MATHEMATICS 391

ASSIGNMENT 11

Due: December 02, 2015
01° Let n be a positive integer. Let Π be a (nonempty) compact convex subset of \mathbf{R}^{n}. Let f be the real valued function defined on $\Pi \times \Pi$ as follows:

$$
f(X, Y)=\|X-Y\| \quad(X \in \Pi, Y \in \Pi)
$$

Since $\Pi \times \Pi$ is a compact subset of $\mathbf{R}^{n} \times \mathbf{R}^{n}$, there must be members \bar{X} and \bar{Y} in Π such that $f(\bar{X}, \bar{Y})$ is the maximum value of f. Show that \bar{X} and \bar{Y} must be extreme points in Π, that is, vertices.
02^{\bullet} Let $n=9$. Let Δ be the standard simplex in \mathbf{R}^{n} and let T be the following stochastic matrix:

$$
T=\frac{1}{2}\left(\begin{array}{ccccccccc}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

having 9 rows and 9 columns. For the corresponding Markov Chain, describe the limit set L in detail. In particular, note that L is a simplex and display its vertices. Find a member:

$$
X=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7} \\
x_{8} \\
x_{9}
\end{array}\right)
$$

of Δ such that:

$$
T X=X
$$

03^{\bullet} Let n be a positive integer and let Δ be the standard simplex in \mathbf{R}^{n}. Let H be any member of \mathbf{R}^{n}. Let ϵ and η be the real valued functions defined on Δ as follows:

$$
\begin{array}{ll}
\epsilon(X)=\sum_{j=1}^{n} h_{j} x_{j} \\
\eta(X)=-\sum_{j=1}^{n} x_{j} \log \left(x_{j}\right) &
\end{array}
$$

For each member X of Δ, one may refer to $\epsilon(X)$ as the average value of H and to $\eta(X)$ as the entropy, relative to X. In turn, let $\hat{\epsilon}$ be a particular value of ϵ. Solve the following Extreme Value Problem with Constraints:

$$
\sup \eta(X)=? \quad(X \in \Delta, \epsilon(X)=\hat{\epsilon})
$$

For a proper argument you should apply some one of the methods of multivariable calculus, for instance, the method of Lagrange Multipliers.

