .Y'j, and consequently it is a multiple of the Euclidean metric. It 
follows that G;, is the sum of a 1-dimensional and a 2-dimensional Euclidean 
metric and therefore the perceptual metric on 7 is unique up to selection of the 
units of measure on each of the factors of 7 = R  "~ x SL (2, R)/SO (2). In the 
next section we will obtain an explicit description of a conveniently normalized 
form of this metric. 

In the second case, 7 = R  § x R + x R*, so K =~ and K-invariance does not pro- 
vide any restrictions on the metric. However, a G (7)-invariant metric must be 
the sum of metrics on each factor which are R'--invariant; since an R'--invariant 
metric on R* is determined by a positive constant on the tangent space at one 
point, it is clear that all R-- invariant  metrics on R -~ are proportional. But 
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ds"= is patently an R+-invariant  metric on R*. Hence, the general 

GLl:) ) - invar iant  metric on ~ = R  + x R § x R § is 

ds2 =ctt + ~2 ~3 (8) 
\ x 1 / \ x:  / \ x 3 / 

where the ek are positive constants. This is precisely Stiles' generalization of Helm- 
holtz' metric (Helmholtz 1892, Stiles 1946); the Helmholtz metric corresponds 
to s t  = e2 = ~a = 1. Note  that the metric (8) admits unique geodesic arcs connecting 
arbitrary point pairs in .~, which insures that the definition (7) of perceptual 
dissimilarity of distinct perceived lights is consistent. 

7. Realization of R + x SL(2 ,R) /SO(2)  

A convenient realization of R + x SL (2, R)/SO (2) can be given as follows. Let 
denote the set of all 2 x 2 symmetric  real matrices x which are positive definite. 
Denote the determinant  of x by Ix  I. Let ~,t: denote the subset of ~ which 

c ~ 1 7 6 1 7 6 1 7 6 1 7 6 1 7 6  I ): 

shows that ~ =  R § x Jr  It is well-known that ,X" is isomorphic to SL(2,R)/SO(2). 
In fact, R § • R)=GL(2 ,  R) acts on .~ as follows: if A ~ G L ( 2 ,  R) and A' 
denotes the transposed matrix, then ~ ~ x ~ A x A  t. Denote the trace of a matrix 
x by tr x. Then 

ds 2 = tr (x - 1 dx x -  ~ dx) (9) 

defines a conveniently normalized form of the perceptual metric on ~ ;  the 
general form of the metric will be given in section 8. Indeed, under the map 

x--*AxAt=gx,  find x - ~ = ( A ' )  - t x  - 1 A  -1, dqx=AdxA' ,  

whence 

tr((gx)- t d (gx) (gx) - L d (gx))= tr ((A')- 1 x -  1 dxx - l dxA') = t r l x -  l dxx -  ~ dx). 

The axioms thus tar presented have determined two distinct classes of homo-  
geneous spaces which are candidates for the space of perceived lights, and cor- 
responding perceptual metrics which are uniquely determined up to the choice 
of the unit, or scale, of measurement.  One of these is Stiles' generalization of 
Helmholtz '  model. 

8. Brightness 

The next task is to identify perceived briyhtness of lights in terms of the 
geometrical structures of the two types of Riemannian manifolds which satisfy 
Axioms 1--6, and to compare  the consequences of that identification with the 
conclusions of psychophysical studies. 

8* 
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If x is a physical light and ~>0,  then the physical light .:~x differs from x 
only by its intensity. The corresponding perceived distinction is called bright- 
ness; the measure of relative brightness of x and ~.x should, according to the 
definition of the perceptual metric, be measured by the perceptual distance 
between x and 7x in 2 .  That is, the relative brightness is (up to the choice of a 
unit of measurement) 

d (otx, x) = S ds. 
X 

For the metric (8) we find, since d (ax)=xda on the geodesic which connects x 
tO a x ,  

l "c 

while for the second model type, with metric given by (9) 

Hence, in either case 2, 

2 2 2 ~ / a t  +a2 +a3 for metric (8); 
d (~x, x)= z log :c, x =  [1/5_ for metric (9). (io) 

Equation (10) is the statement of the psychophysical "law" of Fechner (Fechner 
1877; cp. Ekman 1959, Hecht 1935, Stevens 1957, 1970) applied to the brightness 
sensation, and is a consequence of the axioms ~ven above for physical lights which 
differ solely in intensity. 

We are now prepared to consider the difficult problem of heterochromatic 
brightness comparison. Let x, y ~ 2 .  Since x and y do not in general lie on the 
same ray emanating from 0 ~ ~ ,  that is, since x and y differ, in general, by 
more than a multiplicative intensity factor, the perceptual distance d (x, y) will 
measure chromatic as well as brightness distinctions. If b (x, y) denotes the 
measure of brightness distinction, that is, the brightness of x relative to y, then in 
general b 2 (x,y)<<_d 2 (x,y) since brightness accounts tbr only a portion of the 
perceived distinction. 

The realizations of /~  obtained in section 5 show that in all cases, , ~ R  + • .~//, 
where J/'='- R + x R + or ,/r SL (2, R)/SO (2, R), and '" - "  means "'isometric to". 
It follows that any x ~ ~ has a unique representation as 

x=(~,u),  ~ R "  and u ~ l l .  (11) 

For J / =  R-" x R + this representation is given explicitly by 

z More pr~isely,  eq.. (I0) exhibits the signed distance from x to -,..c, which is positive tf : t > l  but 
negative if .:~< 1, corresponding to the notions "'brighter than'" and "less bright than"  The 
distance itself is given by the absolute value of the right side of (10). 
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a t -.t-~ 2 +c~ 3 
x~ =r  1 with o'-- 

3 
x~ =r 

In the (r u) coordinates, the perceptual metric (8) becomes 

a~dsa=3cr@)z+ 

1 q- 

~.~ / \  ut / ~3 \ u  1 / \ u , . /  \ ,:x 3 / \ u , ~ /  j 

(12) 

(13) 

which shows that the perception of the ~-variable is measured independently of 
perception of the variable u e J L  If x is fixed and e >0,  then as we already know, 
x and ex differ only in brightness. But in the coordinate system (12), if x =(~, u), 
it follows that ~cx = (a ~ ~, u) whence the brightness difference is expressed entirely in 
terms of the ~-coordinate in the coordinate system (12). 

Similarly, if J # ~  SL (2, R)/SO (2) and if # is represented as the set of positive 

IXt X3~ 
definite 2 x 2 real symmetric matrices x = , then an explicit represen- 

X3 X2 ./ 
tation which exhibits the product structure of ~ is provided by the new 
coordinatization x = (~, u) where u e ~,K and 

~=lx1112, 

bl 1 ----- X3/X2~ 

u,  = I x I t l2 /x2  >0. 

(15) 

This corresponds to the decomposition of the matrix x as 

x=~ ( (uzl§ ut/u2~ (16) 
\ Ut/U2 I/U2 ,/ 

In these coordinates, the normalized perceptual metric (9) assumes the form 

/ d~ V F(d,,,)z +(du2) 2-] 

the general metric is evidently given by 

, ~ ~ " L lu:)-' J 

where at, e2 are positive constants, which shows that in this case also, perception 
of the ~-variable is independent of perception of the variables u e J [ .  Moreover, 
if x is fixed and e>O, then x and ax differ only in brightness and have 
coordinates 

x =(~, ut, :ix =(co& u) 
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in the coordinate system (15), which shows that the brightness difference is ex- 
pressed solely in terms of the ~-variabie. 

These observations motivate the following definition of relative brightness of 
heterochromatic perceived lights. If x, y ~ ~ ,  then the bri#htness of x relative to y 
is 

b (x, y ) = x  S log - - .  (18) 
z r/ 

where x=(r  u) and y=(r/, v) are the coordinates of x and y in the appropriate 
coordinate system (12) or (15), and x is a constant chosen so that (18) agrees 
with (10) when x and y are proportional. 

For our later purposes it will be useful to remark that if one writes z = u  t +iuz, 
~=u  I --iu2, then the restriction of the metric (17) to ~/t, i.e., the expression in 

dzd~ 
square brackets on the right side of (17), becomes ~ where Imz denotes the 

IimzTz 
imaginary part of z. Since x is positive definite in (15), it follows that I m z =  u 2 >0, 

dzd~ 
so the metric i ~  equips the "upper half plane" {z: Imz>0}  with the usual 

metric with respect to which it is isometric to the Poincar6 model of the 
(non-compact) two dimensional space of constant negative curvature. 

9. Surfaces of Constant Brightness 

The famous "'law" of Abney (Abney and Festing 1886, Abney 1913, Graham 1965) 
is the assertion that perceived brightness is a linear function of the superposition 
of physical colors; it can be analytically formulated as follows. 

Let c r ~ denote a fixed reference perceived light and let b (x, c) denote, as above, 
the brightness of x relative to c. Then Abney's Law states that for any x, y ~ b ~ and 

b (ctx+~.V, c)=~b (x, c)+/3b (y, c). (19) 

Under the hypothesis that Abney's Law (19) is valid, the set of perceived lights with 
a given brightness is the intersection of a plane in ~ with the cone of perceived 
lights :~. Indeed, ifet,  e2, e3 e #  is a basis for ~/', then any x ~ ~ can be expressed 
in the form 

3 
X = 2 "~k ek 

k = l  

so, for lights of brightness 3, 

b (x, c)= S" r b (e~) =-/3, x e P ,  (20) 

the equation of a plane. 
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It  is now known that Abney's Law is not valid for color matching experiments, 
although it does appear to agree with flicker photometric measurements (Graham 
1965, Sperling, Stiles and Wyszecki 1967). 

First consider the perceptual metric (8) and its decomposition (12). Let the 
coordinates of the reference standard c ~ # be c=(7, o), and let x=(r  u) in this 
representation. Then the brightness of x relative to c is, according to (18), 

b (x, c )=x  log @ (21) 

where • is a constant. The surface of fixed brightness/3 is the set of x ~ 3 ) which 
satisfy b (x, c)=/3; from (12), this is 

~, �9 = / 3  

with solution 

x~' x~ ~ x~ = 7.e 3~/" = const.; (22) 

these are precisely the surfaces of constant brightness found by Stiles; they are 
isometric to ~/,t' ~ R  + x R + . 

For the perceptual metric (9), the use of (15) in (21) yields 

ixi l ,2 
• log = fl 

7 

whence the surfaces of constant brightness are the hyperboloids 

I x ] =ve2~t~=const-, (23) 

which are isometric to Jr that is to the Poincar~-Lobachevsky space of constant 
negative curvature. 

The first case, eq. (22), has been fully treated (Stiles and Wyszecki 1957) so we will 
turn our attention to (,..~). Select the reference standard c and the unit of measure 

z 
of brightness so that 7 = ~ = 1. Then from (23), 

fl =/3 (x)= log ] x I. 

Consequently 

e'~('*+Y)=l x + y l  =i x z<" ('~+x .~/2 Y:r t/2) xx/2 ] 

(where "~ denotes the unit matrix and x 1~2 is the unique (matrix) square root of 
x ~ '.~ which lies in ,~.) 

= l x l  I '~+u[ 

1,2 - t , 2  with u = x -  y x  ~0~. u is positive definite, hence has positive eigenvalues 
2 ,  ,t2, sol "~+u I =( t  +;.~)(1 ~-,t2)--- 1 § +22)-+ ;,~ "~2 = t + t ru+ t  u l and 

ea(~+Y)--I x t ( t + t r u + l  ul) 
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ly l~  
= J x l  1 + t rx-1  y + - ~ )  

(I+__1 x_, t_ 7) 
- - t x l \ l y l  [Yl tr y +  I 

i 1 

yl 

e # (Y~. 

There fo re ,  

( 1 + _ _ 1  + t rx  - t y . )  (24) 
~ ( x + y ) = 1 3 ( x ) + ~ ( y ) + l o g  \ [ x l  lyl i y i  " 

Now let a e # be a fixed perceived light and let 

g: x ~ a  1/2 xa I/2, g e GL (zg) (25) 

be a change of background illumination. Then [ a 1/2 xa 1/2 I=t at [xl so 

B(~ 1/2 xaX/Z)=loglaX/2 xaX/21=logla  I+log t x l, i.e., 

# (a 112 xa l '2 )=# (a) +/3 (x). (26) 

Hence, if x ~ a  ~/2 xa ~/z is a change of background illumination if x e # ,  then 
the brightness of x (relative to the standard c) is changed by an additive 
constant which depends only on the change of background illumination, but 
not on the light x e ~.  This result assumes added significance because it can 
be proved that every mapping in GL ( # ) =  R+ x SL (2, R)/SO (2) is a composition 
of transformations of the type (25), whence the conclusion drawn is valid for all 
changes of background illumination. This is, we believe, the correct context 
for Abney's Law. A similar result holds for the first model, for which 
GL ( ~ ) = R  + x R + x R ~'. 

10. Jordan Algebras and Brightness 

In the preceding sections, most arguments were carried through twice - -  once 
fbr each class of model of the space ~ of perceived colors. It may be worthwhile to 
indicate how both models can be treated m a uniform way. 

If ~A is any finite dimensional real vector space, then '2 is said to be a Jordan 
algebra if there is a bilinear composition ~ x o , I ~ ,  (a, b) ~ a b ,  such that ab=ba 
and a(a" b)=a'-(ab) for all a, b e o+I. R is a Jordan algebra with respect to its 
usual structure as a field, while the vector space .~ (r, R) of r x r real symmetric 
matrices is turned into a Jordan algebra by the introduction of the bilinear 
composition ( x , y ) ~ ( x . y + y . x ) / 2 ,  where " . "  denotes matrix multiplication; 
R = ~  (1, R). The ~ (r, R) are instances of the class of so-called "formally real" or 
"compact real" Jordan algebras (Braun and Koecher 1966, Koecher 1962). 
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If 9/ is a Jordan algebra, then the bilinear composition induces a mapping 
L: 9/--* I-lore(9/, 9/) defined by 

L (a) b = ab for a, b ~ 9/. (27) 

The endomorphism 

P (a) = 2 L'- ( a ) -  L (a2), a ~ 9/ (28) 

is called the "quadratic representation". If 9/ is a simple Jordan algebra of 
dimension d and rank r (Braun and Koecher 1966), then 

# ( a )= .~  tr L (a), a ~ 9/ (29) 

is called the reduced trace of a, and 

[ a I = {de t  P (a)} '/a, a ~ 9/ (30) 

is called the reduced norm of a. If 9 /=  R, then 

a ( a ) = l a l = a ,  a~.9/; (31) 

if 9 /=  ~ (r, R), then 

a (a)= tra, I a I = determinant of a, a ~ 9/ (32) 

Hereafter we consider only compact real Jordan algebras 9/. 9 /has  a unit element, (, 0) 
which will be denoted by c; for 9/--.~ (r, RI, c =  0"" is the unit matrix. The 

exponential function associated with 9/is defined by 

e x p a =  ~ a~/n! a~ a~'2[. (33) 
n = O  

Set exp 9 /=  {exp a: a~9.I}; then expg/ is a strictly convex open cone in 9/. If 
~ = 9 / t  �9 9/z is a direct sum, then exp b=(exp at)(exp a,) where b = a  t G a 2 ~ .  

Observe that for :~>0, the map a ~  a/e is an isomorphism of R onto a Jordan 
algebra 9/, with unit element l/e, and that 

exp 9 / ,=  {exp ea: a s  9/} = {(exp a)~: a ~ 9 / } = { x ~ : x s e x p g / } .  

Writing 9 / , , ~  =9/~, @ 9/~, �9 9/~, it follows that 

exp 9 / ~  = {(x~', x~ ~, x~): x~ ~ R + }. 

and 

thus 

= R  ~- x R  ~- x R  +, 
t34) 

{(x3) exp 5 (2, R) x t = = x :  x is positive definite ; (35) 
X 3 X 2 

exp 9 /= ,~  = space of perceived colors (36) 
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if ~ ='2I~,~,~, or ~=S3  (2, R). 

The group GL(exp ~)  is generated by the maps P(a) for a e ~ ;  exp'lI is a 
homogeneous space of GL (exp o.I) and an GL (exp ~)-invariant metric on exp od 
is given by 

ds 2 = #  ((p- 1 (x) dx) dx). (37) 

This metric coincides with (8) if 9.I--'11~,~3, and it coincides with (9) if 
= 5 (2, R). 

From the definition (27), it follows that for 9.1 = ~ (r, R), 

P ( a ) b = a . b . a  for a , b ~ ( r , R ) ,  (38) 

with "'. '" denoting matrix multiplication as before. 

With the unification provided by the concept of a Jordan algebra, the arguments 
concerning brightness which were presented in the previous section can be 
conceptually inverted. A main result in section 9 was expressed in eq. (26), which 
we can now write as 

fl (P (a */z) x)=f l  (a)+fl  (x); (39) 

that is, under the change of background illumination x --,P (a 1/2) x, the brightness 
of each perceived light is increased by the brightness of the perceived light a 
which determines the change of background illumination. 

Let us consider the following weakened version of (39) as an axiom: 

Axiom 7: The brightness/3 (x) of x ~ ~ relative to the unit c ~Od is a differentiable 
function such that 

fl ( P (a l/z) x)=f l  (x) + z (a) (40) 

where Z (a) depends only on the change of background illumination. 

If x=c ,  then /3 (x)=0 since c is the reference standard tbr brightness. Also, by 
(39), P (a l/z) c = a  whence 

fl (a)=fl  (P (a ~'2) c) = 0  +;( (a); 

thus (40) is equivalent to (39). Now introduce q0 (x)=e  a(x). Then (40) (or (39)) is 
equivalent to 

{0 (P la t*2) .~:) = ~ (a) (p [X). 

Let a=c~c, x =tic with c~, fl ~ R + and find 

q~ (P (a 1'') x ) = o  (aj~c) = ~o (~c) q) (tic). (41) 

If we write h(c0=O (~xc), then 141) asserts h (cxfl~=h (~)h (/3): h is a differentiable 
homomorphism of R + into R, whence h (,x)=cc ~ for some ,~. ~ R. Thus (,o (r a 
and therefore 

(~ (cc~) = ~0 (P (~ L..., c) x ) = o  (cr ~ (x)=~:' ~ (x); 
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9 is a homogeneous function of order ~. The argument given by Koecher (1962) 
can now be applied to conclude that 

~p (x) = I x I ~1', x s exp 5 (r, R), (42) 

where we have made use of ~o (c)= e~r = 1. Using the isomorphism a ~ a a ,  we find 

~o ( x )  = I x ~ I ~. ( 43 )  

Combining (34), (42), and (43), we find 

_._{ ~ log ] x [ for x s exp ~ (2, R), 
(x) 

~. log (x]' x~ ' x~ ~) for (x~, x.,, x3) s R ~" x R § x R - .  (44) 

which retrieves the brightness formulae (221 and (23) of section 9, with the unit 
of brightness scale factor •  in the first case, and x = J. in the second. 

11. Hue and Saturation 

The previous section showed that the Jordan algebra ~ which underlies Stiles' 
color perception model is isomorphic to '31=R ~ R ~ R with the usual field 
structure on each summand. Hence there is rio loss of generality in limiting 
our analysis of the Stiles'-tike models to the Helmholtz case ~t =e,_=~z~, that 
is, to N, since the isomorphisms t~,  enable us to pass from the Helmholtz model 
to the Stiles model. Introduce the reduced norm t x l = x  I x: x 3 on 'Yl. If ~..1 denotes 
any compact real Jordan algebra, then exp: ~- - - ,expN is a bijective 
mapping, so the inverse map, which will be denoted log, is well defined. Let 
~,V = {x s exp ~ :  [ x I = I } ; .,V is the norm surface in exp o.I. Then exp '~ = R + x .#" 
as a product of homogeneous spaces, and c s . # ' .  If follows that l o g . #  is a 
hypersurface in 'g which passes through 0. For ' ~ = N ,  the invariant metric is 

ds'- =~,  \ x~ / ' 

if u~= log xk, then u =(ul ,  u,., u3)= log x, x = (x  t, xz, x3) s exp ~,  so the metric 
induced on N by the metric (45) on exp N is ~ (du~)', the Euclidean metric. 
Moreover, Iog JV = (vs  'Jt: [exp v[ = 1} = {us N: cr (v)= 0} = {vs  '31: vt + vz + v3 =0}, 
a plane in '3t = R ~ which contains 0. Consequently the restriction to log.V" of the 
pullback of the metric (45) to 'Jt is the Euclidean metric on log.~g, and there- 
fore ..V itself is isometric to two-dimensional Euclidean space. We will use this 
fact to introduce the concepts of hue and saturation. Let x s exp'Yl. Then we 
can represent x uniquely as x=( r  with ~ s R  ~" and u s . f ' .  As earlier, 
f l ( x ) = •  relative to the unit c - - ( l , l , l ) s ' J t .  Pull u back to the plane 
log.f"  in N by sending u ~-,[ogu. Introduce polar coordinates (p, 0) on log~,g" 
with O measuring Euclidean distance from 0 s'YL Then, after the choice of a 
direction on log~g" which determines the ray 0=0 ,  and an orientation for 
log.r log u will have unique coordinates (p, 0). Define the hue of x =(~, u) ~ exp 
relative to c s 'Yl to be the angle 0 of log u. The  saturation of x relative to c is 
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the radial distance p; since tog is an isometry of .,g" onto tog ,.V, the saturation 
of x relative to c is just d (c, u) on .A:, where d is the restriction of invariant metric 
to the norm surface .AC 

If o.I = ~ (2, R), then ~,~/'--- {x ~ exp ~ (2, R):t x t=  x t x 2 - x ~  = I}. We have shown 
that ~,1" is isometric to the upper half plane of complex numbers with the 
Poincar~ metric, or, equivalently, to the unit disk ~ =  {z e C: z~< i} with metric 

dzd~ 
ds2 = (1 - z~) - - - - - - - ~  ' (46) 

because the map w ~ =  z carries the upper half plane onto the disk and 
w + i  

dwdff  
takes the Poincare metric (Imw)----- ~ onto (46). One checks that the unit matrix 

(, c = 0 is carried to 0 ~ C. Introduce polar coordinates on ~ centered at 0. 

If x s exp 5 (2, R), then x~(~,  u) with ~ s R + and u e ,A:. Carry u to a correspon- 
ding point w by composing the map from .,g" to the upper half plane with the 
map from the upper half plane to N. These maps are both isometrics. Let the 
polar coordinates of w in ~ be (p, 0) and define the hue of x to be the angle 0, 
and the saturation of x relative to c to be the distance d(c, ut on ~V" in the 
restriction of the invariant metric to ~V'. 

12. Analysis of General Visual Scenes 

Previous sections have been concerned with one or several small patches of 
light perceived against a uniform background which fills the remainder of the 
visual field, The purpose of this section is to pass to the analysis of general 
visual scenes. The principal problem is to define the perceived light which the 
observer of a fixed scene S will consider as the average perceived light; for ordinary 
scenes and daylight vision, this average plays the rote of a white standard for 
the observer (cp. the discussion in chapter 2 of the Riggs er aL fixated vision 
experiment). It will not do to use Newton's idea of a simple weighted average 
with the weights corresponding to that fraction of the visual field occupied by a 
given light, for the space of perceived colors does not have a Euclidean metric 
(although it may be isometric to a Euclidean space). The perceptual metric 
must play a role in determining the weights. 

In order to simplify the discussion, we will assume that a given scene S exhibits only 
a finite number of perceived lights x~, xz, ..., x, e bL Let ~ be the ratio of the 
area of the scene which exhibits light xk to the total area of the scene; then 

~ = 1. Let d (x, y) denote the distance between x and y in a GL (~)-invariant 
metric. We define the average color :~ (S) of the scene S to be that ~ ~ ~ such that 

~" /~k d (x~, .~)2 (47) 
t r  
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is a minimum. Were .~ Euclidean space and d the Euclidean metric, then 
would be the "center of mass" of the distribution of "mass points" xk with 
respective "mass" #k. 

If there are just two lights and #~ =/z 2, then .~ is the midpoint of the geodesic 
arc which connects x~ and x 2. It is easily seen that :~ exists and is unique because 
.~ has nowhere positive curvature. 

If the lights which constitute a scene are finite in number and differ only in 
intensity, then any two of them are proportional,  so we may put x~---<z~ x for some 
x ~ 2 .  Then Y' ~ d (x~, ~)z = ~/z~ d (~  x, .~)z is a minimum when :~ = ~x for some 

~ R + (by application of the triangle inequality), and then the minimizing value 
of~ is found as follows: if 

~=~#~d(a~x'~x)2=~#~21~ ' k  -~k 
then 

0 d ~  1 

whence 
Ioga ~ #~=Y' #~ log=k; 

k k 

from ~ #~ = l, conclude 

log ~2= ~ #~ tog ~ ;  

the brightness of the average color ~ (S) is the weighted average of the brightness 
of the lights which constitute the scene. 
The significance of the average color .~ (S) of the scene S is that color adaption 
appears to occur relative to .~ (S), and in this sense, the observer treats .~ (S) as 
a private standard "'white" light (cp. Land and McCann 197l). We formalize this as 

Axiom 8: If S is a visual scene, then ~ IS) ~s the observer's standard white light. 

If S consists of two small light patches x t, x: viewed against a uniform background 
b, then the weights #t and ~z 2 will be close to 0 and #b~-1, from which one 
concludes that :~ -b ;  the background illumination will constitute the observer's 
standard white light. 

According to Axiom 8, an observer identifies .~ as standard white and therefore 
also identifies this point with the unit c of the Jordan algebra '2 associated with <~. 
This enables the observer to classify perceived lights according to their bright- 
ness, hue, and saturation as defined in section i[ and therewith provides the 
link between theory and experimental measurements. 

13. Geodesics and Complementary Colors 

The geodesics through c ~ exp o.2 are of the form 

x (~)= exp ~a (48) 
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where a is the tangent vector of length 1 to the geodesic at x = c (the length 
condition is equivalent to cr (a2)= i where a denotes the reduced trace), and z 
is the measure of arc length in the invariant metric. The distance z from c to x (z) 
can be explicitly found as follows: from (48), 

log x (z) = ~a, 
so 

(log 2 x (z))= ~r ((za) z) = "r 2 ~ (a 2 ) = z 2, 

whence 
d (c, x)=cr I/z (log 2 x). (49) 

Now join x ~ to c by the geodesic x ( z ) = e x p z a ;  then the continuation of the 
geodesic past c in the direction from x to c corresponds to the curve 
x ( - z ) = e x p - z a .  Let x* denote that point on this geodesic arc such that 
d (c, x * ) = d  (c, x). If the coordinates of x with respect to the decomposi t ion 
~ = R + x  .,~ are x=(r  then x * = ( ~ - t , u  - t )  where u ' t  denotes the inverse 
of u considered as an element of the Jordan algebra 9 .  The Jordan inverse, 
x ~ x  -1, is an isometry of any GL (exp o2)-invariant metric. Indeed, d x - t =  
= _ p -  1 (x) dx so, if y = x - 1, then 

ds z = ~r ( (p-1  (y) dy) dy)=  ~r ( (P-  t ( x -  1) d x -  1) d x -  1) 

= a ((e (x) P -  1 (x) ,~x) (P-  1 (x) dx)} 

(,ix (P-~ (x) dx))= ~ ( (e -  1 (x) ,ix) dx), 

which proves the invariance. It follows that d(c, u )=d(c ,  u- l ) :  in other words, 
x and x* are equally saturated;  and l o g u - t = - l o g u ,  so the hue of x* is the 
complement of the hue of x. Finally, since ( e x p ' r a ) - l = e x p  - z a ,  it follows that 
x* = x -  1, which demonstrates  that x and x -  1 are perceived colors which have the 
same saturation, complementary  hue, and complementary  brightness relative 
to c; the latter means 

/~ (x- 1)= _/3 (x). 

We speculate that the interpretation of the involutive map x ~-*x-t is simply this: 
it is the map which makes an originally photographed scene correspond to a 
photographic color negative of the scene. Further application of x ~ , x  - t  
corresponds to conversion of the negative into a photographic positive print 
of the scene. 

14. An Example 

Suppose three rooms arranged as shown in Fig. i. The wall common to each 
pair of rooms is pierced by a small regularly shaped hole which appears as a 
small patch of color to observers 1 and 2. We suppose each room dluminated by 
various distinct white lights, which are perceived as w e, w 1, w 2 by E, t. 2 
respectively. The observer E plays the role of experimenter, whose task is to 
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1 
/ Z 

I 

Fig. 1 

determine the relationships amongst the background and light admitted through 
the hole as seen by the various observers. For the sake of simplicity, we will 
suppose that we, wt, and w• are all of the same brightness; then without loss 
of generality, we may assume that all three perceived lights lie on J .  

If . ~ R  "~ xSL(2,  R)/SO(2), then .,V" is isometric to the unit disk ~ with the 
Poincar~ metric. The geodesics of this metric are arcs of circles orthogonal to the 
unit circle (understood to include segments of diameters as well). The situation 
is illustrated by Fig. 2, in which the experimenter E has placed his perceived 
color w e at the origin of 9,  that is, E has identified w e with standard white, 
according to Axiom 8: consequently the hue H t e of 1 (resp.. Hz! e of 2) as 
seen by E is measured by the angle between the positive X-axis and the radius 
from E through i (resp., 2), and the saturation of I (resp., 2) relative to E is the 
Poincar6 distance of w 1 (resp., w2) from E. 

Fig. 2 
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Each of 1, 2 will consider their respective background illuminant wl, w 2 to consti- 
tute the standard white illuminant, and hence each considers his illuminant to 
lie at E in the homogeneous space N. Since geodesics are carried onto geodesics 
by isometries of ~ ,  it follows that w t views w 2 along the geodesic arc which 
joins these points, and that w 2 views wl along the same arc, but in the reverse 
direction. This situation is diagrammed in Fig. 3. 

Fig. 3 

The hue H211 of 2 seen by 1 and the hue Ht/2 of I seen by 2 differ more than the 
hues H1/g and Hzlz seen by E, Moreover, if either w t or w 2 is transported to the 
origin (the current position of E) by an isometry, then the geodesic joining wt 
and w 2 will be mapped onto a diameter, whence H1/2 and H2~ are seen to be 
perceived as complementary colors by both w t and w2, but not by E. 

Finally, we notice that the three observers enjoy perfect symmetry in the arrange- 
ment; none can claim special perceptual authority, From this it follows that the 
statements made above must hold for any permutation of the designating symbols 

E~ 1, and 2 (cp. Yilmaz 1962). 

The analysis is somewhat more complicated if the three perceived lights are not 
of the same brightness, but the general principles remain the same. 

An analogous argument can be made if ~ = R  § x R + x R" ,  but in this case the 
resulting surface .X is isometric to Euclidean space, which somewhat simplifies 
the geometry. 

15. A Critical Experiment 

It is of interest to determine which of the models of:~ provides the more accurate 
representation of the phenomena of color perception. The purpose of this final 
section is to propose a decisive experiment tbr making this distinction. 
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Suppose x, y, z are three colors of the same brightness. We may assume without 
loss of generality that x, y, z, a .AC Moreover, as a model of ~r we may choose 
the Poincar~ disk ~ ,  or the Euclidean plane R z, the latter only after the 
introduction of appropriate isomorphisms ~O=~ of the Jordan algebra R in case 
of Stiles' model. We propose to use the distinct properties of Euclidean spaces 
and spaces of constant negative curvature to predict perceptual phenomena 
whose presence will confirm, and whose absence will deny, the validity of 
the particular geometry considered. 

Z 

22" 

Fig. 4 

Let x, y, z be vertices of an equilateral triangle in each case, as shown in Fig. 4, 
and suppose that the distances d (x, y), d (x, z), d (y, z) are increased without an 
upper bound while the conditions d ( x , y ) = d ( y ,  z)--.d (z, x) are maintained in 
each case. For the Euclidean case I, observer x will continue to see y and z 
differing by a hue of angle ~z/3, whereas for the non-Euclidean case II, as the 
sides of the triangle increase, the angles will approach zero, and x will observe 
the convergence of the hues of y and z. These conclusions reflect intrinsic 
properties of the two geometries and should provide an experimental method 
for excluding one of them from consideration as a model of the space of 
perceived colors. 

16. Summary 

In conclusion we summarize the principal results of this paper. 

When combined with well known facts about the affine structure of color space 
~,  the hypothesis of local homogeneity with respect to changes of background 
illumination is equivalent to the hypothesis of global homogeneity. There are 
two distinct types of homogeneous space compatible with the affine assumptions: 
~ = R  § x R + x R +, and ~ = R  + x SL (2, R)/SO (2). 

/ourno Math. Biol. I/2 9 
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If : is a homogeneous space of the group G, then a color metric on : must be 
G-invariant, and this condition determines the color metric up to selection of the 
unit of measurement on each irreducible factor of o~. If ~ = R  + x R + • R" ,  the 
resulting metric is Stiles' generalization of Helmholtz' metric, and the resulting 
color space is isometric to Euclidean space. If . ~ = R +  x SL (2, R)/SO (2), the 
metric appears to be new, and the resulting color space is not isometric to 
Euclidean space. 

The notions of brightness, hue, and saturation have natural interpretations as 
point-pair invariant functions, which is consistent with and provides an expla- 
nation of well known invariance properties of relative perception of colors. 

Finally, an experiment is proposed which will discriminate between the two 
types of color space geometries. 
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