MATHEMATICS 391

ASSIGNMENT 6

Due: October 14, 2015
01° Let \mathbf{S}^{2} be the unit sphere in \mathbf{R}^{3}, consisting of all points P for which:

$$
\|P\|=\sqrt{P \bullet P}=1
$$

Let \mathcal{A} be the σ-algebra composed of all "reasonable" (that is, borel) subsets of \mathbf{S}^{2}. Let μ be the surface area measure on \mathcal{A}, normalized by division by 4π. Consequently, $\left(\mathbf{S}^{2}, \mathcal{A}, \mu\right)$ is a probability space. Let N be the north pole in \mathbf{S}^{2} :

$$
N=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Let F be the random variable defined on \mathbf{S}^{2} which assigns to each point P the distance between P and N :

$$
F(P)=\|P-N\|
$$

Calculate the first and second moments of F, hence the variance of F.
02° In context of the foregoing probability space $\left(\mathbf{S}^{2}, \mathcal{A}, \mu\right)$, let Φ and Θ be the random variables defined by assigning to each point P in \mathbf{S}^{2} the longitude $\phi=\Phi(P)$ and the latitude $\theta=\Theta(P)$ of P :

$$
P=(\cos (\theta) \cos (\phi), \cos (\theta) \sin (\phi), \sin (\theta))
$$

Calculate the marginal distributions for Φ and Θ. Then determine whether or not Φ and Θ are independent.

