## MATHEMATICS 391

ASSIGNMENT 5: The Weak Law of Large Numbers
Due: October 7, 2015
$01^{\circ}$ Let $(X, \mathcal{A}, \pi)$ be a probability space. Let $n$ be a positive integer and let:

$$
F_{1}, F_{2}, \ldots, F_{n}
$$

be $\mathbf{R}$-valued random variables on $X$. For each index $j(1 \leq j \leq n)$, let $m_{j}$ be the mean of $F_{j}$ :

$$
m_{j}=\int_{X} F_{j}(x) \mu(d x)
$$

and let $s_{j}^{2}$ be the variance:

$$
s_{j}^{2}=\int_{X}\left(F_{j}(x)-m_{j}\right)^{2} \mu(d x)
$$

Let the random variables be uncorrelated, in the sense that, for any indices $j$ and $k(1 \leq j<k \leq n)$ :

$$
\int_{X}\left(F_{j}(x)-m_{j}\right)\left(F_{k}(x)-m_{k}\right) \mu(d x)=0
$$

Let $\bar{F}$ be the mean of the random variables;

$$
\bar{F}=\frac{1}{n}\left(F_{1}+F_{2} \cdots+F_{n}\right)
$$

Let $\bar{m}$ be the mean of $\bar{F}$ :

$$
\bar{m}=\int_{X} \bar{F}(x) \mu(d x)
$$

and let $\bar{s}^{2}$ be the variance:

$$
\bar{s}^{2}=\int_{X}(\bar{F}(x)-\bar{m})^{2} \mu(d x)
$$

Show that:

$$
\bar{m}=\frac{1}{n}\left(m_{1}+m_{2}+\cdots+m_{n}\right)
$$

and:

$$
\bar{s}^{2}=\frac{1}{n^{2}}\left(s_{1}^{2}+s_{2}^{2}+\cdots+s_{n}^{2}\right)
$$

$02^{\circ}$ Let the random variables $F_{1}, F_{2}, \ldots$, and $F_{n}$ have common mean, soit $m$. Note that:

$$
\bar{m}=m
$$

Le them have common variance, soit $s^{2}$. Note that:

$$
\bar{s}^{2}=\frac{1}{n} s^{2}
$$

Let $a$ be any positive number. Apply Chebychev's Inequality to show that:

$$
\mu(\{x \in X: a \leq|\bar{F}(x)-m|\}) \leq \frac{s^{2}}{n a^{2}}
$$

Let $\ell$ be any positive integer and let $n=100 \ell^{2}$. Note that:

$$
\mu\left(\left\{x \in X: \frac{s}{\ell} \leq|\bar{F}(x)-m|\right\}\right) \leq \frac{1}{100}
$$

$03^{\circ}$ Let the random variables $F_{1}, F_{2}, \ldots$, and $F_{n}$ be independent, which is to say that, for any borel sets:

$$
E_{1}, E_{2}, \ldots, E_{n}
$$

of $\mathbf{R}$ :

$$
\begin{aligned}
\mu\left(F_{1}^{-1}\left(E_{1}\right) \cap F_{2}^{-1}\left(E_{2}\right) \cap\right. & \left.\cdots \cap F_{n}^{-1}\left(E_{n}\right)\right) \\
& =\mu\left(F _ { 1 } ^ { - 1 } ( E _ { 1 } ) \mu \left(F _ { 2 } ^ { - 1 } ( E _ { 2 } ) \cdots \mu \left(F_{n}^{-1}\left(E_{n}\right)\right.\right.\right.
\end{aligned}
$$

In the lectures, we will prove (prove again, actually) that, for any indices $j$ and $k(1 \leq j<k \leq n)$ :

$$
\int_{X} F_{j}(x) F_{k}(x) \mu(d x)=\int_{X} F_{j}(x) \mu(d x) \int_{X} F_{k}(x) \mu(d x)
$$

Using the foregoing relations, prove that the random variables $F_{1}, F_{2}, \ldots$, and $F_{n}$ are uncorrelated.

