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Introduction

01◦ We invest no effort in defining Light or Color. Rather, we represent the
family L of Physical Lights and the corresponding family Λ of Perceptual
Lights in terms of abstractions, guided by simple observations. The merits
lie in the fruits. We will refer to the family of perceptual lights as Color
Space. Step by step, we will supply Color Space with basic structures, in
particular, the Linear and the Metric. In the end, we will draw connections,
as appropriate, between Color Space and the neurophysiological processes of
Color Perception. In this way, we will come to understand the members of
Color Space as colors .

Abstract Color Space

02◦ We suggest physical lights by histograms, of the following form:

ϵ' ϵ''

X

Physical Light
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Such a histogram represents a physical light in its simplest form: as a Beam.
The beam is a legion of visible photons traveling along mutually parallel
straight line paths. The corresponding energies may vary from photon to
photon but altogether they are bounded, below by ε′ and above by ε′′:

ε′ ∼ 300 zeptojoules , ε′′ ∼ 500 zeptojoules

03◦ Of course, we may refer to the direction of the beam, without ambiguity.
For now, let us assume that all beams travel in the same direction.

04◦ We describe the intensity X (that is, the joules per second) of the beam,
as follows. We introduce a partition of the interval formed by the bounds,
marking n (closely) spaced energies between ε′ and ε′′:

ε′ = ε0 < ε1 < · · · < εj < · · · < εn = ε′′

In turn, we introduce a (transparent) plane, perpendicular to the direction
of the beam. For any time t and for any index j (1 ≤ j ≤ n), we observe
the photons φ which pass through the plane in one second, but just those for
which:

εj < εφ ≤ εj+1

We measure the sum:
0 ≤ Xj

of the energies of the photons so observed. In this way, we obtain (at least in
principle) the intensity X of the beam at time t, graded by energy:

X =




X1

X2

...
Xj

...
Xn




The components Xj of X would be measured in watts, that is, in joules per
second.

05◦ Summing over the gradation, we obtain the (total) intensity of the beam:

ι(X) =

n∑
j=1

Xj

Of course, 0 ≤ ι(X).
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06◦ Very likely, the measurements just described, for physical lights and for
histograms, will prove to depend upon time. But, for present purposes, let us
assume that the (graded) intensity of the beam is constant in time.

07◦ Now let us agree to identify (abstract) physical lights Ξ by the sequences
X , as displayed in article 4◦. In effect, the components of X serve as (specific,
very natural) coordinates for Ξ. We will require no others. We will refer only
to X and say no more of Ξ.

08◦ Anticipating further developments, we appeal to Humpty Dumpty, who
once said, in a scornful tone:

“When I use a word, it means just what I choose it to mean – nothing
more nor less.”

09◦ Let us say that two physical lights X and Y in L are equivalent iff,
should both fall upon a screen of perfect reflectance, a Standard Observer
would perceive them to be indistinguishable. We will express this relation by
writing:

X ∼ Y

Informally, one may say that the physical lights X and Y are equivalent iff
they determine the same perceptual light.

10◦ By common sense and by experience, we find that, for any physical lights
X , Y , and Z in L:

(1) X ∼ X

(2) X ∼ Y =⇒ Y ∼ X

(3) X ∼ Y, Y ∼ Z =⇒ X ∼ Z

Consequently, we may introduce certain subsets of L, namely, those which
consist of complete sets of mutually equivalent physical lights, and we may
regard such subsets, in themselves, as perceptual lights. In particular, for
each physical light X , we may introduce the perceptual light X to which it
belongs:

X ∈ X
One may say that the physical light X determines the perceptual light X .

11◦ Now let us agree to identify perceptual lights with the sets X , as just
described, and let us denote by Λ the family of all such lights. We are commit-
ted to refer to Λ as Color Space. At this point, however, we have no specific
coordinate system to offer.
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Perceptual Light

12◦ Finally, let us draw from the foregoing abstractions the natural mapping
µ carrying the family L of physical lights to the family Λ of perceptual lights,
that is, to Color Space, as follows:

µ(X) = X

where X is any physical light and where X is the perceptual light to which X
belongs. By this mapping, we shall express relations between basic structures
on L, defined in practice by objective measurement, and corresponding basic
structures on Λ, derived in practice by subjective judgement.

13◦ For physical lights X in L, we have intensity ι(X), measured objectively
in watts. For perceptual lights X in Λ, we will, in due course, encounter
luminosity λ(X ), measured subjectively by our Standard Observer in lumens.
These measures of the “amounts” of light in X and X , respectively, play
fundamental roles in the study of Color Space.

Linear Color Space

14◦ For the family L of all physical lights, we introduce two operations,
Addition and Scalar Multiplication. For any physical lights X , Y , and Z
in L and for any nonnegative (pure) number c, we define:

X + Y, cZ
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as follows:
(X + Y )j = Xj + Y j , (cZ)j = cZj

where, of course, j is any one of the relevant indices: 1 ≤ j ≤ n.

15◦ The intensity of the physical light X + Y on the interval (εj−1, εj ] is
the sum of the intensities of the physical lights X and Y , separately, on that
interval. The intensity of the physical light cZ on the interval (εj−1, εj ] is the
product of c and the intensity of the physical light Z on that interval.

16◦ The foregoing operations have many properties, which devolve from the
familiar properties of ordinary arithmetic. For instance, c(X +Y ) = cX +cY .
We need not list them all, but we will make use of them.

17◦ For any physical lights X , Y , and Z and for any nonnegative (pure)
number c, we find, by the extensive experience of our Standard Observer:

(4) X ∼ Y =⇒ X + Z ∼ Y + Z

(5) X ∼ Y =⇒ cX ∼ cY

One may justifiably argue that the foregoing implications provide the basic
connections between physical and perceptual lights. In any case, they provide
support for transporting the operations of addition and scalar multiplication
from L to Λ, as follows.

18◦ For any perceptual lights X , Y, and Z in Λ and for any nonnegative
(pure) number c, we define:

X + Y, cZ

by the following maneuvers. We select, in manner arbitrary, physical lights
X ′ and X ′′ in X , Y ′ and Y ′′ in Y, and Z ′ and Z ′′ in Z. By implications (4)
and (5), we find that:

X ′ + Y ′ ∼ X ′′ + Y ′ ∼ X ′′ + Y ′′

and:
cZ ′ ∼ cZ ′′

Now X ′ + Y ′ and X ′′ + Y ′′ determine the same perceptual light and cZ ′ and
cZ ′′ determine the same perceptual light. Naturally, we define the former to
be X + Y and the latter to be cZ. In this way, we transport the operations
of addition and scalar multiplication from L to Λ.
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19◦ The natural mapping µ carrying L to Λ provides a neat summary of
the foregoing matter. For any physical lights X , Y , and Z in L and for any
nonnegative (pure) number c:

µ(X + Y ) = µ(X) + µ(Y ), µ(cZ) = cµ(Z)

20◦ The families L and Λ of physical lights and perceptual lights both carry
the structure of a cone. That is, one can add lights and one can multiply them
by nonnegative (pure) numbers, subject to familiar properties. Moreover, the
cones are nondegenerate. That is, one can identify a light, let it be Θ, such
that, for any lights L′ and L′′, if L′ + L′′ = Θ then L′ = Θ and �L′′ = Θ. One
refers to Θ as the vertex of the cone. For L, Θ would be O. For Λ, Θ would
be the imperceptible light µ(O):

O =




0
0
...
0
...
0




, µ(O) = ∅

The components of O carry units of (zero) watts.

21◦ Intensity is linear on L. That is, for any physical lights X , Y , and Z and
for any nonnegative (pure) number c:

ι(X + Y ) = ι(X) + ι(Y ), ι(cZ) = cι(Z)

One may expect (hope (?)) that the same is true for luminosity on Λ. That is,
for any perceptual lights X , Y, and Z and for any nonnegative (pure) number
c:

λ(X + Y) = λ(X ) + λ(Y), λ(cZ) = cλ(Z)

In fact, it proves to be so. See article 28◦.

22◦ We ought note that there is a third “measure” of the amount of light:
the brightness β(X ) of a perceptual light X . The relation between β(X ) and
λ(X ) is subtle: indeed, not linear but logarithmic. It falls under a general
study by Gustav Fechner of the relation between “response” and “stimulus.”
We will describe it later, very briefly.
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23◦ For the family L of physical lights, we find a natural basis of lights
having minimal structure, in terms of which all physical lights can be uniquely
defined. We will call these lights spectral lights:

∆1 =




1
0
...
0
...
0




, ∆2 =




0
1
...
0
...
0




, . . . , ∆k =




0
0
...
1
...
0




, . . . , ∆n =




0
0
...
0
...
1




In sharp terms:

∆j
k =

{
0 if j �= k
1 if j = k

where 1 ≤ j ≤ n and 1 ≤ k ≤ n.

24◦ By design, the energies of the photons in the spectral light ∆k all lie
in the interval (εk−1, εk ] and the sum of the energies per second equals one
watt. Obviously, for any physical light X , we can represent X as a linear
combination of spectral lights:

X =

n∑
k=1

X̂k∆k

The coefficients X̂k are nonnegative pure (!) numbers, numerically equal to
Xk. The representation is unique (!).

25◦ For the family Λ of perceptual lights, we find no such natural basis.
However, by the mapping µ we can transport the spectral lights just described
from L to Λ:

Dk = µ(∆k)

where k is any relevant index: 1 ≤ k ≤ n. We will call these (perceptual)
lights simple lights. Our Standard Observer reports that spectral lights are
distinguishable, hence that simple lights are distinct.

26◦ Then, following systematic comparisons, the Observer reports certain
constants, as follows. By subjective (but careful) comparisons, he determines
the index j such that, for all indices k (1 ≤ k ≤ n), the simple light Dj is
at least as “bright” as the simple light Dk. He sets the value of Vj equal to
1. In turn, for each index k (1 ≤ k ≤ n), he finds the positive number Vk
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(0 < Vk ≤ 1) such that VkDj and Dk are of equal brightness. He presents his
report:

λ(Dk) = Vk ι(∆k) (ι(∆k) = 1, 0 < Vk ≤ Vj = 1))

The constants carry the units of lumens per watt.

27◦ Let X be a perceptual light. Let X be any physical light which deter-
mines X . By article 19◦, we find that:

X = µ(X)

= µ(
n∑

k=1

X̂k∆k)

=

n∑
k=1

X̂kµ(∆k)

=
n∑

k=1

X̂kDk

Consequently, every perceptual light can be expressed as a linear combination
of simple lights. However, the representation is far (!) from unique. In any
case, we find the following important inference:

λ(X ) =

n∑
k=1

X̂kλ(Dk)

=
n∑

k=1

X̂kVk ι(∆k)

=

n∑
k=1

Vk ι(X̂
k∆k)

=
n∑

k=1

VkX
k

28◦ Let us call attention to certain basic lights, the white lights:

W =




1
1
...
1
...
1




, W = µ(W )
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We find:

λ(W) = ω (ω =
n∑

k=1

Vk)

29◦ At this point, we are prepared to call upon the Fundamental Principle
of Color Theory:

COLOR SPACE IS A 3-DIMENSIONAL NONDEGENERATE
CONE

The principle is based upon extensive experiments by Observers, involving
the comparison of various linear combinations of perceptual lights.

30◦ In precise terms, the principle means that there exist perceptual lights
Z1, Z2, and Z3 in Λ such that, for every perceptual light X in Λ, there exist
(pure) numbers c1, c2, and c3 such that:

X = c1Z1 + c2Z2 + c3Z3

In this context, the numbers c1, c2, and c3 are unique. However, one or two of
the numbers may be negative, in which case one reinterprets the equality by
shifting the corresponding terms “to the other side.” After all, we can form
constant multiples of a perceptual light only if the constant is nonnegative
(and in fact pure).

31◦ That said, we have:

λ(X ) = c1λ(Z1) + c2λ(Z2) + c3λ(Z3)

even if one or two of the coefficients are negative. For instance, if c1 < 0 while
0 ≤ c2 and 0 ≤ c3 then:

(−c1)Z1 + X = c2Z2 + c3 + Z3

so that:
(−c1)λ(Z1) + λ(X ) = c2λ(Z2) + c3λ(Z3)

We need say no more.

32◦ Given the relations in article 31◦, one refers to Z1, Z2 and Z3 as a basis
of primary perceptual lights for Λ. However, at this point, one such basis is
as good as any other.

33◦ Now let us invoke the algebraic and analytic methods of Cartesian Geom-
etry to develop a sharp interpretation of the foregoing principle. We introduce
the cartesian spaces:
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R3, Rn

The elements of these spaces stand as follows:

K =


K1

K2

K3


 , X =




X1

X2

...
Xj

...
Xn




The entries are numbers, unconstrained. For the former, the units are lumens.
For the latter, watts. Of course, the spectral lights:

∆1, ∆2, . . . ,∆j , . . . , ∆n

form a basis for Rn, while the elements:

E1 =


 1

0
0


 , E2 =


 0

1
0


 , E3 =


 0

0
1




form a basis for R3.

34◦ In turn, we introduce the subsets:

K3, Kn

of R3 and Rn, respectively. The entries are constrained to be nonnegative
numbers. Clearly, K3 and Kn are nondegenerate cones. The vertices are the
origins:

O =




0
0
...
0
...
0




, O =


 0

0
0




35◦ Obviously, L = Kn.

36◦ By the Fundamental Principle of Color Theory, we may (!) identify our
Color Space Λ with a nondegenerate 3-dimensional cone in R3.
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37◦ To do so, we introduce (in abstract terms) a basis Z1, Z2, and Z3 of
primary perceptual lights in Λ. In turn, we choose (at liberty) a basis Γ1,
Γ2, and Γ3 for R3. Finally, we identify each perceptual light X in Λ with a
corresponding element K of R3, as follows

X = C1Z1 + C2Z2 + C3Z3 ⇐⇒ K = C1Γ1 + C2Γ2 + C3Γ3

Of course, the primary lights Z1, Z2, and Z3 correspond to the elements
Γ1, Γ2, and Γ3, respectively. The coefficients C1, C2, and C3 may be any
nonnegative (pure) numbers whatsoever, but, as usual, some among them
may be negative.

38◦ In any case, as X runs through Λ, so K runs through a cone, let it be
L, in R3.

39◦ The preceding maneuvers serve to supply the abstract space Λ with
coordinates. In practice, special choices prove useful. For instance, we might
insist that:

K3 ⊆ L

We might just as well insist that:

Γ1 = E1, Γ2 = E2, Γ3 = E3

and that:
λ(Z1) = 1, λ(Z2) = 1, λ(Z3) = 1

We will refer to such a choice as an empirical choice.

40◦ But we might insist that:

L ⊆ K3

while
ωZ1 + ωZ2 + ωZ3 = W

and:

λ(Z1) =
1

3
, λ(Z2) =

1

3
, λ(Z3) =

1

3

We will refer to such a choice as a theoretical choice.

41◦ in 1931, the International Commission on Illumination promoted a par-
ticular theoretical choice. It serves now as a base for all coordinate computa-
tions, without recourse to further experimentation.
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42◦ Now we may represent the linear (!) mapping µ by the matrix:

M =


M1

1 M1
2 · · · M1

k · · · M1
n

M2
1 M2

2 · · · M2
k · · · M2

n

M3
1 M3

2 · · · M3
k · · · M3

n




In terms of coordinates:

X = C1Z1 + C2Z2 + C3Z3 ⇐⇒ K = C1Γ1 + C2Γ2 + C3Γ3

the relation stands as follows::

(m)


M1

1 M1
2 · · · M1

k · · · M1
n

M2
1 M2

2 · · · M2
k · · · M2

n

M3
1 M3

2 · · · M3
k · · · M3

n







X1

X2

...
Xk

...
Xn




=


K1

K2

M3




Clearly, the entries M j
k in M must be measured in lumens per watt.

43◦ With reference to article 27◦, we find that, for each index k (1 ≤ k ≤ n):

Dk = µ(∆k) = ι(∆k)


M1

k

M2
k

M3
k


 = M̂1

kΓ1 + M̂2
kΓ2 + M̂3

kΓ3

Hence:
λ(Dk) = M1

k + M2
k + M3

k

44◦ Let us emphasize the fundamental empirical fact which underlies our
theoretical structure. For any index k (1 ≤ k ≤ n):

M̂1
k , M̂2

k , M̂3
k

are the numbers of lumens of the primary perceptual lights Γ1, Γ2, and Γ3,
respectively, which figure in the representation of the simple light Dk. One
usually finds the rows of M displayed in three tables, or graphs, to represent
the results of the basic matching experiments.
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45◦ For instance, following article 37◦, we may make selections for our pri-
mary perceptual lights:

Z1 =
1

V06
D06, Z2 =

1

V32
D32, Z3 =

1

V51
D51

They are (within factors) simple lights. The corresponding graphs take the
following form.
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TriStimulus Values: Practical

46◦ The foregoing discussion follows a “practical” path. In due course, we will
describe the over arching “theoretical” path, which for computation includes
all other paths.
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Chromaticity
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