EXAMINATION

MATHEMATICS 391

Due: L306, High Noon, Wednesday, December 16, 2015 NO LIVING SOURCES
01^{\bullet} Let $(\Omega, \mathcal{A}, \pi)$ be a probability space and let F be a real valued random variable defined on Ω. Let the distribution of F be the standard normal ρ :

$$
\rho=F_{*}(\pi)
$$

By definition:

$$
\rho((u, v))=\frac{1}{\sqrt{2 \pi}} \int_{u}^{v} \exp \left(-\frac{1}{2} y^{2}\right) d y
$$

where u and v are any numbers for which $u<v$. Let G be the nonnegative real valued random variable defined on Ω by squaring F :

$$
G=F^{2}
$$

Find the distribution σ of G :

$$
\sigma=G_{*}(\pi)
$$

02^{\bullet} Let Ω be the closed unit disk in \mathbf{R}^{2}, having center $(0,0)$ and radius 1 :

$$
(x, y) \in \Omega \text { iff } x^{2}+y^{2} \leq 1
$$

Let Ω be supplied with the probability measure π, defined by normalization of the measure of area:

$$
\pi(A)=\frac{1}{\pi} \iint_{A} 1 \cdot d x d y
$$

where A is any reasonable subset of Ω. Let α and β be the associated projection mappings carrying Ω to the closed finite interval $[-1,1]$ in \mathbf{R} :

$$
\alpha(x, y)=x, \quad \beta(x, y)=y
$$

where (x, y) is any member of Ω. Of course, one may interpret α and β as random variables. Describe the joint distribution and the marginal distributions for α and β :

$$
(\alpha \times \beta)_{*}(\pi), \quad \alpha_{*}(\pi), \quad \beta_{*}(\pi)
$$

Are α and β independent?
03^{\bullet} Consider the following transition matrix Π for a Markov Process:

$$
\Pi=\frac{1}{4}\left(\begin{array}{llll}
1 & 1 & 0 & 2 \\
0 & 4 & 0 & 0 \\
2 & 0 & 2 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Find a probability measure:

$$
P=\left(P_{1}, P_{2}, P_{3}, P_{4}\right)
$$

meeting the Condition of Invariance:

$$
P \Pi=P
$$

Determine whether or not the corresponding Markov Process is ergodic.
04^{\bullet} Let $(\Omega, \mathcal{A}, \pi)$ be a probability space and let \mathcal{F} be a real valued random process defined on Ω :

$$
\mathcal{F}: \quad F_{0}, F_{1}, F_{2}, \ldots, F_{j}, \ldots
$$

Let the process be independent and identically distributed. Let the common mean and variance be 0 and 1 , respectively. (We assume, implicitly, that the common variance is finite and that the Standard Maneuver has been applied.) For each positive integer n, let \bar{F}_{n} be the average of the first n terms of \mathcal{F} :

$$
\bar{F}_{n}=\frac{1}{n}\left(F_{0}+F_{1}+\cdots+F_{n-1}\right)
$$

Of course, the mean and variance of \bar{F}_{n} are:

$$
0, \frac{1}{n}
$$

respectively. Now let j be any positive integer. Let $A_{j, n}$ be the subset of Ω consisting of all members ξ for which:

$$
\begin{equation*}
\left|\bar{F}_{n}(\xi)\right|^{2} \leq\left(\frac{1}{j}\right)^{2} \tag{*}
\end{equation*}
$$

Apply Chebychev's Inequality to show that:

$$
1-\frac{j^{2}}{n} \leq \pi\left(A_{j, n}\right)
$$

05^{\bullet} Let X be the set consisting of the eight members:

$$
(j, k, \ell) \quad(j, k, \ell \in\{0,1\})
$$

The members of X are the vertices of the unit cube in \mathbf{R}^{3}. Let \mathcal{A} be the borel algebra consisting of all subsets of X. Let μ be the measure on \mathcal{A} defined by the following relations:

$$
\begin{aligned}
& \mu(\{(0,0,0)\})=\mu(\{(1,1,0)\})=\mu(\{(1,0,1)\})=\mu(\{(0,1,1)\})=\frac{1}{4} \\
& \mu(\{(1,0,0)\})=\mu(\{(0,1,0)\})=\mu(\{(0,0,1)\})=\mu(\{(1,1,1)\})=0
\end{aligned}
$$

Let f, g, and h be the random variables defined on X as follows:

$$
f((j, k, \ell))=j, \quad g((j, k, \ell))=k, \quad h((j, k, \ell))=\ell \quad((j, k, \ell) \in X)
$$

Describe:

$$
f_{*}(\mu), g_{*}(\mu), h_{*}(\mu)
$$

and:

$$
(f \times g)_{*}(\mu),(f \times h)_{*}(\mu),(g \times h)_{*}(\mu)
$$

Verify that f and g are independent, that f and h are independent, that g and h are independent, but that f, g, and h are not independent.
06^{\bullet} Let n be a positive integer. Let P be a probability measure on the set:

$$
\{1,2,3, \ldots, n\}
$$

We display P as follows:

$$
P=\left(P_{1}, P_{2}, P_{3}, \ldots, P_{n}\right)
$$

where:

$$
\begin{equation*}
0 \leq P_{j} \quad(1 \leq j \leq n) \text { and } \sum_{j=1}^{n} P_{j}=1 \tag{*}
\end{equation*}
$$

One defines the Entropy of P by the following expression:

$$
\eta(P)=-\sum_{j=1}^{n} P_{j} \log \left(P_{j}\right)
$$

Find the maximum value of η, subject to conditions $(*)$.

