MATHEMATICS 331

ASSIGNMENT 9: Solution to Problem 04 Due: April 9, 2015

 $01^\circ~$ On ${\bf R}^3,$ we have the conventional pdo geometry, defined by the following bilinear form:

$$\langle\!\langle \mathbf{x}, \mathbf{y} \rangle\!\rangle = x_1 y_1 + x_2 y_2 + x_3 y_3$$

where \mathbf{x} and \mathbf{y} are any members of \mathbf{R}^3 :

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

Convert the basis:

$$B_1 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}, \ B_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ B_3 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$$

for \mathbf{R}^3 to an orthonormal basis, causing minimal disturbance.

 02° Let V be the linear space consisting of all polynomials h with real coefficients, having degree no greater than 3:

$$h(x) = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

Let \mathbf{V} be supplied with a pdo geometry, as follows:

$$\langle\!\!\langle f,g\,\rangle\!\!\rangle = \int_{-1}^1 f(x)g(x)dx$$

where f and g are any polynomials in **V**. Introduce the following basis:

$$\mathcal{B}: \quad b_0, b_1, b_2, b_3$$

for \mathbf{V} , where:

$$b_j(x) = x^j$$
 $(0 \le j \le 3, x \in \mathbf{R})$

Convert \mathcal{B} to an orthonormal basis for \mathbf{V} , causing minimal disturbance. Now let S be the linear mapping in $\mathbf{L}(\mathbf{V})$, defined by differentiation:

$$S(h) = h'$$

where h is any polynomial in **V**. Describe the adjoint T of S. Is S self adjoint?

03° Let \mathbf{V}' and \mathbf{V}'' be pdo geometries. Let S and T be a linear mappings in $\mathbf{L}(\mathbf{V}', \mathbf{V}'')$ and $\mathbf{L}(\mathbf{V}'', \mathbf{V}')$, respectively. Show that if S and T are adjoints of one another than the compositions TS and ST in $\mathbf{L}(\mathbf{V}')$ and $\mathbf{L}(\mathbf{V}'')$, respectively, are self adjoint.

 04° Let **V** be a pdo geometry. Let *P* be a linear mapping in **L**(**V**) for which PP = P. Show that the conditions:

- (1) $\mathbf{V} = ran(P) \perp ker(P)$
- (2) P is self adjoint

are equivalent. Under the condition PP = P, we say that P is a projection. Sometimes, we say "orthogonal projection" rather than "self adjoint projection." Take special note of condition (1). It figures in both the Spectral Theorem and the Singular Value Decomposition. Verify that if P is a self adjoint projection then Q = I - P is also a self adjoint projection, while:

$$ran(Q) = ker(P), \quad ker(Q) = ran(P)$$

[Let us note first that, for any Y in ran(P), there is some X in V for which Y = P(X), so that P(Y) = P(P(X)) = P(X) = Y. Now let us prove that (2) implies (1). To that end, we define Q = I - P. Clearly, Q is self adjoint, P + Q = I, PQ = 0 = QP, and QQ = Q. Hence, for any X in V, we find that X = I(X) = P(X) + Q(X). Obviously, P(X) lies in ran(P). Moreover, Q(X) lies in ker(P), since PQ = 0, and so, in turn, $\langle\!\langle P(X), Q(X) \rangle\!\rangle = \langle\!\langle X, P(Q(X)) \rangle\!\rangle = 0$. Finally, for any Y in ran(P) and Z in ker(P), if Y + Z = 0 then $\langle\!\langle Y, Z \rangle\!\rangle = \langle\!\langle P(Y), Z \rangle\!\rangle = \langle\!\langle Y, P(Z) \rangle\!\rangle = 0$. It follows that $0 = \langle\!\langle Y, Y + Z \rangle\!\rangle = \langle\!\langle Y, Y \rangle\!\rangle$, so that Y = 0, hence that Z = 0. We infer that $\mathbf{V} = ran(P) \perp ker(P)$. In turn, let us prove that (1) implies (2). To that end, et Y_1 and Y_2 be any members of ran(P) and let Z_1 and Z_2 be any members of ker(P). We obtain:

$$\langle\!\!\langle P(Y_1+Z_1), Y_2+Z_2 \rangle\!\!\rangle = \langle\!\!\langle Y_1, Y_2 \rangle\!\!\rangle = \langle\!\!\langle Y_1+Z_1, P(Y_2+Z_2) \rangle\!\!\rangle$$

We infer that S is self adjoint. The proof is complete.]