MATHEMATICS 391 ASSIGNMENT 6 Due: October 14, 2015

01° Let \mathbf{S}^2 be the unit sphere in \mathbf{R}^3 , consisting of all points P for which:

$$|P|| = \sqrt{P \bullet P} = 1$$

Let \mathcal{A} be the σ -algebra composed of all "reasonable" (that is, *borel*) subsets of \mathbf{S}^2 . Let μ be the surface area measure on \mathcal{A} , normalized by division by 4π . Consequently, $(\mathbf{S}^2, \mathcal{A}, \mu)$ is a probability space. Let N be the north pole in \mathbf{S}^2 :

$$N = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Let F be the random variable defined on \mathbf{S}^2 which assigns to each point P the distance between P and N:

$$F(P) = \|P - N\|$$

Calculate the first and second moments of F, hence the variance of F.

 02° In context of the foregoing probability space $(\mathbf{S}^2, \mathcal{A}, \mu)$, let Φ and Θ be the random variables defined by assigning to each point P in \mathbf{S}^2 the *longitude* $\phi = \Phi(P)$ and the *latitude* $\theta = \Theta(P)$ of P:

$$P = (\cos(\theta)\cos(\phi), \cos(\theta)\sin(\phi), \sin(\theta))$$

Calculate the marginal distributions for Φ and Θ . Then determine whether or not Φ and Θ are independent.