MATHEMATICS 391

 ${\bf ASSIGNMENT}~4$

Due: September 30, 2015

 01^{\bullet} Let:

$$I = [0, 1]$$

be the unit interval in \mathbf{R} and let λ be lebesgue measure defined on the borel subsets of I. Of course, λ is a probability measure. Let F be the random variable defined on I with values in \mathbf{R} , as follows:

$$F(x) = cos(2\pi x)$$

where x is any number in I. Let μ be the probability measure on the borel subsets of \mathbf{R} , defined as follows:

$$\mu = F_*(\lambda)$$

That is, for each borel subset E of \mathbf{R} :

$$\mu(E) = \lambda(F^{-1}(E))$$

By definition, μ is the distribution of F. Note that:

$$\mu(\mathbf{R}\backslash J) = 0$$

where J is the interval J = [-1, 1] in \mathbf{R} . Why? Show that there is a borel function f defined on \mathbf{R} with values in \mathbf{R} , such that:

$$\mu(E) = \int_{E} f(x)\lambda(dx)$$

where E is any borel subset of **R**. Draw the graph of f. One refers to f as the density for μ .

 02^{\bullet} Let (X, \mathcal{B}, μ) be a probability space and let F be a real-valued random variable. Let $\nu = F_*(\mu)$ be the distribution of F. One defines the moment generating function ϕ for F as follows:

$$\phi(t) = \int_X exp(tF(x))\mu(dx)$$

where t is any real number. Verify that:

$$\phi(t) = \int_{\mathbf{R}} exp(ty)\nu(dy)$$

Note that $\phi(0) = 1$. Show that, for any positive integer k:

$$\phi^{(k)}(0) = m_k(F)$$

where, as usual, $m_k(F)$ is the k-th moment of F:

$$m_k(F) = \int_X F(x)^k \mu(dx) = \int_{\mathbf{R}} y^k \nu(dy)$$

Of course, we are making implicit assumptions that the foregoing integrals exist.

03° Let (X, \mathcal{B}, μ) be a probability space and let F be a real-valued random variable for which the range is included in the set \mathbf{Z}_0^+ composed of all nonengative integers. Let $\nu = F_*(\mu)$. Assume that there is a positive real number α such that:

$$\nu(\{n\}) = \frac{1}{n!}\alpha^n exp(-\alpha)$$

where n is any nonnegative integer. In this situation, one says that ν is a poisson distribution with parameter α . Let ϕ be the moment generating function for F. Show that:

$$\phi(t) = exp(\alpha(exp(t) - 1))$$

where t is any real number. Calculate the mean m(F) and the variance $s^2(F)$ of F:

$$m(F) = m_1(F), \quad s^2(F) = m_2(F) - (m_1(F))^2$$