## MATHEMATICS 331

ASSIGNMENT 9: Solution to Problem 04
Due: April 9, 2015
$01^{\circ}$ On $\mathbf{R}^{3}$, we have the conventional pdo geometry, defined by the following bilinear form:

$$
《 \mathbf{x}, \mathbf{y}\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

where $\mathbf{x}$ and $\mathbf{y}$ are any members of $\mathbf{R}^{3}$ :

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)
$$

Convert the basis:

$$
B_{1}=\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right), B_{2}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right), B_{3}=\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)
$$

for $\mathbf{R}^{3}$ to an orthonormal basis, causing minimal disturbance.
$02^{\circ}$ Let $\mathbf{V}$ be the linear space consisting of all polynomials $h$ with real coefficients, having degree no greater than 3 :

$$
h(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}
$$

Let $\mathbf{V}$ be supplied with a pdo geometry, as follows:

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

where $f$ and $g$ are any polynomials in $\mathbf{V}$. Introduce the following basis:

$$
\mathcal{B}: \quad b_{0}, b_{1}, b_{2}, b_{3}
$$

for $\mathbf{V}$, where:

$$
b_{j}(x)=x^{j} \quad(0 \leq j \leq 3, x \in \mathbf{R})
$$

Convert $\mathcal{B}$ to an orthonormal basis for $\mathbf{V}$, causing minimal disturbance. Now let $S$ be the linear mapping in $\mathbf{L}(\mathbf{V})$, defined by differentiation:

$$
S(h)=h^{\prime}
$$

where $h$ is any polynomial in $\mathbf{V}$. Describe the adjoint $T$ of $S$. Is $S$ self adjoint?
$03^{\circ}$ Let $\mathbf{V}^{\prime}$ and $\mathbf{V}^{\prime \prime}$ be pdo geometries. Let $S$ and $T$ be a linear mappings in $\mathbf{L}\left(\mathbf{V}^{\prime}, \mathbf{V}^{\prime \prime}\right)$ and $\mathbf{L}\left(\mathbf{V}^{\prime \prime}, \mathbf{V}^{\prime}\right)$, respectively. Show that if $S$ and $T$ are adjoints of one another then the compositions $T S$ and $S T$ in $\mathbf{L}\left(\mathbf{V}^{\prime}\right)$ and $\mathbf{L}\left(\mathbf{V}^{\prime \prime}\right)$, respectively, are self adjoint.
$04^{\circ}$ Let $\mathbf{V}$ be a pdo geometry. Let $P$ be a linear mapping in $\mathbf{L}(\mathbf{V})$ for which $P P=P$. Show that the conditions:
(1) $\mathbf{V}=\operatorname{ran}(P) \perp \operatorname{ker}(P)$
(2) $P$ is self adjoint
are equivalent. Under the condition $P P=P$, we say that $P$ is a projection. Sometimes, we say "orthogonal projection" rather than "self adjoint projection." Take special note of condition (1). It figures in both the Spectral Theorem and the Singular Value Decomposition. Verify that if $P$ is a self adjoint projection then $Q=I-P$ is also a self adjoint projection, while:

$$
\operatorname{ran}(Q)=\operatorname{ker}(P), \quad \operatorname{ker}(Q)=\operatorname{ran}(P)
$$

[Let us note first that, for any $Y$ in $\operatorname{ran}(P)$, there is some $X$ in $\mathbf{V}$ for which $Y=P(X)$, so that $P(Y)=P(P(X))=P(X)=Y$. Now let us prove that (2) implies (1). To that end, we define $Q=I-P$. Clearly, $Q$ is self adjoint, $P+Q=I, P Q=0=Q P$, and $Q Q=Q$. Hence, for any $X$ in $\mathbf{V}$, we find that $X=I(X)=P(X)+Q(X)$. Obviously, $P(X)$ lies in $\operatorname{ran}(P)$. Moreover, $Q(X)$ lies in $\operatorname{ker}(P)$, since $P Q=0$, and so, in turn, $《 P(X), Q(X)\rangle=\langle\langle X, P(Q(X))\rangle=0$. Finally, for any $Y$ in $\operatorname{ran}(P)$ and $Z$ in $\operatorname{ker}(P)$, if $Y+Z=0$ then $\langle Y, Z\rangle=\langle\langle P(Y), Z\rangle=\langle Y, P(Z)\rangle=0$. It follows that $0=\langle\langle Y, Y+Z\rangle=\langle\langle Y, Y\rangle$, so that $Y=0$, hence that $Z=0$. We infer that $\mathbf{V}=\operatorname{ran}(P) \perp \operatorname{ker}(P)$. In turn, let us prove that (1) implies (2). To that end, et $Y_{1}$ and $Y_{2}$ be any members of $\operatorname{ran}(P)$ and let $Z_{1}$ and $Z_{2}$ be any members of $\operatorname{ker}(P)$. We obtain:

$$
\left\langle P\left(Y_{1}+Z_{1}\right), Y_{2}+Z_{2}\right\rangle=\left\langle\left\langle Y_{1}, Y_{2}\right\rangle=\left\langle\left\langle Y_{1}+Z_{1}, P\left(Y_{2}+Z_{2}\right)\right\rangle\right.\right.
$$

We infer that $S$ is self adjoint. The proof is complete.]

