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01 Linear Spaces

01◦ Let F be a field. For our purposes, we take F to be the real number field
R or the complex number field C. Of course, we employ familiar notation:

a+ b, a · b = ab

where a and b are any elements of F.

02◦ By a linear space, we mean a set V supplied with operations of addition
and scalar multiplication:

X + Y, c.Z = cZ

where X , Y , and Z are any members of V and where c is any member of F.
The operation of addition must satisfy the familiar conditions:

X + Y = Y +X

X + (Y + Z) = (X + Y ) + Z

X + 0 = X

X + (−X) = 0

where X , Y , and Z are any members of V. By the third condition, we mean
to assert that there is particular member 0 of V, necessarily unique, which
serves as the neutral member for addition. By the fourth condition, we mean
to assert that, for each member X of V, there is a member Y of V, in relation
to X necessarily unique, which serves as the additive inverse of X . We denote
Y by −X .

03◦ Moreover, the operations of addition and scalar multiplication must to-
gether satisfy the following conditions:

a.(X + Y ) = a.X + a.Y

(a+ b).X = a.X + b.X

(a · b).X = a.(b.X)

1.X = X

where X and Y are any members of V and where a and b are any members
of F.
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04◦ By a linear subspace of the linear space V, we mean a nonempty subset
U of V which is invariant under the operations of addition and scalar multi-
plication on V. We mean to assert that, for any members X , Y , and Z of U
and for any member c of F:

X + Y ∈ U, c.Z ∈ U

Obviously, under the restrictions to U of the operations on V, U is itself a
linear space.

05◦ The set F3 provides a serviceable example of a linear space. The members
of F3 have the following form:

x =


 x1

x2

x3




The operations stand as follows:

x+ y =


 x1 + y1

x2 + y2
x3 + y3


 , c.z =


 c z1

c z2
c z3




while:

0 =


 0

0
0


 , −x =


−x1

−x2

−x3




06◦ Just as well, we may introduce the linear space Fn, where n is any
positive integer. We refer to Fn as a cartesian linear space.
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02 Linear Mappings

01◦ By a linear mapping, we mean a mapping L for which the domain V′

and the codomain V′′ are linear spaces:

L : V′ −→ V′′

and for which the following conditions hold:

L(X ′ + Y ′) = L(X ′) + L(Y ′)
L(c.Z ′) = c.L(Z ′)

where X ′, Y ′, and Z ′ are any members of V′ and where c is any member of
F.

02◦ For such a mapping L, we define the kernel and the range:

ker(L), ran(L)

as follows. First, ker(L) consists of all members X ′ of V′ such that:

L(X ′) = 0′′

Second, ran(L) consists of all members X ′′ of V′′ for which there exists at
least one member X ′ of V′ such that:

L(X ′) = X ′′

Clearly, ker(L) is a linear subspace of V′ and ran(L) is a linear subspace of
V′′.

03• Obviously, L is surjective iff ran(L) = V′′. Moreover, L is injective iff
ker(L) = {0′}, though this fact requires a little thought.

04◦ Finally, by definition, L is bijective iff it is both injective and surjective.
In such a case, we claim that L−1 is linear. Accordingly, we would refer to
L as a linear isomorphism. Let us prove the claim. Let X ′′, Y ′′, and Z ′′ be
any members of V′′ and let c be any member of F. Let X ′, Y ′, and Z ′ be the
(uniquely determined) members of V′ for which L(X ′) = X ′′, L(Y ′) = Y ′′,
and L(Z ′) = Z ′′. We find that:

L−1(X ′′ + Y ′′) = L−1(L(X ′) + L(Y ′))

= L−1(L(X ′ + Y ′))
= X ′ + Y ′

= L−1(X ′′) + L−1(Y ′′)
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and:
L−1(cZ ′′) = L−1(cL(Z ′))

= L−1(L(cZ ′))
= cZ ′

= cL−1(Z ′′)

The proof of the claim is complete.

05◦ Let L1 and L2 be mappings for which the codomain of L1 and the domain
of L2 coincide:

L1 : V′ −→ V′′, L2 : V
′′ −→ V′′′

Of course, we may form the composition L of L1 and L2:

L : V′ −→ V′′′

for which the domain is V′ and the codomain is V′′′. By definition:

L(X) = L2(L1(X))

where X is any member of V′. One can easily show that if L1 and L2 are
linear then L is also linear. The proof takes the following form:

L(X + Y ) = L2(L1(X + Y ))

= L2(L1(X) + L1(Y ))

= L2(L1(X)) + L2(L1(Y ))

= L(X) + L(Y )

and:
L(cZ) = L2(L1(cZ))

= L2(cL1(Z))

= cL2(L1(Z))

= cL(Z)

where X , Y , and Z are any members of V′ and where c is any member of F.
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03 Bases

01◦ Let V be a linear space and let n be a positive integer. Let B be a finite
list of (nonzero) members of V having length n:

B : B1, B2, . . . , Bn

Let K be the mapping carrying Fn to V, defined as follows:

K(x) =
n∑

j=1

xjBj

where:

x =




x1

x2
...
xn




is any member of Fn. Obviously, K is linear. We refer to the members of
ran(K) as combinations of B in V.

02◦ It may happen that K is surjective, which is to say that ran(K) = V.
In such a case, every member of V is a combination of B. We say that B
generates V. It may happen that K is injective, which is equivalent to the
condition that ker(K) = {0}. It is the same to say that, for each member x
of Fn:

n∑
j=1

xjBj = 0 ⇐⇒ x1 = 0 , x2 = 0, . . . , xn = 0

We say that B is independent .

03◦ It may happen that K is both injective and surjective, hence, bijective,
so that it is a linear isomorphism. Now, for each member Z of V, there is
precisely one member x of Fn such that:

Z =

n∑
j=1

xjBj

We refer to the numbers:
x1, x2, . . . , xn

as the coordinates of Z relative to B. We refer to B itself as a basis for V.

04◦ For the cartesian linear space F3, we introduce the list E in F3 having
length 3:

E : E1, E2, E3
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where:

E1 =


 1

0
0


 , E2 =


 0

0
1


 , E3 =


 0

0
1




Clearly, E is a basis for F3. It is the standard basis. In fact, for each member

z of F3 :

z =


 z1

z2
z3




we have:
z = z1E1 + z2E2 + z3E3

Consequently, the coordinates of z relative to E are the entries in z:

z1, z2, z3

05◦ The same design applies to the cartesian linear space Fn, where n is any
positive integer.

06◦ For efficient development of the concept of basis, we require three oper-
ations: Reduction, Expansion, and Exchange. Before describing them, how-
ever, let us describe a convenient maneuver: Renumbering. Let C be a finite
list of (nonzero) members of V having length r:

C : C1, C2, . . . , Cr

Very often, we find it convenient to permute the members of the foregoing
list, then to renumber them in natural order. For instance:

C1, C2, C3, C4, C5, C6

C4, C5, C1, C3, C6, C2

C′
1, C

′
2, C

′
3, C

′
4, C

′
5, C

′
6

where:
C′

1 = C4

C′
2 = C5

C′
3 = C1

C′
4 = C3

C′
5 = C6

C′
6 = C2

Then we drop the primes. We refer to this process as Renumbering.
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07◦ Now let us assume that C generates V. It may happen that there is a
member of C, let it be Cj , which is a combination of the other members of
C. By Renumbering, we may assume that Cj is in fact Cr. Excising Cr, we
obtain the abbreviated list:

C′ : C1, C2, . . . , Cr−1

By elementary argument, we find that C′ generates V. Again, it may happen
that there is a member of C′, let it be Ck, which is a combination of the other
members of C′. By Renumbering, we may assume that Ck is in fact Cr−1.
Excising Cr−1, we obtain the abbreviated list:

C′′ : C1, C2, . . . , Cr−2

Again, we find that C′′ generates V. Continuing in this way, we are led to a
“terminal” list:

C̄ : C1, C2, . . . , Cq

such that C̄ generates V but no member of C̄ is a combination of the other
members of C̄. At this point, the operation of Reduction stops. Now C̄
generates V and it is also independent. So C̄ is a basis for V.

08◦ Again let us assume that C generates V. Let p be a positive integer for
which 1 ≤ p ≤ r. It may happen that, among the r members of C, there are
p members which are independent. For instance, p might be 1, in which case
any member of C would serve our purpose. By Renumbering, we may assume
that these members lie at the beginning of C:

C : C◦, C•

where C◦ and C• are the lists:

C◦ : C1, C2, . . . , Cp; C• : Cp+1, . . . , Cr

It may happen that there is a member of C•, let it be Cj , which is not a
combination of C◦. By Renumbering, we may assume that Cj is in fact Cp+1.
Now we can reform the list C as follows:

C : C′◦, C′•

where C′◦ and C′• are the lists:

C′◦ : C1, C2, . . . , Cp, Cp+1; C′• : Cp+2, . . . , Cr
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By design, C′◦ is independent. Again, it may happen that there is a member of
C′•, let it be Ck, which is not a combination of C′◦. By Renumbering, we may
assume that Ck is in fact Cp+2. Again, we can reform the list C as follows:

C : C′′◦ , C′′•

where C′′◦ and C′′• are the lists:

C′′◦ : C1, C2, . . . , Cp, Cp+1, Cp+2; C′′• : Cp+3, . . . , Cr

Again, C′′◦ is independent. Continuing in this way, we are led to a “terminal”
reformation:

C : C̄◦, C̄•
where C̄◦ and C̄• are the lists:

C̄◦ : C1, C2, . . . , Cp, . . . , Cq; C̄• : Cq+1, . . . , Cr

where C̄◦ is independent, and where every member of C̄• is a combination of
C̄◦. At this point, the operation of Expansion stops. Now C̄◦ is independent
and it generates V. So C̄◦ is a basis for V.

09◦ Now let us introduce a pair of lists of (nonzero) members of V having
lengths p and r, respectively:

B : B1, B2, . . . , Bp

C : C1, C2, . . . . . . , Cr

Let us assume that B is independent and that C generates V. Very soon, we
will find that p ≤ r, which justifies the seemingly biased display of B and C.
Of course, B1 must be a combination of C:

B1 = x1C1 + x2C2 + x3C3 + · · · + xrCr

Moreover, B1 �= 0, so that at least one of the displayed coefficients:

x1, x2, x3, . . . , xr

must be nonzero. By Renumbering, we may assume that x1 �= 0, so that:

(1) x1C1 = B1 − x2C2 − x3C3 − · · · − xrCr

Now we exchange B1 and C1 to form the list:

C′ : B1, C2, C3 . . . , Cr
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The displayed relation (1) shows that C′ generates V. In turn, B2 must be a
combination of C′:

B2 = y1B1 + y2C2 + y3C3 + · · · + yrCr

Moreover, B is independent, so that at least one of the displayed coefficients:

y2, y3, . . . , yr

must be nonzero. By Renumbering, we may assume that y2 �= 0, so that:

(2) y2C2 = −y1B1 +B2 − y3C3 − · · · − yrCr

Now we exchange B2 and C2 to form the list:

C′′ : B1, B2, C3, . . . , Cr

The displayed relation (2) shows that C′′ generates V.

10◦ Continuing the foregoing Exchanges, we must eventually exhaust the list
B, to obtain the “terminal” list:

C̄ : B1, B2, . . . , Bp, Cp+1, . . . , Cr

By design, C̄ generates V. It follows that p ≤ r.

11◦ Obviously, the contrary case, in which r < p, cannot occur.

12◦ The operations of Reduction and Expansion both yield bases for V. In
the first case, one can see that the list C plays a criticsl role. In the second
case, however, one might be led to think that the list C is irrelevant. One
might presume to start with a nonzero member B1 of V, then produce an
ever longer list B◦ by expansion:

B◦ : B1, B2, . . . , Bj , . . .

at each step adding a member Bj of V which is not a combination of the
predecessors, until no such member exists. At the point of termination:

B : B1, B2, . . . , Bp

the list B would be a basis for V. However, absent the context set by the list
C, one cannot be certain that the growing list B◦ will terminate. By contrast,
the lists produced by the operation of Expansion, as described in article 08◦,
at each step generate V. Obviously, p cannot exceed r. Hence, the list B◦
must terminate.

10



13◦ The following example illustrates the foregoing reservations. Let P be
the linear space composed of the polynomial functions:

P (x) =
n∑

j=0

cjx
j

where n is any nonnegative integer, where:

c0, c1, c2, . . . , cn

are any numbers in F, and where x is a real variable. The operations of
addition and scaler multiplication are defined as usual. Now one can easily
see that the polynomials:

P0(x) = 1

P1(x) = x

P2(x) = x2

P3(x) = x3

...

form an ever expanding chain of independent lists. Obviously, the naive pro-
cess of expansion, just described, would fail to terminate.

14◦ Now let us apply the operation of Exchange to prove, in a few swift
steps, several fundamental properties of bases. Let V be a linear space. Let
us assume that there is a basis B for V:

B : B1, B2, . . . , Bn

as described in article 03◦. In such a case, we say that V is finite dimensional .
In turn, let B′ and B′′ be bases for V having p members and q members,
respectively: By the operation of Exchange, applied to B′ and B′′ and to B′′

and B′, respectively, we find that p ≤ q and q ≤ p. Consequently, p = q. We
conclude that, for a finite dimensional linear space, any two bases have the
same number of members, let it be n. We refer to n as the dimension of V:

dim(V) = n

15◦ Now let V be a linear space and let U be a linear subspace of V. We
claim that if V is finite dimensional then U is finite dimensional and:

m = dim(U) ≤ dim(V) = n

Moreover, m = n iff U = V. To prove the claim, we introduce a basis C for
V, having n members, and we consider independent lists B in U. From the
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operation of Exchange, we infer that the lengths of such lists in U cannot
exceed n. Consequently, there must be independent lists B in U of maximum
length, let it be m. Obviously, such a list would be a basis for U. We declare
the proof to be complete.

16◦ Finally, let us present the first of our fundamental theorems. Let V′ and
V′′ be finite dimensional linear spaces and let L be a linear mapping with
domain V′ and codomain V′′:

L : V′ −→ V′′

We contend that:

(RT) dim(U) + dim(W) = dim(V′)

where U = ker(L) and W = ran(L). One refers to this relation as:

THE RANK THEOREM

17◦ To prove the contention, we introduce a basis B for U and a basis C for
V′:

B : B1, B2, . . . , Bp

C : C1, C2, . . . , Cr

By articles 09◦ and 10◦, p ≤ r. By the operation of Exchange, we may reform
C as follows:

C̄ : B1, B2, . . . , Bp, Cp+1, Cp+2, . . . , Cr

We claim that the list:

D : L(Cp+1), L(Cp+2), . . . , L(Cr)

of members of V′′ is a basis for W. Having proved the claim, we will have
proved the contention. Let Z ′′ be a member of W. Let Z ′ be a member of
V′ such that L(Z ′) = Z ′′. Of course, there must be numbers:

x1, x2, . . . , xp, yp+1, yp+2, . . . , yr

in F such that:

Z ′ = x1B1 + x2B2 + . . . + xpBp + yp+1Cp+1 + yp+2Cp+2 + . . . + yrCr

Hence:
Z ′′ = L(Z ′)

= yp+1L(Cp+1) + yp+2L(Cp+2) + . . . + yrL(Cr)
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Consequently, D generates W. In turn, let:

yp+1, yp+2, . . . , yr

be numbers in F such that:

yp+1L(Cp+1) + yp+2L(Cp+2) + . . . + yrL(Cr) = 0

Hence:
yp+1Cp+1 + yp+2Cp+2 + . . . + yrCr ∈ U

Since C̄ is independent:

yp+1 = 0, yp+2 = 0, . . . , yr = 0

Consequently, D is independent. It follows that D is a basis for W. The proof
is complete.
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04 Matrices

01◦ By a matrix , we mean a linear mapping M for which the domain and
the codomain are cartesian spaces:

M : Fp −→ Fq

One may set the positive integers p and q at will. Let us show that M
determines a rectangular array M̄ having q rows and p columns, the entries
for which are numbers in F.

02◦ For precise expression, let us take p to be 3 and q to be 5. Let E ′ and E ′′
be the standard bases for F3 and F5, respectively:

E ′ : E′
1 =


 1

0
0


 , E′

2 =


 0

1
0


 , E′

3 =


 0

0
1




E ′ : E′′
1 =




1
0
0
0
0


 , E′′

2 =




0
1
0
0
0


 , E′′

3 =




0
0
1
0
0


 , E′′

4 =




0
0
0
1
0


 , E′′

5 =




0
0
0
0
1




Now we introduce the array M̄ as follows:

M̄ =




m11 m12 m13

m21 m22 m23

m31 m32 m33

m41 m42 m43

m51 m52 m53




where:

M(E′
1) = m11E

′′
1 +m21E

′′
2 +m31E

′′
3 +m41E

′′
4 +m51E

′′
5 =




m11

m21

m31

m41

m51




M(E′
2) = m12E

′′
1 +m22E

′′
2 +m32E

′′
3 +m42E

′′
4 +m52E

′′
5 =




m12

m22

m32

m42

m52




M(E′
3) = m13E

′′
1 +m23E

′′
2 +m33E

′′
3 +m43E

′′
4 +m53E

′′
5 =




m13

m23

m33

m43

m53
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In this way, M determines M̄ . Just as well, M̄ determines M . In fact, for
any x in F3 and for any y in F5:

x =


x1

x2

x3


 , y =




y1
y2
y3
y4
y5




we find that:

M(x) = M(x1E
′
1 + x2E

′
2 + x3E

′
3)

= x1M(E′
1) + x2M(E′

2) + x3M(E′
3)

so that:

y = M(x) ⇐⇒




y1
y2
y3
y4
y5


 = x1




m11

m21

m31

m41

m51


+ x2




m12

m22

m32

m42

m52


+ x3




m13

m23

m33

m43

m53




Clearly, the correspondence between linear mappings M carrying F3 to F5

and rectangular arrays M̄ having 5 rows and 3 columns is bijective.

03◦ Of course, one may replace the positive integers 3 and 5 by any positive
integers p and q.

04◦ Now let us lift the foregoing discussion to its proper level of generality.
Let V′ and V′′ be finite dimensional linear spaces. Let L be a linear mapping
carryingV′ toV′′. Let B′ and B′′ be bases forV′ andV′′, respectively. In this
context, we will describe a matrix M for L. The corresponding rectangular
array M̄ of numbers in F will serve to define the coordinates of L relative to
the bases B′ and B′′.

05◦ We draw this connection between linear mappings in general and matri-
ces in particular because, as a rule, theoretical developments proceed most
smoothly in the general context while computational developments proceed
most smoothly in the particular.

06◦ For explicit expression, let us set the dimensions of V′ and V′′ to be 3
and 5, respectively. We display the bases B′ and B′′ as follows:

B′ : B′
1, B

′
2, B

′
3; B′′ : B′′

1 , B
′′
2 , B

′′
3 , B

′′
4 , B

′′
5
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In turn, let us display the standard bases for F3 and F5:

E ′ : E′
1, E

′
2, E

′
3; E ′′ : E′′

1 , E
′′
2 , E

′′
3 , E

′′
4 , E

′′
5

Of course, we obtain linear isomorphisms K ′ carrying Fp to V′ and K ′′ car-
rying Fq to V′′, determined as follows:

K ′(E′
1) = B′

1

K ′(E′
2) = B′

2

K ′(E′
3) = B′

3

K ′′(E′′
1 ) = B′′

1

K ′′(E′′
2 ) = B′′

2

K ′′(E′′
3 ) = B′′

3

K ′′(E′′
4 ) = B′′

4

K ′′(E′′
5 ) = B′′

5

Now we declare that M shall be the linear mapping:

M = K ′′−1 · L ·K ′

carrying F3 to F5. It is the matrix for L relative to the bases B′ and B′′. By
a straightforward tour of the definitions, we find that:

L(B′
1) = m11B

′′
1 +m21B

′′
2 +m31B

′′
3 +m41B

′′
4 +m51B

′′
5

L(B′
2) = m12B

′′
1 +m22B

′′
2 +m32B

′′
3 +m42B

′′
4 +m52B

′′
5

L(B′
3) = m13B

′′
1 +m23B

′′
2 +m33B

′′
3 +m43B

′′
4 +m53B

′′
5

07◦ Obviously, L determines M̄ while M̄ determines L. The entries in M̄
serve as coordinates for L relative to B′ and B′′.

08◦ Now let V′, V′′, and V′′′ be finite dimensional linear spaces. Let L◦ and
L• be linear mappings carrying V′ to V′′ and V′′ to V′′′, respectively. Let
B′, B′′, and B′′′ be bases for V′, V′′, and V′′′, respectively, and let K ′, K ′′,
and K ′′′ be the linear isomorphisms which they define. Let M◦ and M• be
the corresponding matrices:

M◦ = K ′′−1 · L◦ ·K ′, M• = K ′′′−1 · L• ·K ′′

In turn, let L be the linear mapping carrying V′ to V′′′, defined by composi-
tion of L◦ and L•:

L = L• · L◦

Let M be the corresponding matrix:

M = K ′′′−1 · L ·K ′
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09◦ We can calculate M very easily:

M = K ′′′−1 · L ·K ′−1

= K ′′′−1 · L• · L◦ ·K ′−1

= K ′′′−1 · L• ·K ′′ ·K ′′−1 · L◦ ·K ′−1

= M• ·M◦

but we must work harder to calculate the rectangular array M̄ , corresponding
to L, from the rectangular arrays M̄◦ and M̄•, corresponding to L◦ and L•,
respectively.

10◦ Let us do so. Once again, for precise expression, we set the dimensions
for V′, V′′, and V′′′ at particular values, let them be 3, 4, and 2, respectively.
We must find the means to calculate M̄ from M̄• and M̄◦:

(
m•

11 m•
12 m•

13 m•
14

m•
21 m•

22 m•
23 m•

24

)
,




m◦
11 m◦

12 m◦
13

m◦
21 m◦

22 m◦
23

m◦
31 m◦

32 m◦
33

m◦
41 m◦

42 m◦
43


 =⇒

(
m11 m12 m13

m21 m22 m23

)

Of course, we require the standard bases E ′, E ′′, and E ′′′ for F3, F4, and F2,
respectively. For any index � (1 ≤ � ≤ 3), we may adapt the computation in
article 2◦ to show that:(

m1�

m2�

)
= M(E′

�)

= (M• ·M◦)(E′
�)

= M•(




m◦
1�

m◦
2�

m◦
3�

m◦
4�


)

= m◦
1�

(
m•

11

m•
21

)
+m◦

2�

(
m•

12

m•
22

)
+m◦

3�

(
m•

13

m•
23

)
+m◦

4�

(
m•

14

m•
24

)

Hence:
m1� = m•

11m
◦
1� +m•

12m
◦
2� +m•

13m
◦
3� +m•

14m
◦
4�

m2� = m•
21m

◦
1� +m•

22m
◦
2� +m•

23m
◦
3� +m•

24m
◦
4�

In the following more efficient notation:

mj� =

4∑
k=1

m•
jkm

◦
k� (1 ≤ j ≤ 2, 1 ≤ � ≤ 3)

we see how the computations would take form in general.
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11◦ We summarize the foregoing computations by writing, very simply:

M̄ = M̄•M̄◦

In this way, we multiply rectangular arrays. Of course, we must insist that
the number of columns of M̄• equals the number of rows of M̄◦. From the
properties of (linear) mappings, we infer that this operation is associative,
though not in general commutative.

12◦ To be thorough, let us point to the operations of addition and scalar
multiplication for rectangular arrays:

cM̄, M̄◦ + M̄•

They would reflect the operations of addition and scalar multiplication for
linear mappings:

cL, L◦ + L•

Of course, the domains and codomains for L◦ and L• must coincide, while the
numbers of rows for M̄◦ and M̄• must be equal and the numbers of columns
for M̄◦ and M̄• must be equal as well.

13◦ Now we are led, one might say compelled, to introduce the linear spaces:

L(V′,V′′), M(q, p)

where V′ and V′′ are finite dimensional linear spaces and where p and q are
positive integers. They are composed, in the first case, of all linear mappings
L carrying V′ to V′′, and, in the second case, of all rectangular arrays M
having q rows and p columns.

14◦ By the foregoing discussion, it is plain that these new linear spaces are
linearly isomorphic. In fact, the appropriate linear isomorphism L would be
that which carries each member L of L(V′,V′′) to the corresponding rectan-
gular array M̄ , as described in article 2◦:

L(L) = M̄

Obviously:
dim(L(V′,V′′)) = dim(M(q, p)) = pq

15◦ It may happen that there is a finite dimensional linear space V such
that V′ = V = V′′. In such a case, we would write not L(V′,V′′) but L(V).
Similarly, it may happen that there is a positive integer r such that p = r = q.
We would write not M(q, p) but M(r). Now L(V) acquires the operation of
composition andM(r) acquires the operation of multiplication. They are fully
developed algebras .
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05 Linear Functionals

01◦ Let V be a finite dimensional linear space. By the dual space for V, we
mean the linear space:

L(V,F)

consisting of all linear mappings for which the domain is V and the codomain
is F = F1. One refers to such mappings as linear functionals . Of course, the
operations of addition and scalar multiple stand as follows:

(L′ + L′)(X) = L′(X) + L′′(X)

(c.L)(X) = c.L(X)

where L′, L, and L′′ are any members of L(V,F), where c is any number in
F, and where X is any member of V. In practice, we denote the dual space
by the simpler symbol:

V∗

02◦ Let us introduce a basis for V:

B : B1, B2, . . . , Bn

Obviously, we intend that dim(V) = n. In turn, let us design a basis for V∗.
For each index j (1 ≤ j ≤ n), let Λj be the mapping carrying V to F, defined
as follows:

Λj(X) = xj

where X is any member of V:

X = x1B1 + x2B2 · · · + xnBn

Clearly, Λj is a linear functional. We contend that:

L : Λ1,Λ2, . . . ,Λn

is a basis for V∗.

03◦ To prove the contention, we first display the following obvious but fun-
damental relations between B and L:

Λj(Bk) =

{
0 if j �= k
1 if j = k

where 1 ≤ j ≤ n and 1 ≤ k ≤ n.
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04◦ Let us consider an arbitrary combination L̄ of L:

L̄ = c1Λ1 + c2Λ2 + · · · + cnΛn

where c1, c2, . . ., and cn are any numbers in F. If L̄ = 0 then:

0 = L̄(Bj) = cj

where j is any index (1 ≤ j ≤ n). It follows that L is independent.

05◦ In turn, let L be any member of V∗. Let us consider the combination L̄
of L:

L̄ = c1Λ1 + c2Λ2 + · · · + cnΛn

where c1, c2, . . ., and cn are the numbers in F defined as follows:

cj = L(Bj)

Obviously:
L̄(Bj) = cj = L(Bj)

where j is any index (1 ≤ j ≤ n). Hence, L = L̄. It follows that L generates
V∗.

06◦ To be explicit, let us note that B and L have the same number of mem-
bers, so that:

dim(V∗) = dim(V)

07◦ Now let us describe a grand generalization of the design of V∗, yielding
a legion of new linear spaces:

Lk(V)

where k is any positive integer. At this point, we do no more than define the
spaces. In the following section, we will develop the means for analyzing their
properties. We will focus attention upon certain linear subspaces:

Σk(V), Λk(V)

of Lk(V). They will play basic roles in our subsequent studies of determinants
and of orthogonal and symplectic geometry.
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08◦ We begin by introducing the product:

Vk = V ×V × · · · ×V

consisting of all ordered k-tuples:

(X1, X2, . . . , Xk)

of members of V. By a k-linear functional , we mean a mapping H for which
the domain is Vk, for which the codomain is F:

H : Vk −→ F

and for which the following conditions hold:

H(X1, X2, . . . , X
′
j +X ′′

j , . . . , Xk)

= H(X1, X2, . . . , X
′
j , . . . , Xk) +H(X1, X2, . . . , X

′′
j , . . . , Xk)

H(X1, X2, . . . , cXj , . . . , Xk)

= cH(X1, X2, . . . , Xj , . . . , Xk)

where X1, X2, . . . , X
′
j , Xj, X

′′
j , . . . , and Xk are any members of V and

where c is any number in F. Let:

Lk(V)

stand for the set of all such functionals. Under the now familiar operations of
addition and scalar multiplication, the set just described is a linear space.

09◦ Let us pause to describe a commonplace example of a k-linear functional.
Let V be the linear space F4. Let:

E : E1 =




1
0
0
0


 , E2 =




1
0
0
0


 , E3 =




1
0
0
0


 , E4 =




1
0
0
0




be the standard basis for F4 and let:

F :

F1 = ( 1 0 0 0 )

F2 = ( 0 1 0 0 )

F3 = ( 0 0 1 0 )

F4 = ( 0 0 0 1 )
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be the corresponding basis for (F4)∗. Of course, the members of (F4)∗ are
matrices. We have represented the members of the basis F in terms of their
corresponding rectangular arrays. Now, for illustration, we introduce the
simple but useful 4-linear functional H in L4(F4), as follows:

H(X1, X2, X3,X4)

= F1(X1)F2(X2)F3(X3)F4(X4)

where X1, X2, X3, and X4 are any member of F4.
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06 Determinants

01◦ Let k be a positive integer and let K be the set consisting of the first k
positive integers:

K = {1, 2, 3, . . . , k}

Let Sk be the set of all bijections carrying the set K to itself. We refer to the
members of Sk as permutations . For any members σ and τ , the composition:

τ · σ

is itself a bijection carrying K to itself. Under this operation of composition,
Sk is a group. The identity mapping ε carrying K to itself is the identity
element for Sk:

ε · σ = σ = σ · ε

Of course, the operation is associative:

υ · (τ · σ) = (υ · τ) · σ

It is not commutative. Moreover, for every member σ of Sk, there is a member
τ of Sk such that:

σ · τ = ε = τ · σ

Of course, τ is the mapping inverse to σ: τ = σ−1. Now let p and q be
(positive) integers in K for which p < q. Let π be the permutation in Sk

defined as follows:

π(r) =

{
r if r �= p and r �= q
q if r = p
p if r = q

We refer to π as a transposition and we denote it by (pq). By a simple induc-
tion argument, one may prove that, for any σ in Sn, there exist transpositions
π1, π2, . . . , and πr such that:

σ = π1 · π2 · · · · · πr

We claim that, for any two such presentations of σ:

σ = π′
1 · π′

2 · · · · · π′
r′ , σ = π′′

1 · π′′
2 · · · · · π′′

r′′

the numbers r′ and r′′ must have the same parity, which is to say that both
r′ and r′′ are even or both r′ and r′′ are odd. The proof of this claim lies just
ahead.
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02◦ In any case, we are justified, now, in referring to a permutation σ as
even or odd , in accord with its presentation as a product of an even or an odd
number of transpositions. Let us distinguish these cases by writing:

|σ| = −1 (odd), |σ| = +1 (even)

03◦ Let k be any positive integer. Let Φ be any mapping carrying Vk to F:

Φ : Vk −→ F

Let σ be a permutation in Sk. We define the action of σ on Φ as follows:

(σ · Φ)(X1, X2, . . . , Xk) = Φ(Xσ(1), Xσ(2), . . . , Xσ(k))

where X1, X2, . . . , and Xk are any members of V.

04◦ Of course, σ · Φ is a (new) mapping carrying Vk to F.

05◦ Now let σ and τ be any permutations in Sk. We contend that:

(τ · σ) · Φ = τ · (σ · Φ)

To prove the contention, we set k to be 6 and we interpret the foregoing
definition in terms of the following notation:

Xσ(1) = σ−1(X1)

Xσ(2) = σ−1(X2)

Xσ(3) = σ−1(X3)

Xσ(4) = σ−1(X4)

Xσ(5) = σ−1(X5)

Xσ(6) = σ−1(X6)

We note that σ does not change the given members of V. It simply permutes
them. In effect, the action of σ on K = {1, 2, 3, 4, 5, 6} has migrated to a
corresponding action of σ−1 on the given members of V. It is the same for τ
and τ · σ. With this understanding, the proof of the contention is simple.

06◦ Now we consider the particular mapping Φ, defined as follows:

Φ(X1, X2, . . . , Xk) =
∏

1≤p<q≤n

(Xq −Xp)

where X1, X2, . . . , and Xk are any members of V. We contend that, for any
transposition π in Sk:

π · Φ = −Φ (π = (rs))
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Obviously, the relation just stated serves to prove the claim about parity at
the end of article 01◦. To prove the contention, we simply note that the
transposition π = (rs) will change the sign of Φ precisely 2b+ 1 times, where
b is the number of integers between r and s. Of course, b might be 0. In any
case, 2b+ 1 is odd.

07◦ Let us consider the interplay between Lk(V) and Sk. The action of
the group Sk on the linear space Lk(V) provides an elegant language with
which to express the properties of symmetry and antisymmetry for k-linear
functionals, yielding the basic linear subspaces:

Σk(V), Λk(V)

of Lk(V).

08◦ Let H be any member of Lk(V). We say that H is symmetric iff, for
each σ in Sk:

σ ·H = H

In turn, we say that H is antisymmetric iff, for each σ in Sk:

σ ·H = |σ|H

These properties define the linear subspaces:

Σk(V), Λk(V)

of Lk(V).

09◦ For a first impression of these matters, we set k equal to 2. We introduce
the linear mappings S and A carrying L2(V) to itself, as follows:

S(L)(X1, X2) =
1

2
(L(X1, X2) + L(X2, X1))

A(L)(X1, X2) =
1

2
(L(X1, X2)− L(X2, X1))

where H is any member of L2(V) and where X1 and X2 are any members of
V. Obviously, S(H) is symmetric and A(H) is antisymmetric. Moreover, if
H is symmetric then S(H) = H while if H is antisymmetric then A(H) = H .
Finally,

H = S(H) +A(H)

10◦ The linear mappings S and A admit the following crisp expression:

S(H) =
1

2

∑
σ

σ ·H, A(H) =
1

2

∑
σ

|σ|σ ·H
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where H is any member of L2(V). In fact:

S =
1

2

∑
σ

σ, A =
1

2

∑
σ

|σ|σ

For the summations, we intend that σ run through the group S2. In this case,
there are just two terms in each summation.

11◦ In due course, we will find that the symmetric and the antisymmetric
2-linear functionals are basic concepts underlying orthogonal and symplectic
geometry.

12◦ Let us develop these matters in general. Let k be any positive integer.
We introduce the linear mappings S and A carrying Lk(V) to itself:

S =
1

k!

∑
σ

σ, A =
1

k!

∑
σ

|σ|σ

For the summations, we intend that σ run through the group Sk. In this
general setting, there are k! terms in the two summations.

13◦ We contend that, for each H in Lk(V), S(H) is symmetric and A(H)
is antisymmetric. Moreover, if H is symmetric then S(H) = H while if H is
antisymmetric then A(H) = H . Let us prove these contentions.

14◦ Let H be any member of Lk(V) and let H̄ = S(H). By definition:

H̄ =
1

k!

∑
σ

σ ·H

Let τ be any permutation in Sk. We find that:

τ · H̄ =
1

k!

∑
σ

(τ · σ) ·H =
1

k!

∑
τ ·σ

(τ · σ) ·H = H̄

In the foregoing summations, τ · σ runs through Sk as σ runs through Sk.
Hence, H̄ is symmetric.

15◦ If at the outset H is symmetric then H̄ = H .

16◦ Again, let H be any member of Lk(V) but let H̄ = A(H). By definition:

H̄ =
1

k!

∑
σ

|σ|σ ·H
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Let τ be any permutation in Sk. We find that:

τ · H̄ =
1

k!

∑
σ

|σ| (τ · σ) ·H = |τ | 1
k!

∑
τ ·σ
|τ · σ| (τ · σ) ·H = |τ | H̄

In the foregoing summations, τ · σ runs through Sk as σ runs through Sk.
Moreover:

|τ · σ| = |τ ||σ|

Hence, H̄ is antisymmetric.

17◦ If at the outset H is antisymmetric then H̄ = H .

18◦ Now let n be any positive integer and let V be a linear space for which
the dimension is n. Let us concentrate upon the linear space:

Λn(V)

This space sets the context from which the theory of determinants springs.
We contend that the dimension of Λn(V) is one:

dim(Λn(V)) = 1

Let us prove this striking fact. We must produce a nonzero member ∆ of
Λn(V) and we must show that every member D of Λn(V) is a scalar multiple
of ∆.

19◦ To that end, let us introduce bases:

B : = B1, B2, . . . , Bn

L : = Λ1,Λ2, . . . ,Λn

for V and V∗ related in the following familiar manner:

Λj(Bk) =

{
0 if j �= k
1 if j = k

Let H be the member of Ln(V) defined as follows:

H(X1, X2, . . . , Xn) = n!Λ1(X1)Λ2(X2) · · · Λn(Xn)
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where X1, X2, . . . , and Xn are any members of V. Obviously, for any per-
mutation σ in Sn:

(σ ·H)(B1, B2, . . . , Bn) =
{
0 if σ �= ε
n! if σ = ε

where ε is the identity permutation in Sn. In turn, let ∆ be the member of
Λn(V) defined from H by anti-symmetrization:

∆ = A(H) =
1

n!

∑
σ

|σ|σ ·H

Obviously:
∆(B1, B2, . . . , Bn) = 1

Hence, ∆ �= 0.

20◦ Now let D be any member of Λn(V). We must show that D is a scalar
multiple of ∆. Of course, if it were so:

D = d∆

then the number d would be, necessarily:

d = D(B1, B2, . . . , Bn)

We are led to introduce the member E of Λn(V), as follows:

E = D − d∆

Obviously:
E(B1, B2, . . . , Bn) = 0

On that ground alone, we claim that E = 0. Having proved the claim, we
may declare the argument to be complete. The linear space Λn(V) is one
dimensional and, in fact, the single member ∆ is a basis for it.

21◦ Let us set aside the hubbub. Let us simply concentrate upon a member
E of Λn(V) for which:

E(B1, B2, . . . , Bn) = 0

We claim that E = 0. We will argue by induction. For the case in which
n = 1, the claim holds true. Let m be any positive integer and let us assume
that, for the case in which n = m, the claim holds true. We must show that
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the claim holds true for the case in which n = m+ 1. Let Y be any member
of V:

Y = X + yBm+1, X =

m∑
j=1

xjBj

We find that:

E(B1, B2, . . . , Bm, Y )

= E(B1, B2, . . . , Bm, X) + yE(B1, B2, . . . , Bm, Bm+1)

= 0

By the induction hypothesis, the claim holds true for the case in question.

22◦ Now we stand at the end of the road. Let L be any linear mapping
carrying V to itself. We contend that there is a precisely one number λ in F
such that:

(◦) D(L(X1), L(X2), . . . , L(Xn)) = λD(X1, X2, . . . , Xn)

where D is any member of Λn(V) and where X1, X2, . . . , and Xn are any
members of V. We refer to λ as the determinant of L:

(�) λ = det(L)

23◦ Granted our elaborate preparation, the proof of our contention, funda-
mental and formidable, is very easy. For smooth expression, we represent the
left hand side of relation (◦) in terms of the operation of pullback :

L∗(D)(X1, X2, . . . , Xn) = D(L(X1), L(X2), . . . , L(Xn))

In turn, we recover the basic member ∆ for Λn(V), described in article 19◦.
Now we may introduce numbers d and λ in F such that:

D = d∆, L∗(∆) = λ∆

We find that:

L∗(D) = L∗(d∆) = dL∗(∆) = dλ∆ = λD

The proof of our contention is complete.

24◦ Now let L1 and L2 be any linear mappings carrying V to itself. We
claim that the following relation, fundamental and formidable, holds among
the determinants of L1, L2, and L2 · L1:

det(L2 · L1) = det(L2)det(L1)
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Again, the proof is simple. We recover the basic member ∆ of Λn(V), we
verify that:

(L2 · L1)
∗(∆) = L∗

1(L
∗
2(∆))

and we compute:

det(L2 · L1)∆ = (L2 · L1)
∗(∆)

= L∗
1(L

∗
2(∆))

= L∗
1(det(L2)∆)

= det(L2)L
∗
1(∆)

= det(L2)det(L1)∆

The proof of the claim is complete.

25◦ Let us call attention to a fundamental relation between linear mappings
and determinants. We claim that L is invertible iff det(L) �= 0. In fact, if L
is invertible then:

1 = det(I) = det(L · L−1) = det(L)det(L−1)

It follows that det(L) �= 0. Moreover, det(L) and det(L−1) are reciprocals of
one another. Conversely, if L is not invertible then there must be a nonzero
member B of V such that L(B) = 0. If it were not so then, by the Rank
Theorem, we would find that:

dim(ker(L)) = 0 and dim(ran(L)) = n

so that L would be both injective and surjective, hence invertible. Of course,
we may take B to be the first member of a basis B for V:

B : B = B1, B2, . . . , Bn

Borrowing the now familiar basic member ∆ of Λn(V), we find that:

0 = ∆(0, L(B2), . . . , L(Bn))

= L∗(∆)(B1, B2, . . . , Bn)

= det(L)∆(B1, B2, . . . , Bn)

= det(L)

26◦ Finally, let us engage in the computation of determinants. Of course, L
is a linear mapping carrying V to itself. Let us compute det(L). For now, let
us assume that n = 4, so that dim(V) = 4. Let us introduce a basis for V:

B : B1, B2, B3, B4
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As usual:
L(B1) = m11B1 +m21B2 +m31B3 +m41B4

L(B2) = m12B1 +m22B2 +m32B3 +m42B4

L(B3) = m13B1 +m23B2 +m33B3 +m43B4

L(B4) = m14B1 +m24B2 +m34B3 +m44B4

and:

M̄ =




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44




is the rectangular (indeed, square) array defined by L relative to the bases B
and B for V and V. We contend that we can compute det(L) directly from
M̄ :

(λ) det(L) =
∑
σ

|σ|m1σ(1)m2σ(2)m3σ(3) =
∑
τ

|τ |mτ(1)1mτ(2)2mτ(3)3

Both of the foregoing summations yield the sum of the following list of 24
numbers:

|σ|m1σ(1)m2σ(2)m3σ(3)m4σ(4) = |τ |mτ(1)1mτ(2)2mτ(3)3mτ(4)4

where σ and τ run through S4, while σ = τ−1.

27◦ One may view the products in the foregoing list, in terms of the ”neutral
positions” of four rooks on a four by four chess board. In such a position,
no one rook can attack any of the others. Consequently, no two of the rooks
can occupy the same row or the same column. Let us label the rooks by
the positive integers 1, 2, 3, and 4. Now every neutral position defines a
permutation in S4, in two different ways, as follows:

σ(j) = k

iff the rook named j occupies the k-th column of the chess board. Just as
well:

τ(j) = k

iff the rook named j occupies the k-th row of the chess board. Obviously,
σ and τ are inverse to one another. These permutations correspond to the
following products in the foregoing list:

σ −→ m1σ(1)m2σ(2)m3σ(3)m4σ(4)

τ −→ mτ(1)1mτ(2)2mτ(3)3mτ(4)4
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Of course, the plus and minus signs attached to the products reflect the signs
of the corresponding permutations. One should note that σ and τ have the
same sign, that is, both are even or both are odd.

28◦ Let us prove the relation (λ). We have:

det(L) = det(L)∆(B1, B2, B3, B4)

= L∗(∆)(B1, B2, B3, B4)

= ∆(L(B1), L(B2), L(B3), L(B4))

Since ∆ is 4-linear, we find that det(L) is the sum of the following 44 = 256
products:

ma1mb2mc3md4∆(Ba, Bb, Bc, Bd)

(1 ≤ a ≤ 4, 1 ≤ b ≤ 4, 1 ≤ c ≤ 4, 1 ≤ d ≤ 4)

However, if any two among a, b, c, and d are equal then the corresponding
value of ∆ is 0. Consequently, just 24 of the products survive:

mτ(1)1mτ(2)2mτ(3)3τ4τ(4)∆(Bτ(1), Bτ(2), Bτ(3), Bτ(4)

where τ runs through S4. Of course:

∆(Bτ(1), Bτ(2), Bτ(3), Bτ(4)) = |τ |

The proof of relation (λ) is complete.

29◦ The same pattern of argument will prove relation (λ) for the general case
in which dim(V) = n.

30◦ Let us show that the Determinant Mapping:

det : L(V) −→ F

can be identified, through a choice of basis for V, with a member δ of Λn(Fn).

31◦ To be explicit, let us set n = 4. Let V be a linear space for which
dim(V) = 4. Let B be a basis for V:

B : B1, B2, B3, B4

Let K be the linear isomorphism carrying F4 to V, determined by B:

K(E1) = B1, K(E2) = B2, K(E3) = B3, K(E4) = B4
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Now let L be any linear mapping carrying V to V:

L : V −→ V

let M be the matrix for L relative to the bases B and B for V and V:

M = K−1 · L ·K

and let M̄ be the corresponding square array, having 4 rows and 4 columns,
of numbers in F4:

M̄ =




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44




In review:

L(Bk) =

4∑
j=1

mjkBj

where k is any relevant index (1 ≤ k ≤ 4).

32◦ Finally, let X1, X2, X3, and X4 be the columns of M̄ :

X1 =




m11

m21

m31

m41


 , X2 =




m12

m22

m32

m42


 , X3 =




m13

m23

m33

m43


 , X4 =




m14

m24

m34

m44




In this way, we identify:

L(V) and F4 × F4 × F4 × F4

33◦ Now we introduce the member δ of Λ4(F4), as follows::

δ(X1, X2, X3, X4) =




∑
σ |σ|m1σ(1)m2σ(2)m3σ(3)m4σ(4)

or∑
τ |τ |mτ(1)1mτ(2)2mτ(3)3mτ(4)4

Through the foregoing torrent of notation, we see that:

det(L) = δ(X1, X2, X3, X4)

34◦ At this point, one might imagine a practical computational route to the
definition of determinants. One may run the procedure from L through B to
M and M̄ in reverse. The foregoing relation shows the first step. However,
proofs of the uniqueness of the determinant of L and of the basic relations
involving products and inverses would be complicated.
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07 Characteristic Values

01◦ Let V be a finite dimensional linear space and let L be a linear mapping
carrying V to itself:

L : V −→ V

Let a be a number in F. It may happen that there is a nonzero member X of
V such that:

(c) L(X) = aX

In such a case, we refer to a as a characteristic value for L. In turn, the
members Y of V for which L(Y ) = aY form a linear subspace U of V. We
refer to U as the characteristic subspace for L and to the members of U as
characteristic members for L, relative to a.

02◦ Obviously, a is a characteristic value for L iff aI − L is not invertible,
which is to say that:

det(aI − L) = 0

03◦ Now we are led to introduce the characteristic function for L:

p(ζ) = det(ζI − L)

where ζ is any number in F. We contend that p is a polynomial.

04◦ To prove the contention, we reprise our conventional notation: L, B, ∆.
For simplicity, we set n = 4. We find that:

det(ζI − L) = det(ζI − L)∆(B1, B2, B3, B4)

= ((ζI − L)∗(∆))(B1, B2, B3, B4)

= ∆(ζB1 − L(B1), ζB2 − L(B2), ζB3 − L(B3), ζB4 − L(B4))

= ζ4 + c3ζ
3 + c2ζ

2 + c1ζ + c0

where c3, c2, c1, and c0 are the sums of terms, as follows:

c3 =

−∆(B1, B2, B3, L(B4))

−∆(B1, B2, L(B3), B4)

−∆(B1, L(B2), B3, B4)

−∆(L(B1), B2, B3, B4)
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c2 =

+∆(B1, B2, L(B3), L(B4))

+ ∆(B1, L(B2), B3, L(B4))

+ ∆(L(B1), B2, B3, L(B4))

+ ∆(B1, L(B2), L(B3), B4)

+ ∆(L(B1), B2, L(B3), B4)

+ ∆(L(B1), L(B2), B3, B4)

c1 =

−∆(B1, L(B2), L(B3), L(B4))

−∆(L(B1), B2, L(B3), L(B4))

−∆(L(B1), L(B2), B3, L(B4))

−∆(L(B1), L(B2), L(B3), B4)

and:
c0 = +∆(L(B1), L(B2), L(B3), L(B4))

The degree of p is the dimension of V and the leading coefficient of p is 1. By
design, the characteristic values of L are the roots of p.

05◦ Just as well, we may pass to the square array M̄ for L relative to B. We
find that:

det(ζI − L) = det (




ζ −m11 m12 m13 m14

m21 ζ −m22 m23 m24

m31 m32 ζ −m33 m34

m41 m42 m43 ζ −m44


)

The former computation requires the assembly of 24−1 = 15 terms, while the
latter requires 4!− 1 = 23. In general, the former requires 2n − 1, the latter
n!− 1.

06◦ For the case in which F = R, the characteristic polynomial p may have
no roots, so that L admits no characteristic values. However, for the case in
which F = C, we may apply the Fundamental Theorem of Algebra to obtain
a completely satisfactory conclusion. In fact, the characteristic polynomial
would stand as follows:

p(ζ) = (ζ − a1)
n1(ζ − a2)

n2 · · · (ζ − ar)
nr

where a1, a2, . . . , and ar are the distinct roots of p. The exponents count the
multiplicities of the roots.
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08 The Theorem of Jordan

01◦ Now let us develop one of the central theorems of our subject:

THE THEOREM OF JORDAN

We will assume that F = C.

02◦ For the statement of the theorem, we require certain terminology and
certain basic types of linear mapping. Let V be a finite dimensional linear
space, having dimension n, and let L be any linear mapping in L(V). We say
that L is diagonalizable iff there exists a basis:

B : B1, B2, . . . , Bn

for V and there exists a corresponding array:

T : t1, t2, . . . , tn

of numbers in C such that, for each index j (1 ≤ j ≤ n):

L(Bj) = tjBj

Obviously, the displayed numbers are the characteristic values of L. They are
not necessarily distinct.

03◦ In turn, we say that L is nilpotent iff there is a positive integer k such
that:

Lk = 0

One refers to the smallest such positive integer, let it be ν, as the nilpotent
degree for L.

04◦ We also require the algebra P of polynomials, with coefficients in C. The
members of P have the following familiar form:

f(ζ) =

d∑
j=0

cjζ
j

where ζ represents an arbitrary complex number. Presuming that cd �= 0, we
declare that the degree of f is d. The operations of addition, scalar multipli-
cation, and multiplication stand as follows:

(f + g)(ζ) = f(ζ) + g(ζ)

(ch)(ζ) = ch(ζ)

(fg)(ζ) = f(ζ)g(ζ)
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Under these operations, P is a commutative algebra.

05◦ Let us note that L(V) is also an algebra, but it fails to be commutative.
By article 14◦ in Section 04, we know that dim(V) = n2, where n is the
dimension of V.

06◦ Now let f be any polynomial in P and let L be any linear mapping in
L(V). Granted the foregoing form for f , we may apply f to L, obtaining a
linear mapping f(L) in L(V) as follows:

f(L) =

d∑
j=0

cjL
j

We refer to it as a polynomial in L.

07◦ By patient computation, we find that:

(f + g)(L) = f(L) + g(L)

(ch)(L) = ch(L)

(fg)(L) = f(L)g(L)

08◦ Now let V be a finite dimensional linear space, having dimension n. The
Theorem of Jordan asserts that, for any linear mapping L in L(V), there
exist a diagonalizable linear mapping L◦ and a nilpotent linear mapping L•

in L(V) such that:

(JT) L = L◦ + L•

Both L◦ and L• are polynomials in L. Moreover, under the stated conditions,
L◦ and L• are unique.

09◦ For the proof of the theorem, we require three elements:

(•) the Theorem of Cayley and Hamilton

(•) the concept of Direct Sum Decomposition

(•) the Zero Places Theorem of Hilbert

The sense of the first element is simple:

(CH) p(L) = 0

where p is the characteristic polynomial for L:

p(ζ) = det(ζ − L)
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This remarkable, though elementary result is critical to the argument which
follows. To prove it, we return to article 33◦ in Section 06 and to article 05◦

in the preceding section. (For those articles, we had set n = 4.)

10◦ ......
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11◦ Now let consider the second element. We mean the concept of Direct
Sum Decomposition of V. It is in fact a natural generalization of the concept
of basis for V. Let U be a list of linear subspaces of V.

U : U1,U2, . . . ,Ur

We say that U generates V iff, for each member X of V, there are members:

X1, X2, . . . , Xr

of V such that, for each index j (1 ≤ j ≤ r), Xj ∈ Uj and such that:

(∗) X = X1 +X2 + · · · +Xr

We say that U is independent iff, for any members:

X1, X2, . . . , X44

of V, if, for each index j (1 ≤ j ≤ r), Xj ∈ Uj and if:

X1 +X2 + · · · +Xr = 0

then, for each index j (1 ≤ j ≤ r), Xj = 0.

12◦ Obviously, if U is independent and if U generates V then every member
of V can be presented, uniquely, in the form displayed in relation (∗). In
this context, we say that U defines a Direct Sum Decomposition of V. We
summarize this complex of relations as follows:

V = U1 ⊕U2 ⊕ · · · ⊕Ur
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13◦ Finally, let us turn to the third element, a Theorem of Hilbert, often
called “der NullStellenSatz.” Let H be a finite list of polynomials in P:

H : h1, h2, . . . , hr

Let us assume that, for each number ζ in C, at least one of the numbers:

h1(ζ), h2(ζ), . . . , hr(ζ)

is nonzero. We claim that there exists a corresponding list F of polynomials
in P:

F : f1, f2, . . . , fr

such that:

(HN) f1h1 + f2h2 + · · · + frhr = 1

We will sketch a proof of the claim at the end of this section.

14◦ Let us return to our original objective: to prove the Theorem of Jordan.
Let V be a finite dimensional linear space, having dimension n, and let L
be any linear mapping in L(V). We must show that there exist polynomials
L◦ = f◦(L) and L• = f•(L) in L, the first diagonalizable and the second
nilpotent, such that:

L = L◦ + L•

and we must show that, subject to the stated conditions, L◦ and L• are
unique.

15◦ Let us prove existence. To that end, we introduce the polynomials:

p1(ζ) = (ζ − a1)
n1 ,

p2(ζ) = (ζ − a2)
n2 ,

...

pr(ζ) = (ζ − ar)
nr ,

p̂1(ζ)

p̂2(ζ)

...

p̂r(ζ)

related as follows:

p1(ζ)p̂1(ζ) = p(ζ)

p2(ζ)p̂2(ζ) = p(ζ)

...

pr(ζ)p̂r(ζ) = p(ζ)
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For the case in which r = 4, we would have:

p̂1(ζ) = p2(ζ)p3(ζ)p4(ζ)

p̂2(ζ) = p1(ζ)p3(ζ)p4(ζ)

p̂3(ζ) = p1(ζ)p2(ζ)p4(ζ)

p̂4(ζ) = p1(ζ)p2(ζ)p3(ζ)

16◦ Obviously, the polynomials in the list:

P̂ : p̂1, p̂2, . . . , p̂r

have no zeros in common. By the Theorem of Hilbert, we may introduce a
list:

F : f1, f2, . . . , fr

of polynomials such that:

f1p̂1 + f2p̂2 + · · · + frp̂r = 1

Finally, we introduce the following linear mappings in L(V):

P1 = a1I,

P2 = a2I,

...

Pr = asI,

Q1 = L− a1I,

Q2 = L− a2I,

...

Qr = L− asI,

Π1 = f1(L)p̂1(L)

Π2 = f2(L)p̂2(L)

...

Πs = fs(L)p̂r(L)

These mappings will provide a clear proof of the Theorem of Jordan.

17◦ In fact, we contend that the linear mappings:

(�)
L◦ = P1Π1 + P2Π2 + · · · + PrΠr

L• = Q1Π1 +Q2Π2 + · · · +QrΠr

serve the purposes of the theorem.

18◦ Let us emphasize that all the linear mappings now under consideration
are polynomials in L. As a result, any two of them commute:

L′L′′ = L′′L′
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19◦ By elementary observations, we find that:

Π1 +Π2 + · · · +Πr = I

Moreover, for any indices j and k (1 ≤ j ≤ r, 1 ≤ k ≤ r), if j �= k then p
divides p̂j p̂k. By the Theorem of Cayley and Hamilton, we have p(L) = 0.
Hence:

ΠjΠk = 0

It follows that, for any index � (1 ≤ � ≤ s):

Π2
� = Π�Π� = Π�

Consequently, the list P consisting of the ranges of Π1, Π2, . . . , and Πr defines
a direct sum decomposition of V:

V = ran(Π1)⊕ ran(Π2)⊕ · · · ⊕ ran(Πr)

For each X in V, we find that:

X = X1 +X2 + · · · +Xr

where, for each index j (1 ≤ j ≤ r):

Xj = Πj(X)

The linear mapping Πj serves as a projection, which assigns to each member
X of V its (unique) “representative” in ran(Πj).

20◦ For each index � (1 ≤ � ≤ r):

(Q�Π�)
n� = Qn�

� Π� = p�(L)f�(L)p̂�(L) = f�(L)p(L) = 0

Hence, Q�Π� is nilpotent. It follows that L• is nilpotent.

21◦ In turn, it is obvious that L◦ is diagonalizable. Moreover, the character-
istic values of L◦ are the roots of p.

22◦ Let us prove uniqueness. ............
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23◦ Let us sketch, very quickly, a proof of the Theorem of Hilbert. Let P
be the algebra of polynomials with coefficients in C. Let H be a finite list of
(nonzero) polynomials in P:

H : h1, h2, . . . , hr

and let J be the subset of P consisting of all polynomials of the form:

f1h1 + f2h2 · · · + frhr

where F is any (finite) list of polynomials in P:

F : f1, f2, . . . , fr

Obviously, for any polynomial f in P and for any polynomials g, g1, and g2
in J, fg and g1 + g2 are in J. Now let q be a polynomial in J\{0} for which
the degree, let it be ν, is the smallest among the degrees of all polynomials
in J\{0}. In turn, let g be any polynomial in J. By division in P, we may
introduce polynomials δ and ρ in P such that:

g = δq + ρ

where the degree of ρ is less than ν. Clearly, g − δq must be in J. Hence, ρ
must be 0. We infer that J consists of all and only multiples of q::

J = Pq

Now it is plain that, if the polynomials in the list H have no common zeros
in C, then q is constant. In such a case, there would be a list F for which:

f1h1 + f2h2 · · · + fshs = 1

This result figured in our proof of the Theorem of Jordan.
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09 Positive Definite Orthogonal Geometries

01◦ We plan to study the relation between Linear Algebra and Geometry.
With reference to article 09◦ in Section 06, we distinguish, by symmetry
and by antisymmetry, two basic cases:

ORTHOGONAL GEOMETRY and SYMPLECTIC GEOMETRY

Mindful of scope and of practical applications, we will concentrate upon the
special case of Positive Definite Orthogonal Geometry.

02◦ Hereafter, we will assume that F = R. Let V be a linear space, having
finite dimension n, and let Γ be a 2-linear functional in Λ2(V). We will refer
to Γ as a bilinear form. For the various members X and Y in V, we prefer
to write:

not Γ(X,Y ) but 〈〈 X,Y 〉〉

At the outset, we require that Γ be nondegenerate. We mean to say that:

for each X in V,
if X �= 0 then there exists Y in V such that 〈〈 X,Y 〉〉 �= 0

for each Y in V,
if Y �= 0 then there exists X in V such that 〈〈 X,Y 〉〉 �= 0

Subject to the requirement just stated, we refer to the ordered pair (V,Γ) as
a geometry.

03◦ For the case in which Γ is symmetric, we refer to the geometry (V,Γ) as
an orthogonal geometry. For the case in which Γ is antisymmetric, we refer
to the geometry (V,Γ) as a symplectic geometry.

04◦ For a given orthogonal geometry (V,Γ), it may happen that, for each X
in V, if X �= 0 then:

(∗) 0 < 〈〈 X,X 〉〉

In such a case, we refer to the geometry (V,Γ) as a positive definite orthogonal
geometry. Hereafter, we focus our attention exclusively upon such geometries.
We will refer to them simply by mentioning the underlying linear space V,
taking for granted that V has been supplied, in some manner, with a positive
definite symmetric bilinear form and, in turn, presenting the values of the
form as follows:

〈〈 X,Y 〉〉
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05◦ For a simple example, we need only cite the familiar case of R3, supplied
with the standard inner product :

〈〈 x,y 〉〉 = x1y1 + x2y2 + x3y3

where:

x =


x1

x2

x3


 , y =


 y1

y2
y3




06◦ Let V be a positive definite orthogonal (pdo) geometry. Let n be the
dimension of V. For each Z in V, we introduce, as usual, the norm of Z:

‖Z‖ =
√
〈〈 Z,Z 〉〉

and the normalization of Z:

Ẑ =
1

‖Z‖Z (‖Ẑ‖ = 1)

Of course, for the latter, we require that Z �= 0.

07◦ By simple (very familiar) arguments, we find that, for any X and Y in
V:

|〈〈 X,Y 〉〉| ≤ ‖X‖‖Y ‖ and ‖X + Y ‖ ≤ ‖X‖+ ‖Y ‖

08◦ For our first step forward, we concentrate upon the special character of
certain bases for V, which figure in the fundamental theorems to follow. Let
C be a basis for V:

C : C1, C2, . . . , Cn

We say that C is an orthonormal basis iff:

〈〈 Cj , Ck 〉〉 =
{
0 if j �= k
1 if j = k

09◦ Relative to such a basis, we can calculate coordinates very easily. For
each X in V:

X = x1C1 + x2C2 + · · · + xnCn

we find that, for each index j (1 ≤ j ≤ n):

xj = 〈〈 X,Cj 〉〉
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10◦ Orthonormal bases are in one sense very special, in another sense rather
common. In any case, we contend that, for any basis B for V:

B : B1, B2, . . . , Bn

we may “convert” B to an orthonormal basis C for V while causing “minimal
disturbance”. The latter (vaguely phrased) condition means that, for any
index k (1 ≤ k ≤ n):

Bk depends on C1, C2, . . . , Ck

and:
Ck depends on B1, B2, . . . , Bk

Just as well, the condition means that, for any index k (1 ≤ k ≤ n), the linear
subspaces of V generated by:

B1, B2, . . . , Bk and C1, C2, . . . , Ck

respectively, are the same.

11◦ Let us prove the contention. In fact, let us describe an algorithm for
converting an arbitrary basis B to an orthonormal basis C. We set n = 4.
The pattern of computation runs as follows:

C1 = B1

C2 = B2 − 〈〈 B2, Ĉ1 〉〉 Ĉ1

C3 = B3 − 〈〈 B3, Ĉ2 〉〉 Ĉ2 − 〈〈 B3, Ĉ1 〉〉 Ĉ1

C4 = B4 − 〈〈 B4, Ĉ3 〉〉 Ĉ3 − 〈〈 B4, Ĉ2 〉〉 Ĉ2 − 〈〈 B4, Ĉ1 〉〉 Ĉ1

By this pattern of computation, we obtain the orthonormal basis:

C : Ĉ1, Ĉ2, Ĉ3, Ĉ4

Obviously, the condition of “minimum disturbance” is satisfied.
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10 The Spectral Theorem

01◦ Let V′ and V′′ be pdo geometries. Let L′ and L′′ be linear mappings,
the first carrying V′ to V′′ and the second carrying V′′ to V′:

L′ ∈ L(V′,V′′), L′′ ∈ L(V′′,V′)

We say that L′ and L′′ are compatible iff, for any members X of V′ and Y of
V′′:

〈〈 L′(X), Y 〉〉 = 〈〈 X,L′′(Y ) 〉〉

To express this relation, we will write:

L′ ≈ L′′

02◦ We contend that, for each L′, there is precisely one L′′ such that L′ ≈ L′′.
Of course, it would follow that, for each L′′, there is precisely one L′ such that
L′ ≈ L′′.

03◦ The argument for uniqueness is simple. We imagine linear mappings L′,
L′′
1 , and L′′

2 such that L′ ≈ L′′
1 and L′ ≈ L′′

2 . Clearly, for any X in V′ and Y
in V′′:

〈〈 X,L′′
1(Y )− L′′

2(Y ) 〉〉 = 〈〈 L′(X), Y 〉〉 − 〈〈 L′(X), Y 〉〉 = 0

Since the bilinear form on V′ is nondegenerate, we infer that L′′
1(Y ) = L′′

2(Y ).
Hence, L′′

1 = L′′
2 .

04◦ The argument for existence requires further developments. We define
linear mappings Ω′ carryingV′ to V′∗ and Ω′′ carrying V′′ to V′′∗, as follows:

Ω′(X ′′)(X ′) = 〈〈 X ′, X ′′ 〉〉, Ω′′(Y ′′)(Y ′) = 〈〈 Y ′, Y ′′ 〉〉

where X ′′ and X ′ are any members of V′ and Y ′′ and Y ′ are any members of
V′′. Since the bilinear forms on V′ and V′′ are nondegenerate, we find that
Ω′ and Ω′′ are injective. Since the dimensions of V′ and V′∗ are the same and
the dimensions of V′′ and V′′∗ are the same, we infer that Ω′ and Ω′′ are in
fact bijective.

05◦ In practical terms, we infer that, for each Λ′ in V′∗, there is precisely one
X ′′ in V′ such that Ω′(X ′′) = Λ′, while for each Λ′′ in V′′∗, there is precisely
one Y ′′ in V′′ such that Ω′′(Y ′′) = Λ′′. These assertions mean that, for each
X ′ in V′ and for each Y ′ in V′′:

(∗) Λ′(X ′) = 〈〈 X ′, X ′′ 〉〉 and Λ′′(Y ′) = 〈〈 Y ′, Y ′′ 〉〉
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06◦ Now let L′ be any linear mapping in L(V′,V′′). For any Y ′′ in V′′, we
find that Ω′′(Y ′′) lies in V′′∗ and Ω′′(Y ′′) · L′ lies in V′∗. Hence, there is
precisely one X ′′ in V′ such that:

Ω′(X ′′) = Ω′′(Y ′′) · L′

Denoting X ′′ by L′′(Y ′′) and unwinding the notation, we infer that, for any
Y ′′ in V′′ and any X ′ in V′:

〈〈 X ′, L′′(Y ′′) 〉〉 = 〈〈 L′(X ′), Y ′′ 〉〉

In this way we have succeeded in defining a linear mapping L′′ in L(V′′,V′)
for which L′ ≈ L′′. The argument is complete.

07◦ Let us introduce the conventional notation and terminology:

L′ ≈ L′′ ←→ L′′ = L′∗ and L′ = L′′∗

We say that L′ and L′′ are adjoints of one another.

08◦ To understand the relation:

L′ ≈ L′′

let us consider corresponding matrices for L′ and L′′. Let the dimensions of
V′ and V′′ be n′ and n′′, respectively. Let:

C′ : C′
1, C

′
2, . . . , C

′
n′ ; C′′ : C′′

1 , C
′′
2 , . . . , C

′′
n′′

be orthonormal bases for V′ and V′′, respectively. Clearly, the entries in the
corresponding rectangular arrays stand as follows:

m′
kj = 〈〈 L′(C′

j), C
′′
k 〉〉, m′′

jk = 〈〈 L′′(C′′
k ), C

′
j 〉〉

where j and k are any indices for which 1 ≤ j ≤ n′ and 1 ≤ k ≤ n′′. Now the
relation L′ ≈ L′′ means that:

m′
kj = m′′

jk

09◦ Now let us assume that V′ and V′′ are the same. Accordingly, we may
introduce a pdo geometry V such that V′ = V = V′′. Let S and T be linear
mappings in L(V) for which S ≈ T . So S and T are adjoints of one another.
We say that S is self adjoint iff S = T , that is:

S = S∗
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The condition means that, for any X and Y in V:

〈〈 S(X), Y 〉〉 = 〈〈 X,S(Y ) 〉〉

It is the same to say that T = T ∗. Now the condition on the corresponding
quadratic array takes the following form:

skj = sjk

10◦ Let us turn to describe another of the central theorems of our subject:

THE SPECTRAL THEOREM

It states that, in effect, every self adjoint linear mapping is diagonalizable.
But we can describe the matter much more clearly.

11◦ For precision of expression, we present a refinement of the concept of
direct sum decomposition. Let V be a pdo geometry. Let U be a list:

U : U1,U2, . . . ,Ur

of linear subspaces of V which defines a direct sum decomposition of V,
but which, in addition, meets the condition that, for any indices j and k
(1 ≤ j ≤ s, 1 ≤ k ≤ s), if j �= k then Uj and Uk are orthogonal to one
another:

Uj ⊥ Uk

We mean to say that, for any X in Uj and Y in Uk, 〈〈 X,Y 〉〉 = 0. For such a
case, we declare that U defines an Orthogonal Direct Sum Decomposition of
V. We summarize this complex of relations as follows:

V = U1 ⊥ U2 ⊥ · · · ⊥ Ur

12◦ Here is a simple example of such a decomposition. Let U be a linear
subspace of V. Let the dimensions of U and V be d and n, respectively. Let
U⊥ be the linear subspace of V composed of all Y in V such that, for all X
in U, 〈〈 X,Y 〉〉 = 0. We refer to U⊥ as the orthogonal complement of U in V.
We claim that:

V = U ⊥ U⊥

To prove the claim, we introduce a basis B′ for U, extend B′ to a basis B for
V:

B : B′
1, B

′
2, . . . , B

′
d ; B′′

1 , B
′′
2 , . . . , B

′′
n−d
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then convert B to an orthonormal basis C for V:

C : C′
1, C

′
2, . . . , C

′
d ; C′′

1 , C
′′
2 , . . . , C

′′
n−d

while meeting the condition of minimum disturbance. Obviously:

C′ : C′
1, C

′
2, . . . , C

′
d and C′′ : C′′

1 , C
′′
2 , . . . , C

′′
n−d

are orthonormal bases for U and U⊥, respectively. Now one may complete
the proof by simple observations.

13◦ Let V be a pdo geometry, having dimension n. Let S be a self adjoint
linear mapping in L(V). In precise terms, the Spectral Theorem states that
there exist an orthonormal basis C for V:

C : C1, C2, . . . , Cn

and a list T of real numbers:

T : t1, t2, . . . , tn

such that, for each index k (1 ≤ k ≤ n):

(ST) S(Ck) = tjCk

14◦ Obviously, the numbers in the list T are characteristic values for S.
However, as displayed, they may not be distinct. In any case, we claim that
there are no others. To prove the claim, we imagine a real number a and a
nonzero member X of V such that S(X) = aX . Of course, there must be an
index j (1 ≤ k ≤ n) such that 〈〈 X,Ck 〉〉 �= 0. It would follow that:

a 〈〈 X,Ck 〉〉 = 〈〈 S(X), Ck 〉〉 = 〈〈 X,S(Ck) 〉〉 = tk 〈〈 X,Ck 〉〉

Consequently, a = tk.

15◦ Let us compress the list T , so that the entries are mutually distinct:

T : τ1, τ2, . . . , τr

For each index j (1 ≤ j ≤ r), let Uj be the characteristic subspace of V
corresponding to τj . By definition, Uj consists of all members X of V for
which S(X) = τjX . Obviously, for any indices j and k (1 ≤ j ≤ r, 1 ≤ k ≤ r),
if j �= k then:

Uj ⊥ Uk

because, for any X in Uj and Y in Uk:

τj〈〈 X,Y 〉〉 = 〈〈 S(X), Y 〉〉 = 〈〈 X,S(Y ) 〉〉 = τk〈〈 X,Y 〉〉
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16◦ The foregoing developments show that the list:

U : U1,U2, . . . ,Ur

of subspaces of V defines an orthogonal direct sum decomposition of V:

V = U1 ⊥ U2 ⊥ · · · ⊥ Ur

Reflecting upon the presentation of the Theorem of Jordan in Section 07,
we introduce the following linear mappings in L(V):

P1 = τ1I,

P2 = τ2I,

...

Pr = τrI,

Π1

Π2

...

Πr

The various linear mappings Πj (1 ≤ j ≤ r) are defined, by projection, as
follows:

X = Π1(X) + Π2(X) + · · · +Πr(X)

where X is any member of V. We mean that, for each index j (1 ≤ j ≤ r),
Πj(X) is the representative of X in Uj . Obviously:

Π + Π+ · · · Πs = I

One can easily verify that:

ΠkΠk = Πk, Π∗
k = Πk, ran(Πk) = Uk, ker(Πk) = U⊥

k

We say that the list P of self adjoint projections:

P : Π1,Π2, . . . ,Πs

forms a resolution of the identity in V. We obtain the following elegant
presentation of S:

S = P1Π1 + P2Π2 + · · · + PsΠs

17◦ Let us prove the Spectral Theorem. To that end, we will state a basic
fact, then proceed to prove the theorem by induction. In the last section,
Section 12, we will prove that basic fact, by borrowing a well known theorem
from Multivariable Calculus.
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18◦ Let V be a pdo geometry, having dimension n. Let S be a self adjoint
linear mapping in L(V). We must design an orthonormal basis C for V:

C : C1, C2, . . . , Cn

and a list T of real numbers:

T : t1, t2, . . . , tn

such that, for each index k (1 ≤ k ≤ n):

S(Ck) = tjCk

We will argue by induction. However, in process, we will assume a basic
fact: that S admits at least one characteristic value. We will prove that fact,
independently, in the last section. For the case in which n = 1, we declare the
theorem to be obvious. Let m be any positive integer. Let us assume that the
theorem holds true for the case in which n = m. Let us prove that it holds
true for the case in which n = m+ 1. To begin, we apply the foregoing basic
fact. We introduce a real number t and a member C of V such that:

S(C) = tC, 〈〈 C,C 〉〉 = 1

In turn, we introduce the linear subspacesU = RC andU⊥ ofV. The former
consists of all scalar multiples of C while the latter consists of all members
Y in V for which 〈〈 C, Y 〉〉 = 0. Of course, the dimension of U⊥ is m. The
corresponding list defines an orthogonal direct sum decomposition of V:

V = RC ⊥ U⊥

We find that, for each Y in V, if Y is in U⊥ then S(Y ) is in U⊥ as well,
because:

〈〈 C, S(Y ) 〉〉 = 〈〈 S(C), Y 〉〉 = a〈〈 C, Y 〉〉 = 0

Now we may apply the induction hypothesis, to introduce an orthonormal
basis C⊥ for U⊥:

C⊥ : C2, C3, . . . , Cn

and a list T of real numbers:

T : t2, t3, . . . , tn

such that, for each index k (2 ≤ k ≤ n):

S(Ck) = tkCk

The proof is complete.
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11 The Singular Value Decomposition

01◦ Let V′ and V′′ be pdo geometries. Let p and q be the dimensions of V′

and V′′, respectively. Let L be any linear mapping in L(V′,V′′). Let r be
the dimension of the range of L. Obviously, r ≤ min{p, q}. We contend that
there exist orthonormal bases:

C′ : C′
1, C

′
2, . . . , C

′
p ; C′′ : C′′

1 , C
′′
2 , . . . , C

′′
q

for V′ and V′′, respectively, and a list:

Σ : σ1, σ2, . . . , σr

of positive real numbers such that:

(SV)

L(C′
1) = σ1C

′′
1

L(C′
2) = σ2C

′′
2

...

L(C′
r) = σrC

′′
r

L(C′
s) = 0

...

L(C′
p) = 0

L∗(C′′
1 ) = σ1C

′
1

L∗(C′′
2 ) = σ2C

′
2

...

L∗(C′′
r ) = σrC

′
r

L∗(C′′
s ) = 0

...

L∗(C′′
q ) = 0

where s = r + 1. This foregoing contention presents:

THE SINGULAR VALUE DECOMPOSITION

The entries in the list Σ are the singular values for L.

02◦ In the last section, we will describe and apply the Singular Value De-
composition in terms of matrices.

03◦ As a preamble to the proof, we observe a very neat relation between
ker(L) and ran(L∗). For each X in V′:

X ∈ ker(L)⇐⇒ L(X) = 0

⇐⇒ (∀Y ∈ V′′) 〈〈 L(X), Y 〉〉 = 0

⇐⇒ (∀Y ∈ V′) 〈〈 X,L∗(Y ) 〉〉 = 0

⇐⇒ X ∈ ran(L∗)⊥
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Hence:
ker(L) = ran(L∗)⊥

Similarly:
ker(L∗) = ran(L)⊥

Consequently, we obtain the following orthogonal direct sum decompositions
of V′ and V′′:

V′ = ker(L) ⊥ ran(L∗), V′′ = ker(L∗) ⊥ ran(L)

We infer that L carries ran(L∗) bijectively to ran(L) and L∗ carries ran(L)
bijectively to ran(L∗). Hence, the dimensions of ran(L) and ran(L∗) are the
same, namely, r.

ran(L∗) ran(L)

L∗

L

ker(L) ker(L∗)

V′ V′′

SVD Format

04◦ Now we introduce the linear mapping S in L(V′), as follows:

S = L∗ L,

Obviously, S carries ran(L∗) bijectively to itself, while S carries ker(L) to
{0}. We find that, for any X and Y in V′:

〈〈 S(X), Y 〉〉 = 〈〈 L∗(L(X)), Y 〉〉
= 〈〈 L(X), L(Y ) 〉〉
= 〈〈 X,L∗(L(Y )) 〉〉
= 〈〈 X,S(Y ) 〉〉
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Hence, S is self adjoint. In fact, S is nonnegative. That is, for any X in V′:

0 ≤ 〈〈 S(X), X 〉〉
because:

0 ≤ 〈〈 L(X), L(X 〉〉 = 〈〈 L∗(L(X)), X 〉〉 = 〈〈 S(X), X 〉〉

It follows that the characteristic values for S are nonnegative real numbers:

0 ≤ 〈〈 S(X), X 〉〉 = 〈〈 aX,X 〉〉 = a 〈〈 X,X 〉〉 (X �= 0)

05◦ By the Spectral Theorem, we may introduce an orthonormal basis C̄′ for
ran(L∗):

C̄′ : C′
1, C

′
2, . . . , C

′
r

and a list T of positive real numbers:

T : τ1, τ2, . . . , τr

such that, for each index j (1 ≤ j ≤ r):

S(C′
j) = τjC

′
j

06◦ Of course, we may extend C̄′ to an orthonormal basis for V′:

C′ : C̄′, C′
r+1 . . . , C′

p

The latter members in the list form an orthonormal basis for ker(L).

07◦ In turn, for any indices k and � (1 ≤ k ≤ r, 1 ≤ � ≤ r):

(∗) 〈〈 L(C′
k), L(C

′
�) 〉〉 = 〈〈 S(C′

k), C
′
�) 〉〉 =

{
0 if k �= �
τj if k = � = j

We are led to introduce the list Σ of (positive) square roots:

Σ : σ1 =
√
τ1, σ2 =

√
τ2, . . . , σr =

√
τr

Now we can introduce an orthonormal basis C̄′′ for ran(L), as follows:

C̄′′ : C′′
1 =

1

σ1
L(C′

1), C
′′
2 =

1

σ2
L(C′

2), . . . , C
′′
r =

1

σr
L(C′

r)
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For each index j (1 ≤ j ≤ r), we observe that:

L(C′
j) = σjC

′′
j

Moreover:
L∗(C′′

j ) = σlC
′
j

because:

L∗(
1

σj
L(C′

j)) =
1

σj
L∗(L(C′

j)) =
1

σj
S(C′

j) =
1

σj
τjC

′
j

08◦ Of course, we may extend C̄′′ to an orthonormal basis for V′′:

C′′ : C̄′′, C′′
r+1 . . . , C′′

q

The latter members in the list form an orthonormal basis for ker(L∗).

09◦ One should note that the members C′
1, C

′
2, . . . , and C′

r of V′ and the
members C′′

1 , C
′′
2 , . . . , and C′′

r of V′′ are subject to meaningful restrictions
while the members C′

r+1, . . . , and C′
p of V′ and the members C′′

r+1, . . . , and
C′′

q of V′′ are not.

10◦ The proof of the theorem is complete.

11◦ For a first impression of the utility of the Singular Value Decomposition
(SVD), let us consider the following computation. Let us reprise the foregoing
context. We imagine the following Problem:

L(X) = Y

where X is a member of V′ and Y is a member of V′′. Given Y , we search
for X . Of course, Y need not be in ran(L), so the search requires flexibity.
Precisely, we search for a member X̂ of ran(L∗) such that, among all such
members, the error:

‖L(X̂)− Y ‖2

is least. The solution stands as follows:

X̂ = (S−1L∗)(Y )

because Ŷ = L(X̂) is the orthogonal projection of Y on ran(L):

(LS−1L∗)∗ = LS−1L∗, (LS−1L∗)(LS−1L∗) = LS−1L∗

We have interpreted S−1 to be the inverse of S, regarded as a (self adjoint)
linear isomorphism carrying ran(L∗) to itself.
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12◦ In context of matrices, the foregoing procedure supports many important
applications, notably, in Mathematical Statistics. In the last section, we will
describe the procedure in detail, in terms of coordinates.
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12 Matrices Redux

01◦ Let V be a pdo geometry, having dimension n. We begin this (our last)
section by noting that, for our practical purposes, V and Rn are indistin-
guishable. We mean to say that there is a linear isomorphism K carrying Rn

to V such that, for any members X and Y of Rn:

〈〈 K(X),K(Y ) 〉〉 = 〈〈 X,Y 〉〉

In the foregoing relation, we have invoked one common symbol to represent
the two bilinear forms, one for Rn and one for V. In any case, it is plain that,
whatever we can prove for Rn, we can prove for V, and conversely.

02◦ To design such a linear isomorphism, we need only introduce the standard
basis E for Rn:

E : E1, E2, . . . , En

together with an orthonormal basis C for V:

C : C1, C2, . . . , Cn

Now we may characterize K as follows:

K(E1) = C1, K(E2) = C2, . . . , K(En) = Cn

03◦ Let us commit our exposition, now, to computation. From here forward
we will consider nothing other than the specific pdo geometries:

Rn

together with the various linear mappings M in L(Rp,Rq), called matrices:

M : Rp −→ Rq

and the corresponding rectangular arrays M having q rows and p columns:

M =




m11 m12 · · · m1p

m21 m22 · · · m2p

...
...

...
...

mq1 mq2 · · · mqp




Let us recall that:

mkj = 〈〈MEj , Ek 〉〉
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where j and k are any indices (1 ≤ j ≤ p, 1 ≤ k ≤ q). Of course:

E1, E2, . . . , Ep ; E1, E2, . . . , Eq

are the standard bases in Rp and Rq, respectively. Mindful of the relations
just stated, we will simply identify mapping and array.

04◦ Of course, we will make use of the operations on arrays, reflecting the
operations on linear mappings:

M ′ +M ′′, cM, M ′′M ′

05◦ We will also make use of the operation of adjunction:

M∗

As one should anticipate, this operation reflects the relation between the linear
mappings M and M∗ in L(Rp,Rq) and L(Rq,Rp), respectively. For instance,
if p = 5 and q = 3:

M =


m11 m12 m13 m14 m15

m21 m22 m23 m24 m25

m31 m32 m33 m34 m35


 , M∗ =




m11 m21 m31

m12 m22 m32

m13 m23 m33

m14 m24 m34

m15 m25 m35




06◦ Let n be a positive integer. We must describe the relation between the
standard basis:

E : E1, E2, . . . , En

and the various orthonormal bases for Rn:

C : C1, C2, . . . , Cn

To that end, let U be the linear isomorphism in L(Rn), determined as follows:

UE1 = C1, UE2 = C2, . . . , UEn = Cn

Such a mapping is a matrix for which the columns form an orthonormal basis
for Rn. We will refer to U as an orthogonal matrix. One may characterize it
very neatly, by the condition:

U∗U = I
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07◦ Obviously, U is invertible. It follows that:

U∗ = U∗UU−1 = U−1

Hence, UU∗ = I. Moreover, since det(U∗) = det(U), we find that:

det(U) = ±1

08◦ Now let us present the Spectral Theorem and the Singular Value Decom-
position, in the current context of cartesian spaces. Let n be a positive integer.
Let S be a self adjoint matrix in L(Rn). We may introduce an orthonormal
basis C for Rn:

C : C1, C2, . . . , Cn

and a list T of real numbers:

T : t1, t2, . . . , tn

such that, for each index k (1 ≤ k ≤ n):

SCk = tkCk

Let U be the corresponding change of basis matrix. In turn, let S̄ = U∗SU .
We find that, for each index k (1 ≤ k ≤ n):

S̄Ek = tkEk

because:
U∗SUEk = U∗S Ck = U∗tkCk = tkU

∗Ck

We may say that U converts S to diagonal form.

09◦ Here is a simple example. We set n = 3 and we set S as follows:

S =


 1 2 1

2 0 2
1 2 1




By tinkering, we find the list T :

T : −2, 0, 4

and we find the corresponding orthonormal basis C:

C : 1√
6


−12
−1


 ,

1√
2


−10

1


 ,

1√
3


 1

1
1
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In this way, we obtain:

S̄ =


−2 0 0

0 0 0
0 0 4




10◦ Let us look back to Section 10. In that context, we stated a basic fact,
then applied that fact to prove the Spectral Theorem. Let us complete the
proof of the theorem by proving the fact. Let n be a positive integer. Let S be
a self adjoint linear mapping carrying Rn to itself. Relative to the standard
basis for Rn, the matrix S would stand as follows:

S =




s11 s12 · · · s1n
s21 s22 · · · s2n
...

...
...

...
sn1 sn2 · · · snn


 (sjk = skj)

We contend that there are a real number t and a member C of Rn for which:

〈〈 C,C 〉〉 = 1 and S(C) = t C

To prove the contention, we introduce a particular Constrained Extremum
Problem:

f(X) = 〈〈 S(X), X 〉〉, g(X) = 〈〈 X,X 〉〉 = 1

where X runs through Rn:

X =




x1

x2
...
xn




We find that:

f(x1, x2, . . . , xn) =

n∑
j=1

n∑
k=1

xjsjkxk

g(x1, x2, . . . , xn) = x2
1 + x2

2 + · · · + x2
n

11◦ The constraint:
g(X) = 1

defines a compact subset of Rn, namely, the unit sphere Sn. The Extreme
Value Theorem guarantees that there is a member C of Sn such that the value
f(C) is the largest among all values:

f(X)
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where X is any member of Sn. In turn, the Theorem of Lagrange guarantees
that there is a real number t such that:

(∇f)(C) = t (∇g)(C)

By straightforward computation, we find that:

(∇f)(C) = 2S(C) and (∇g)(C) = 2C

We conclude that:
〈〈 C,C 〉〉 = 1 S(C) = t C

The proof is complete.

12◦ Now let us describe the Singular Value Decomposition in terms of ma-
trices. We return to the context of article 01◦ in Section 11. Let us identify
V′ with Rp and V′′ with Rq. Let U and V be the change of basis matrices
corresponding to C′ and C′′, respectively:

UE′
j = C′

j (1 ≤ j ≤ p), V E′′
k = C′′

k (1 ≤ k ≤ q)

We have employed the markers ′ and ′′ to distinguish the standard bases in
Rp and Rq, respectively. In turn, let L̄ = V ∗LU . We find that, for each
index � (1 ≤ � ≤ r):

L̄E′
� = σ�E

′′
�

because:
V ∗LUE′

� = V ∗LC′
� = V ∗σ�C

′′
� = σ�V

∗C′′
�

The remaining columns of L̄ equal 0. We may say that U and V convert L to
pseudo diagonal form.

13◦ For p = 4, q = 7, and r = 3, we have:

L̄ =




σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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Granted this simple context, let us return to article 11◦ in Section 11. We
begin with a member Y of R7:

Y =




y1
y2
y3
y4
y5
y6
y7




We search for a member X of R4:

X =




x1

x2

x3

x4




such that, among all such members, the error:

‖LX − Y ‖2

is least. In fact, we need only consider members X of ran(L∗), discounting
the members of ker(L).

14◦ Let us recall that L = V L̄U∗ and let us introduce X̄ = U∗X and Ȳ =
V ∗Y . We find that:

‖LX − Y ‖2 = ‖L̄X̄ − Ȳ ‖2

because:

‖V L̄U∗X − Y ‖2 = ‖L̄ U∗X − V ∗Y ‖2

By comparing: 


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0







x̄1

x̄2

x̄3

x̄4


 with




ȳ1
ȳ2
ȳ3
ȳ4
ȳ5
ȳ6
ȳ7




we find the best choice of X̄:


x̄1

x̄2

x̄3

x̄4


 =




σ̄1ȳ1
σ̄2ȳ2
σ̄3ȳ3
0
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where σ̄1 = σ−1
1 , σ̄2 = σ−1

2 , and σ̄3 = σ−1
3 . It is the same to say that:

X̄ = S̄−1L̄∗Ȳ

because:




x̄1

x̄2

x̄3

x̄4


 =




τ̄1 0 0 0
0 τ̄2 0 0
0 0 τ̄3 0
0 0 0 0







σ1 0 0 0 0 0 0
0 σ2 0 0 0 0 0
0 0 σ3 0 0 0 0
0 0 0 0 0 0 0







ȳ1
ȳ2
ȳ3
ȳ4
ȳ5
ȳ6
ȳ7




=




σ̄1 0 0 0 0 0 0
0 σ̄2 0 0 0 0 0
0 0 σ̄3 0 0 0 0
0 0 0 0 0 0 0







ȳ1
ȳ2
ȳ3
ȳ4
ȳ5
ȳ6
ȳ7




where τ̄1 = τ−1
1 , τ̄2 = τ−1

2 , and τ̄3 = τ−1
3 . One should note that L̄ S̄−1L̄∗ is

the projection on the range of L̄:




∗ 0 0 0
0 ∗ 0 0
0 0 ∗ 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0






∗ 0 0 0 0 0 0
0 ∗ 0 0 0 0 0
0 0 ∗ 0 0 0 0
0 0 0 0 0 0 0


 =




1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




15◦ Recalling the foregoing relations and definitions, we recover the result
put forward in article 11◦ in Section 11:

X = S−1L∗Y

because:
X = UX̄ = US̄−1U∗UL̄∗V ∗V Ȳ = S−1L∗Y

16◦ Here is an example which motivates application of the Singular Value
Decomposition. We imagine three variables:

X ′, X ′′, Y
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We set the values of X ′ and X ′′ prior to observation, then proceed to observe
the value of Y . Following eight repetitions, we obtain the following matrix:

M =




x′
1 x′′

1 y1
x′
2 x′′

2 y2
x′
3 x′′

3 y3
x′
4 x′′

4 y4
x′
5 x′′

5 y5
x′
6 x′′

6 y6
x′
7 x′′

7 y7
x′
8 x′′

8 y8




We assume that the variables satisfy a linear relation

Y = a+ b′X ′ + b′′X ′′ + c′X ′2 + c◦X ′X ′′ + c′′X ′′2

We require to find the “best estimate” of the coefficients:

W =




a
b′

b′′

c′

c◦

c′′




consistent with the observations:

Y =




y1
y2
y3
y4
y5
y6
y7
y8
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To that end, we form the matrix :

T =




1 x′
1 x′′

1 x′
1
2

x′
1x

′′
1 x′′

1
2

1 x′
2 x′′

2 x′
2
2

x′
2x

′′
2 x′′

2
2

1 x′
3 x′′

3 x′
3
2

x′
3x

′′
3 x′′

3
2

1 x′
4 x′′

4 x′
4
2

x′
4x

′′
4 x′′

4
2

1 x′
5 x′′

5 x′
5
2

x′
5x

′′
5 x′′

5
2

1 x′
6 x′′

6 x′
6
2

x′
6x

′′
6 x′′

6
2

1 x′
7 x′′

7 x′
7
2

x′
7x

′′
7 x′′

7
2

1 x′
8 x′′

8 x′
8
2

x′
8x

′′
8 x′′

8
2




,

and we seek to minimize the value:

‖TW − Y ‖2

where:

TW =




a+ b′x′
1 + b′′x′′

1 + c′x′
1
2
+ c◦x′

1x
′′
1 + c′′x′′

1
2
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The Singular Value Decomposition yields the answer:

W = S−1T ∗Y (S = T ∗T )

For completeness, let us recall that:

TS−1T ∗

is the projection carrying V′′ to the range of T .
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