MATHEMATICS 391

ASSIGNMENT 10
Due: November 18, 2015
01° Let n be a positive integer. Let K be a finite set. Let \mathcal{U} be an injective mapping carrying K to \mathbf{R}^{n}. Of course, \mathcal{U} defines a list:

$$
\mathcal{U}(k) \quad(k \in K)
$$

of distinct vectors in R^{n}. Let Π be the polytope generated by \mathcal{U}. By definition, the vectors in Π stand as follows:

$$
\begin{equation*}
X=\sum_{k \in K} a(k) \mathcal{U}(k) \tag{*}
\end{equation*}
$$

where a is any mapping carrying K to $[0,1]$ for which:

$$
\sum_{k \in K} a(k)=1
$$

Verify that Π is convex. We mean to say that, for any vectors Y and Z in Π and for any b and c in $[0,1]$, if $b+c=1$ then $V=a Y+b Z$ is in Π.
02^{\bullet} For particular instances of \mathcal{U}, it may happen that there exist vectors X for which the coefficients in $(*)$ are not unique. Describe an example. For polytopes in general, there is no perfect remedy. However, there is a satisfactory remedy. One may show that there is a subset L of K such that the restriction \mathcal{V} of \mathcal{U} to L generates the same polytope Π, while, for any subset M of L, if the restriction \mathcal{W} of \mathcal{U} to M generates Π then $M=L$. Do so. One may say that \mathcal{V} generates Π minimally. As we shall see, L is unique and \mathcal{V} defines a very special list:

$$
\begin{equation*}
\mathcal{V}(\ell) \quad(\ell \in L) \tag{o}
\end{equation*}
$$

of distinct vectors in Π.
03^{\bullet} Let V be a vector in Π. One says that V is a vertex of Π iff, for any vectors Y and Z in Π and for any b and c in $(0,1)$, if $b+c=1$ and if $V=b Y+c Z$ then $Y=Z$. One might say that V is a vertex of Π iff it cannot be presented as a vector interior to a line segment in Π. Show that the vertices of Π are precisely the vectors in the list (o). Now explain why the aforementioned subset L of K is unique.
04^{\bullet} For certain instances of \mathcal{U}, the foregoing satisfactory remedy proves to be perfect. Following reduction to L and \mathcal{V} (if necessary), the coefficients in (*):

$$
\begin{equation*}
Y=\sum_{\ell \in L} b(\ell) \mathcal{V}(\ell) \tag{*}
\end{equation*}
$$

are unique. The latter assertion means that, for any vector Y in Π and for any mappings b^{\prime} and $b^{\prime \prime}$ carrying L to $[0,1]$, if:

$$
\sum_{\ell \in L} b^{\prime}(\ell)=1, \quad \sum_{\ell \in L} b^{\prime \prime}(\ell)=1, \text { and } \sum_{\ell \in L} b^{\prime}(\ell)=Y=\sum_{\ell \in L} b^{\prime \prime}(\ell)
$$

then $b^{\prime}=b^{\prime \prime}$. In this context, one refers to the polytope Π as a simplex.
05^{\bullet} Let $n=4$ and let:

$$
K=\{1,2,3,4,5,6\}
$$

Let \mathcal{U} be defined as follows:

$$
\mathcal{U}(1)=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \mathcal{U}(2)=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right), \mathcal{U}(3)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \mathcal{U}(4)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
$$

and:

$$
\mathcal{U}(5)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right), \quad \mathcal{U}(6)=\frac{1}{4}\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

Describe the polytope defined by \mathcal{U}. Is it a simplex?

