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01 Linear Spaces

01° Let F be a field. For our purposes, we take F to be the real number field
R or the complex number field C. Of course, we employ familiar notation:

a+b, a-b=ab
where a and b are any elements of F.

02° By a linear space, we mean a set V supplied with operations of addition
and scalar multiplication:

X+Y, cZ=cZ

where X, Y, and Z are any members of V and where c¢ is any member of F.
The operation of addition must satisfy the familiar conditions:

X+Y=YV+X
X+(Y+2)=(X+Y)+2Z
X+0=X
X+(=X)=0

where X, Y, and Z are any members of V. By the third condition, we mean
to assert that there is particular member 0 of V, necessarily unique, which
serves as the neutral member for addition. By the fourth condition, we mean
to assert that, for each member X of V, there is a member Y of V| in relation
to X necessarily unique, which serves as the additive inverse of X. We denote
Y by —X.

03° Moreover, the operations of addition and scalar multiplication must to-
gether satisfy the following conditions:

a.(X+Y)=aX+aY
(a+b).X=aX+bX
(a-0).X =a.(b.X)
1.X=X

where X and Y are any members of V and where a and b are any members
of F.



04° By a linear subspace of the linear space V, we mean a nonempty subset
U of V which is invariant under the operations of addition and scalar multi-
plication on V. We mean to assert that, for any members X, Y, and Z of U
and for any member c of F:

X+YeU, ¢ZeU

Obviously, under the restrictions to U of the operations on V, U is itself a
linear space.

05° The set F3 provides a serviceable example of a linear space. The members
of F3 have the following form:

T
X = To
T3
The operations stand as follows:
r1+ Y1 cz1
X+ty=|22+y2 |, cz=|cz
3 + Y3 cz3
while:
0 —X1
0=10], —x=|[—x
0 —XI3

06° Just as well, we may introduce the linear space F™, where n is any
positive integer. We refer to F™ as a cartesian linear space.



02 Linear Mappings

01° By a linear mapping, we mean a mapping L for which the domain V'
and the codomain V” are linear spaces:

L:V —V”
and for which the following conditions hold:
LX'+Y") = LX)+ L(Y)
L(c.Z") = c.L(Z)

where X', Y’/, and Z’ are any members of V' and where ¢ is any member of
F.

02° For such a mapping L, we define the kernel and the range:
ker(L), ran(L)
as follows. First, ker(L) consists of all members X’ of V' such that:
LX) =0"

Second, ran(L) consists of all members X" of V" for which there exists at
least one member X' of V' such that:

L(X,) — X//

Clearly, ker(L) is a linear subspace of V' and ran(L) is a linear subspace of
v

03* Obviously, L is surjective iff ran(L) = V”. Moreover, L is injective iff
ker(L) = {0'}, though this fact requires a little thought.

04° Finally, by definition, L is bijective iff it is both injective and surjective.
In such a case, we claim that L~! is linear. Accordingly, we would refer to
L as a linear isomorphism. Let us prove the claim. Let X", Y, and Z” be
any members of V" and let ¢ be any member of F. Let X', Y/, and Z’ be the
(uniquely determined) members of V' for which L(X') = X", L(Y') =Y,
and L(Z') = Z". We find that:

Lfl(X//_’_Y//) — Lfl(L(X/) +L(Y’))
= L7 (L(X' +Y))
=X'+Y’

— Lfl(X//) —I—Lil(Y”)
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and:

The proof of the claim is complete.

05° Let Ly and Lo be mappings for which the codomain of L1 and the domain
of Lo coincide:
Li:V — V' Ly: V' —V"”

Of course, we may form the composition L of L; and La:
L:V —V"”
for which the domain is V' and the codomain is V"’. By definition:
L(X) = L2(L1(X))

where X is any member of V'. One can easily show that if L; and Lo are
linear then L is also linear. The proof takes the following form:

LX 4 ) = Lo(La(X + 7))
2(L1(X) + L1 (Y))

o(L1 (X)) + La(L1(Y))
(X) + L(Y)

L
L
L

and:
L(cZ) = Lo(L+1(cZ))

= LQ(CLl(Z))
= CLQ(Ll(Z))
=cL(Z)

where X, Y, and Z are any members of V' and where ¢ is any member of F.



03 Bases

01° Let V be a linear space and let n be a positive integer. Let B be a finite
list of (nonzero) members of V having length n:

B: By, B, ...,Bn

Let K be the mapping carrying F” to V, defined as follows:
K(X) = Z J,‘ij
j=1

where:
T1

T2

Tn

is any member of F". Obviously, K is linear. We refer to the members of
ran(K) as combinations of B in V.

02° Tt may happen that K is surjective, which is to say that ran(K) = V.
In such a case, every member of V is a combination of 5. We say that B
generates V. It may happen that K is injective, which is equivalent to the
condition that ker(K) = {0}. It is the same to say that, for each member x
of F™:

n

ZJ?ijZO <— 1=0,20=0, ... ,2,=0

j=1

We say that B is independent.

03° It may happen that K is both injective and surjective, hence, bijective,
so that it is a linear isomorphism. Now, for each member Z of V, there is
precisely one member x of F™ such that:

Z = zn:ijj
j=1

We refer to the numbers:
L1y, L2y «v. y Ty

as the coordinates of Z relative to B. We refer to B itself as a basis for V.
04° For the cartesian linear space F?, we introduce the list £ in F? having
length 3:

& El; EQ; E3
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where:

1 0 0
Ei=|0]|,B=(0],E=10
0 1 1

Clearly, £ is a basis for F2. It is the standard basis. In fact, for each member
z of F3:

we have:
z = 2151 + 290F5 + 23E3

Consequently, the coordinates of z relative to £ are the entries in z:

21, 22, 23

05° The same design applies to the cartesian linear space F”, where n is any
positive integer.

06° For efficient development of the concept of basis, we require three oper-
ations: Reduction, Expansion, and Exchange. Before describing them, how-
ever, let us describe a convenient maneuver: Renumbering. Let C be a finite
list of (nonzero) members of V having length r:

C: Ch,Cy, ... ,C,

Very often, we find it convenient to permute the members of the foregoing
list, then to renumber them in natural order. For instance:

01702703, 04) 05706
C4vc5vcla C?); Cﬁch
C1,C3,C3, Cy, G5, Gy

where:
C)=0Cy
Cy, = Cs
Cy=0C
Cy=0Cs
C: =Cs
Ci = Cs

Then we drop the primes. We refer to this process as Renumbering.
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07° Now let us assume that C generates V. It may happen that there is a
member of C, let it be C;, which is a combination of the other members of
C. By Renumbering, we may assume that C; is in fact C,. Excising C,, we
obtain the abbreviated list:

C/Z C1,CQ, ,Cr,1

By elementary argument, we find that C’ generates V. Again, it may happen
that there is a member of C’, let it be C}, which is a combination of the other
members of C’. By Renumbering, we may assume that C} is in fact C,_;.
Excising C)._1, we obtain the abbreviated list:

CHI C1,CQ, ,CT,Q

Again, we find that C” generates V. Continuing in this way, we are led to a
“terminal” list:

(7: Cl,CQ, ,Cq

such that C generates V but no member of C is a combination of the other

members of C. At this point, the operation of Reduction stops. Now C
generates V and it is also independent. So C is a basis for V.

08° Again let us assume that C generates V. Let p be a positive integer for
which 1 < p < r. It may happen that, among the » members of C, there are
p members which are independent. For instance, p might be 1, in which case
any member of C would serve our purpose. By Renumbering, we may assume
that these members lie at the beginning of C:

C: C,,Ca
where C, and C, are the lists:
Co: C1,Cy, ... ,Ch Co: Cpyr, ... ,Ch
It may happen that there is a member of C,, let it be C;, which is not a

combination of C,. By Renumbering, we may assume that C; is in fact Cp41.
Now we can reform the list C as follows:

c: C.,C,
where C., and C, are the lists:

Co: C1,Cy, ... ,Cp,Cpr1; Cy: Cpya, ... ,Cy



By design, C/ is independent. Again, it may happen that there is a member of
C., let it be Cj, which is not a combination of C.. By Renumbering, we may
assume that Cj is in fact Cp12. Again, we can reform the list C as follows:
c. clcl
where C and CJ are the lists:
Cg: C17027 anvcerlanJrQ; C,o/ Cp+3a 7Cr
Again, C” is independent. Continuing in this way, we are led to a “terminal”

reformation:
C: Co,Cae

where Co and C, are the lists:
Co: C1,Cy, ... ,Cp, ... ,Cy; Co: Cyyr, ... ,C,

where C, is independent, and where every member of C, is a combination of
Co. At this point, the operation of Expansion stops. Now C, is independent
and it generates V. So C, is a basis for V.

09° Now let us introduce a pair of lists of (nonzero) members of V having
lengths p and r, respectively:

B : Bl,BQ, ,Bp
C: 01,02, ...... ,Cr

Let us assume that B is independent and that C generates V. Very soon, we
will find that p < 7, which justifies the seemingly biased display of B and C.
Of course, B; must be a combination of C:

Bi = 21C1 + 2205 + 23C3 + -+ + 2,.C,
Moreover, By # 0, so that at least one of the displayed coefficients:

T1,T2,X3, ..., Tp
must be nonzero. By Renumbering, we may assume that x; # 0, so that:
(1) 11C1 = B; — 220y — 23C3 — -+ — z,.C,
Now we exchange By and C; to form the list:
C': B,Cy,C3...,C,
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The displayed relation (1) shows that C’' generates V. In turn, B, must be a
combination of C':

By =y1B1 4+ 4202 + y3Cs + -+ + - Ch

Moreover, B is independent, so that at least one of the displayed coefficients:
Y2,Y3,-- - Yr
must be nonzero. By Renumbering, we may assume that ys # 0, so that:
(2) y2Cs = —y1B1 + B2 —y3Cs — -+ —y,.C;
Now we exchange By and Cs to form the list:
C": By,By,Cs, ... ,C,

The displayed relation (2) shows that C” generates V.

10° Continuing the foregoing Exchanges, we must eventually exhaust the list
B, to obtain the “terminal” list:

C . Bl,BQ,...,Bp,Cerl,...,CT
By design, C generates V. It follows that p < r.
11° Obviously, the contrary case, in which r < p, cannot occur.

12° The operations of Reduction and Expansion both yield bases for V. In
the first case, one can see that the list C plays a criticsl role. In the second
case, however, one might be led to think that the list C is irrelevant. One
might presume to start with a nonzero member B; of V, then produce an
ever longer list B, by expansion:

BOZ Bl,BQ7 ,Bj7

at each step adding a member B; of V which is not a combination of the
predecessors, until no such member exists. At the point of termination:

B : Bl,BQ, ,Bp

the list B would be a basis for V. However, absent the context set by the list
C, one cannot be certain that the growing list B, will terminate. By contrast,
the lists produced by the operation of Expansion, as described in article 08°,
at each step generate V. Obviously, p cannot exceed r. Hence, the list B,
must terminate.
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13° The following example illustrates the foregoing reservations. Let P be
the linear space composed of the polynomial functions:

n
— d
P(z) = E T
Jj=0
where n is any nonnegative integer, where:

€0,C1,C2, ... ,Cn

are any numbers in F, and where z is a real variable. The operations of
addition and scaler multiplication are defined as usual. Now one can easily
see that the polynomials:

form an ever expanding chain of independent lists. Obviously, the naive pro-
cess of expansion, just described, would fail to terminate.

14° Now let us apply the operation of Exchange to prove, in a few swift
steps, several fundamental properties of bases. Let V be a linear space. Let
us assume that there is a basis B for V:

B: Bl7BQ, ;Bn

as described in article 03°. In such a case, we say that V is finite dimensional.
In turn, let B’ and B” be bases for V having p members and ¢ members,
respectively: By the operation of Exchange, applied to B’ and B” and to B”
and B’, respectively, we find that p < g and g < p. Consequently, p = q. We
conclude that, for a finite dimensional linear space, any two bases have the
same number of members, let it be n. We refer to n as the dimension of V:

dim(V) =n

15° Now let V be a linear space and let U be a linear subspace of V. We
claim that if V is finite dimensional then U is finite dimensional and:

m = dim(U) < dim(V) =n

Moreover, m = n iff U = V. To prove the claim, we introduce a basis C for
V, having n members, and we consider independent lists B in U. From the

11



operation of Exchange, we infer that the lengths of such lists in U cannot
exceed n. Consequently, there must be independent lists B in U of maximum
length, let it be m. Obviously, such a list would be a basis for U. We declare
the proof to be complete.

16° Finally, let us present the first of our fundamental theorems. Let V' and
V" be finite dimensional linear spaces and let L be a linear mapping with
domain V' and codomain V"

L:V — V"
We contend that:
(RT) dim(U) + dim(W) = dim(V’)
where U = ker(L) and W = ran(L). One refers to this relation as:
THE RANK THEOREM

17/O To prove the contention, we introduce a basis B for U and a basis C for
Ve B: B1,By, ... ,By

C: C1,Cy, ... ,Cy
By articles 09° and 10°, p < r. By the operation of Exchange, we may reform

C as follows: B
C: BI;B27 7Bp7 CerlanJrQa ;Cr

We claim that the list:
D: L(Cpt1), L(Cpt2), ..., L(C})
of members of V" is a basis for W. Having proved the claim, we will have

proved the contention. Let Z” be a member of W. Let Z’ be a member of
V' such that L(Z') = Z". Of course, there must be numbers:

T1,T2y -« s Tpy Yp+1,Yp+25 -+ s Yr
in F such that:

Z'=x1Br+xaBo+ ... +xpBy + ypt1Cpi1 + Ypr2Cpiz + ... + 4,0
Hence:
Z// — L(Z,)
= Yp+1L(Cpt1) + Yp+2L(Cpy2) + ... +yrL(Cr)

12



Consequently, D generates W. In turn, let:

Yp+1,Yp+2, --- s YUr
be numbers in F such that:
Yp+1L(Cpt1) + Yp+2L(Cpy2) + ... +y-L(Cr) =0

Hence:
Yp+1Cpt1 T Yp42Cpia+ ... +urCr €U

Since C is independent:

yp+1:anp+2:Oa 7y7":0

Consequently, D is independent. It follows that D is a basis for W. The proof
is complete.

13



04 Matrices

01° By a matriz, we mean a linear mapping M for which the domain and
the codomain are cartesian spaces:

M : FP — F1
One may set the positive integers p and ¢ at will. Let us show that M

determines a rectangular array M having ¢ rows and p columns, the entries
for which are numbers in F.

02° For precise expression, let us take p to be 3 and g to be 5. Let £ and £”
be the standard bases for F? and F?®, respectively:

1 0 0
& Ei=(0]),E,=|1]|,E;=1]0
0 0 1
1 0 0 0 0
0 1 0 0 0
E: E/=|0|,Ef=10]|,Ef=|1]|,E/=]|0]|,E!=1]0
0 0 0 1 0
0 0 0 0 1
Now we introduce the array M as follows:
mi1 Miz2 Mi13
B mM21 M2z M3
M =1 m31 m3 mss3
m41 M4z M43
ms1 M52 1M53
where:
mi1
ma1
M(Ei) = muEi/ + mglEg + m31E§' + m41EZ + m51Eg = ms31
ma1
ms1
mi2
ma2
M(Eé) = mlgEil + mQQEg =+ mggEél + m42EZ + m52Eg = | maso
M2
ms2
mi3
ma3
M(Eé) = m13E{' + mggEg + m33E§' + m43EZ + m53Eg = mss
ma3
ms3
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In this way, M determines M. Just as well, M determines M. In fact, for
any x in F3 and for any y in F°:

Y1
T1 Y2
X=\122 )], Y=]19Us
T3 Y4
Ys
we find that:
M(x) = M(x1E} + xoFEy + x3F%)
=21 M(E}) + 22 M (Ey) + 23 M (Ej)
so that:
1 mi1 mi2 mi3
Y2 ma1 mag ma3
y=Mx) Yys | =x1 | m31 | +x2 | m32 | +x3 | m33
Ya ma1 ma2 mys3
Ys ms1 ms2 ms3

Clearly, the correspondence between linear mappings M carrying F3 to F°
and rectangular arrays M having 5 rows and 3 columns is bijective.

03° Of course, one may replace the positive integers 3 and 5 by any positive
integers p and gq.

04° Now let us lift the foregoing discussion to its proper level of generality.
Let V’ and V" be finite dimensional linear spaces. Let L be a linear mapping
carrying V' to V”. Let B’ and B” be bases for V/ and V", respectively. In this
context, we will describe a matrix M for L. The corresponding rectangular
array M of numbers in F will serve to define the coordinates of L relative to
the bases B’ and B”.

05° We draw this connection between linear mappings in general and matri-
ces in particular because, as a rule, theoretical developments proceed most
smoothly in the general context while computational developments proceed
most smoothly in the particular.

06° For explicit expression, let us set the dimensions of V' and V" to be 3
and 5, respectively. We display the bases B’ and B” as follows:

/. ’ / /. 7 " "opIl I "
B B17BQaBB7 B”: B17BQ7B37B45B5
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In turn, let us display the standard bases for F3 and F°:
€ BBy & B BB B B

Of course, we obtain linear isomorphisms K’ carrying F? to V' and K" car-
rying F? to V", determined as follows:

K7(EY)
K'(E))=B;  K'(Ey)
K'(E;) =B;  K"(Ej) = By
K'(E3) =By K"(EY)

K"(Es5)

Now we declare that M shall be the linear mapping:
M:K/I_l'L'K/

carrying F? to F?. It is the matrix for L relative to the bases B’ and B”. By
a straightforward tour of the definitions, we find that:

L(Bi) = mllBil + mngg + mngg =+ m4le{ =+ m5lBg

L(Bé) = mlng + mgng + mgng + m4gBZ =+ m5ng
L(Bé) = mlng + mggBé/ + m3gBé/ =+ m43BZ =+ m533g

07° Obviously, L determines M while M determines L. The entries in M
serve as coordinates for L relative to B’ and B”.

08° Now let V/, V" and V' be finite dimensional linear spaces. Let L° and
L*® be linear mappings carrying V' to V” and V" to V', respectively. Let
B’, B”, and B" be bases for V', V", and V", respectively, and let K', K",
and K"’ be the linear isomorphisms which they define. Let M° and M*® be
the corresponding matrices:

Mo _ K//—l . Lo . K/ M. _ K///—l . Lo -K”
In turn, let L be the linear mapping carrying V' to V| defined by composi-
tion of L° and L®:
L=1L*-L°

Let M be the corresponding matrix:

M:K/I/—l LK/
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09° We can calculate M very easily:

M = K///—l . L. K/—l
— K///—l L L° .K/—l
— K///—l . Lo . K// . K//—l _Lo . Klfl
— Mo . Mo

but we must work harder to calculate the rectangular array M, corresponding
to L, from the rectangular arrays M° and M*®, corresponding to L° and L®,
respectively.

10° Let us do so. Once again, for precise expression, we set the dimensions
for V!, V" and V' at particular values, let them be 3, 4, and 2, respectively.
We must find the means to calculate M from M*® and M°:

o o o
mypy Mg Mgz
L ] L ] L ] L ] o o o
myy My Myz My Mg Moy Moy mi1 M1z M13
L ] L ] L ] L ] ) o (e}
Mgy Moo Moz Mgy M3y Mgy M3z m21 M22 M23

Of course, we require the standard bases £, £”, and £ for F3, F4, and F2,
respectively. For any index £ (1 < ¢ < 3), we may adapt the computation in
article 2° to show that:

(i) = a9
= (M* - M°)(E;)

m$ m$ m$ ms
_mie( 11>+m§e( }2>+m§€< ) +my, o
may Moo ma3 Moy

_ [ ] (e} [ ] (e} [ ] o [ ] (e}
Mg = My My + MMy + My3Mizp + MMy,

Hence:
. L] ] L] ] L] o L] ]
Mg = Ma1Myp + MogMay + Mo3Migp + Mgy My
In the following more efficient notation:

4
mije = mymp,  (1<j<2,1<0<3)
k=1

we see how the computations would take form in general.
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11° We summarize the foregoing computations by writing, very simply:
M = M*M°

In this way, we multiply rectangular arrays. Of course, we must insist that
the number of columns of M*® equals the number of rows of M°. From the
properties of (linear) mappings, we infer that this operation is associative,
though not in general commutative.

12° To be thorough, let us point to the operations of addition and scalar
multiplication for rectangular arrays:

cM, M°+M*

They would reflect the operations of addition and scalar multiplication for
linear mappings:
cL, L°+1L*

Of course, the domains and codomains for L® and L*® must coincide, while the
numbers of rows for M° and M*® must be equal and the numbers of columns
for M° and M*® must be equal as well.

13° Now we are led, one might say compelled, to introduce the linear spaces:
L(V', V"), M(q,p)

where V' and V" are finite dimensional linear spaces and where p and ¢ are
positive integers. They are composed, in the first case, of all linear mappings
L carrying V' to V", and, in the second case, of all rectangular arrays M
having ¢ rows and p columns.

14° By the foregoing discussion, it is plain that these new linear spaces are
linearly isomorphic. In fact, the appropriate linear isomorphism £ would be
that which carries each member L of L(V’, V") to the corresponding rectan-
gular array M, as described in article 2°:

L(L) = I

Obviously:
dim(L(V', V")) = dim(M(q, p)) = pq

15° It may happen that there is a finite dimensional linear space V such
that V/ =V = V”. In such a case, we would write not L(V', V") but L(V).
Similarly, it may happen that there is a positive integer r such that p =7 = ¢.
We would write not M(q, p) but M(r). Now L(V) acquires the operation of
composition and M(r) acquires the operation of multiplication. They are fully
developed algebras.

18



05 Linear Functionals

01° Let V be a finite dimensional linear space. By the dual space for V, we
mean the linear space:

L(V,F)

consisting of all linear mappings for which the domain is V and the codomain
is F = F. One refers to such mappings as linear functionals. Of course, the
operations of addition and scalar multiple stand as follows:

(L' + L')(X) = L'(X) + L"(X)
(e.L)(X) = c.L(X)

where L', L, and L are any members of L(V,F), where ¢ is any number in
F, and where X is any member of V. In practice, we denote the dual space
by the simpler symbol:

V*

02° Let us introduce a basis for V:

B: Bi,Bs, ...,B,
Obviously, we intend that dim(V) = n. In turn, let us design a basis for V*.
For each index j (1 < j < n), let A; be the mapping carrying V to F, defined

as follows:
Aj(X) =5

where X is any member of V:
X =x1B1+23By -+ +x,B,
Clearly, A; is a linear functional. We contend that:
L: Ay Ay oo A,
is a basis for V*.

03° To prove the contention, we first display the following obvious but fun-
damental relations between B and L:

0 ifj#k
Aj(Bk)_{l ifjiki

where 1 <j<nand 1<k <n.
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04° Let us consider an arbitrary combination L of L:
L=ciA1+coAy+ -+ +cpA,
where c1, ¢, ..., and ¢, are any numbers in F. If L = 0 then:
0= E(Bj) =¢j
where j is any index (1 < j < n). It follows that £ is independent.

05° In turn, let L be any member of V*. Let us consider the combination L
of L: -
L=ciA +coAo+ -+ +c A,

where ¢y, co, ..., and ¢, are the numbers in F defined as follows:
¢; = L(B;)

Obviously:
L(Bj) = cj = L(B;)

where j is any index (1 < j < n). Hence, L = L. It follows that £ generates
A%

06° To be explicit, let us note that B and £ have the same number of mem-

bers, so that:
dim(V*) = dim(V)

07° Now let us describe a grand generalization of the design of V*, yielding
a legion of new linear spaces:
L*(V)

where k is any positive integer. At this point, we do no more than define the
spaces. In the following section, we will develop the means for analyzing their
properties. We will focus attention upon certain linear subspaces:

H(V),  AMV)

of L¥(V). They will play basic roles in our subsequent studies of determinants
and of orthogonal and symplectic geometry.
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08° We begin by introducing the product:
VE=VxVx . xV
consisting of all ordered k-tuples:
(X1, Xa, ..., Xk)

of members of V. By a k-linear functional, we mean a mapping H for which
the domain is V¥, for which the codomain is F:

H:VF S F

and for which the following conditions hold:

H(X1, Xo, ..., X+ X0, ., Xp)

:H(Xl,XQ, ,Xj{, ,Xk)-l—H(Xl,XQ, ,Xj{/, ,Xk)
H(Xl,XQ,...,CX]‘ ,Xk)

:CH(X17X27 ,Xj, ,Xk)
where Xy, Xo, ..., X}, X, X7, ..., and X}, are any members of V and

where c¢ is any number in F. Let:
L*(V)

stand for the set of all such functionals. Under the now familiar operations of
addition and scalar multiplication, the set just described is a linear space.

09° Let us pause to describe a commonplace example of a k-linear functional.
Let V be the linear space F*. Let:

1 1 1 1
0 0 0 0
g: E1: 0 )EQZ 0 )E3: 0 )E4: 0
0 0 0 0
be the standard basis for F* and let:
Fr=(1 0 0 0)
F=(0 1 0 0)
F
Fs=(0 0 1 0)
F,=(0 0 0 1)
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be the corresponding basis for (F4)*. Of course, the members of (F4)* are
matrices. We have represented the members of the basis F in terms of their
corresponding rectangular arrays. Now, for illustration, we introduce the
simple but useful 4-linear functional H in L*(F?), as follows:

H(Xla X2; X37X4)
= F1(X1)Fo(X2) F3(X3) Fu(X4)

where X1, X5, X3, and X, are any member of F*.
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06 Determinants

01° Let k be a positive integer and let I be the set consisting of the first k
positive integers:
K={1,2,3, ...k}

Let Si be the set of all bijections carrying the set I to itself. We refer to the
members of Sy as permutations. For any members o and 7, the composition:

T-O

is itself a bijection carrying K to itself. Under this operation of composition,
Sk is a group. The identity mapping e carrying K to itself is the identity
element for Si:

€-0=0=0"¢

Of course, the operation is associative:
ve(r-o)=(v-7T)-0

It is not commutative. Moreover, for every member o of Sy, there is a member
7 of Si, such that:
0-T=€=T-0

Of course, 7 is the mapping inverse to o: 7 = o~ !. Now let p and ¢q be

(positive) integers in K for which p < ¢. Let m be the permutation in Sg
defined as follows:

q ifr=p
p ifr=gq

w(r) =

{r ifr#pandr#gq

We refer to 7 as a transposition and we denote it by (pq). By a simple induc-
tion argument, one may prove that, for any ¢ in S,,, there exist transpositions
i, Mo, ..., and 7, such that:

0—:71—1.7'('2. ... .71",,
We claim that, for any two such presentations of o:

— / - "
0'771—1'7'('2. DY '71—/’./’ 0'77'('1.71—2' DY .7'('7/‘//
the numbers r’ and r” must have the same parity, which is to say that both
r’ and r” are even or both r’ and r” are odd. The proof of this claim lies just

ahead.
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02° In any case, we are justified, now, in referring to a permutation o as
even or odd, in accord with its presentation as a product of an even or an odd
number of transpositions. Let us distinguish these cases by writing:

|o| = =1 (odd), |o] = +1 (even)
03° Let k be any positive integer. Let ® be any mapping carrying V¥ to F:
o:VFk - F
Let o be a permutation in S;. We define the action of o on ® as follows:
(0-®)(X1,Xo, ..., X)) = 2(Xo1), Xo(2)s -+ > Xoh))

where X7, X5, ..., and X} are any members of V.
04° Of course, o - ® is a (new) mapping carrying V¥ to F.

05° Now let o and 7 be any permutations in S;. We contend that:
(t-0)- ®&=71-(0-D)

To prove the contention, we set k£ to be 6 and we interpret the foregoing
definition in terms of the following notation:

X,y =01 (X1)

Xo@y =0 “1(Xs)

Xa(z) =0 '(X3)

Xoy =01 (Xy)

0(5 =0 1(X5)

Xo6) =0 (Xe)

We note that ¢ does not change the given members of V. It simply permutes
them. In effect, the action of o on K = {1,2,3,4,5,6} has migrated to a
corresponding action of ¢! on the given members of V. It is the same for 7
and 7 - 0. With this understanding, the proof of the contention is simple.

06° Now we consider the particular mapping ®, defined as follows:

(X1, X, .. Xp) = [ (X-Xp)
1<p<q<n
where X7, Xo, ..., and X are any members of V. We contend that, for any

transposition m in Sy:
- P=— (m = (rs))
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Obviously, the relation just stated serves to prove the claim about parity at
the end of article 01°. To prove the contention, we simply note that the
transposition m = (rs) will change the sign of ® precisely 2b+ 1 times, where
b is the number of integers between r and s. Of course, b might be 0. In any
case, 2b+ 1 is odd.

07° Let us consider the interplay between L¥(V) and S;. The action of
the group Sy on the linear space L¥(V) provides an elegant language with
which to express the properties of symmetry and antisymmetry for k-linear
functionals, yielding the basic linear subspaces:

V), ARV)
of LF(V).

08° Let H be any member of L*(V). We say that H is symmetric iff, for
each o in Sy:
c-H=H

In turn, we say that H is antisymmetric iff, for each ¢ in Sg:
o-H=|o|H
These properties define the linear subspaces:
sk(V),  AF(V)
of LF(V).

09° For a first impression of these matters, we set k equal to 2. We introduce
the linear mappings S and A carrying L?(V) to itself, as follows:

S(L)(X1, X2) = 3 (L(X1, Xa) + (X2, X1)

1
A(L)( X1, Xo) = i(L(Xth) — L(Xs, X1))
where H is any member of LQ(V) and where X7 and X5 are any members of
V. Obviously, S(H) is symmetric and A(H) is antisymmetric. Moreover, if
H is symmetric then S(H) = H while if H is antisymmetric then A(H) = H.

Finally,
H=S(H)+ A(H)

10° The linear mappings S and A admit the following crisp expression:
1 1
S(H) = 52030-1{, A(H) = 52‘;|0|0-H
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where H is any member of L?(V). In fact:

S—%zaza, A—%ngma

For the summations, we intend that o run through the group S,. In this case,
there are just two terms in each summation.

11° In due course, we will find that the symmetric and the antisymmetric
2-linear functionals are basic concepts underlying orthogonal and symplectic

geometry.

12° Let us develop these matters in general. Let k& be any positive integer.
We introduce the linear mappings S and A carrying L*¥(V) to itself:

S:%ZU, AZ%Z|U|O’

For the summations, we intend that ¢ run through the group Si. In this
general setting, there are k! terms in the two summations.

13° We contend that, for each H in L*(V), S(H) is symmetric and A(H)
is antisymmetric. Moreover, if H is symmetric then S(H) = H while if H is

antisymmetric then A(H) = H. Let us prove these contentions.

14° Let H be any member of L*(V) and let H = S(H). By definition:
= H
= E Z O' .
Let 7 be any permutation in Sg. We find that:

T,H:%Z(T.U).H:l (t-0) - H=H

In the foregoing summations, 7 - o runs through Sy as o runs through Sy.
Hence, H is symmetric.

15° If at the outset H is symmetric then H = H.

16° Again, let H be any member of L*(V) but let H = A(H). By definition:
- 1
H= T Z lo|o-H
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Let 7 be any permutation in Sg. We find that:
_ 1 1 _
T.H:EZ |a|(T.a)-H:|T|EZ 7 ol(r-0)-H=|r|H

In the foregoing summations, 7 - ¢ runs through S as ¢ runs through Sg.
Moreover:
70| = |rllo]

Hence, H is antisymmetric.
17° If at the outset H is antisymmetric then H = H.

18° Now let n be any positive integer and let V be a linear space for which
the dimension is n. Let us concentrate upon the linear space:

A"(V)

This space sets the context from which the theory of determinants springs.
We contend that the dimension of A™(V) is one:

dim(A"(V)) =1
Let us prove this striking fact. We must produce a nonzero member A of
A"(V) and we must show that every member D of A"(V) is a scalar multiple
of A.

19° To that end, let us introduce bases:

BZ:Bl,BQ, ,Bn
£I=A1,A2, ;An

for V and V* related in the following familiar manner:

0 ifj Ak
AJ’(B’“)_{1 ifjik:

Let H be the member of L™ (V) defined as follows:

H(X1, Xo, ..., Xp) = nl A1 (X1)A2(X2) -+ An(Xp)
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where X7, Xo, ..., and X,, are any members of V. Obviously, for any per-
mutation o in S,,:

0 ifo#e

(- H)(B1. B, ... B = {7 07

where € is the identity permutation in S,. In turn, let A be the member of
A"(V) defined from H by anti-symmetrization:

1
AZ.A(H)ZEZ|U|U-H

Obviously:
A(B17327 s aBn) =1

Hence, A # 0.

20° Now let D be any member of A™(V). We must show that D is a scalar
multiple of A. Of course, if it were so:

D =dA
then the number d would be, necessarily:
d=D(B1,Bs, ... ,By)
We are led to introduce the member E of A™(V), as follows:
E=D-dA

Obviously:
E(B1,Bs, ... ,B,)=0

On that ground alone, we claim that £ = 0. Having proved the claim, we
may declare the argument to be complete. The linear space A™(V) is one
dimensional and, in fact, the single member A is a basis for it.

21° Let us set aside the hubbub. Let us simply concentrate upon a member
E of A™(V) for which:

E(By1,Ba2, ... ,B,) =0
We claim that £ = 0. We will argue by induction. For the case in which

n = 1, the claim holds true. Let m be any positive integer and let us assume
that, for the case in which n = m, the claim holds true. We must show that
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the claim holds true for the case in which n = m + 1. Let Y be any member
of V:

m
Y =X+yBni1, X=)Y ;B
j=1

We find that:

E(B1,Bs, ...,Bn,Y)
:E(Bl,BQ, ,Bm,X)-l—yE(Bl,BQ, ,Bm,Bm+1)
=0

By the induction hypothesis, the claim holds true for the case in question.
22° Now we stand at the end of the road. Let L be any linear mapping
carrying V to itself. We contend that there is a precisely one number A in F
such that:

(O) D(L(Xl), L(XQ), e ,L(Xn)) == AD(Xl, )(27 .o 7Xn)

where D is any member of A"(V) and where X7, X5, ..., and X,, are any
members of V. We refer to A as the determinant of L:

(%) A =det(L)

23° Granted our elaborate preparation, the proof of our contention, funda-
mental and formidable, is very easy. For smooth expression, we represent the
left hand side of relation (o) in terms of the operation of pullback:

L*(D)(X1,Xs, ... ,Xpn) = D(L(X1), L(X2), ... ,L(X,))

In turn, we recover the basic member A for A™(V), described in article 19°.
Now we may introduce numbers d and A in F such that:

D=dA, L*(A)=)A
We find that:
L*(D) = L*(dA) =dL*(A) =dAA = \D
The proof of our contention is complete.
24° Now let L; and Lo be any linear mappings carrying V to itself. We
claim that the following relation, fundamental and formidable, holds among
the determinants of Ly, Lo, and Ly - Ly:

det(L2 . Ll) = det(Lg)det(Ll)
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Again, the proof is simple. We recover the basic member A of A"(V), we
verify that:
(L2 - L1)"(A) = Li(L5(A))

and we compute:
det(Lo - L1)A = (Lo - L1)*(A)
= Li(L5(A))
Li(det(L2)A)
—det(Lg) 1(A)
= det(Lg) et(Ll)

The proof of the claim is complete.

25° Let us call attention to a fundamental relation between linear mappings
and determinants. We claim that L is invertible iff det(L) # 0. In fact, if L
is invertible then:

1 = det(I) = det(L - L) = det(L)det(L™")

It follows that det(L) # 0. Moreover, det(L) and det(L~1!) are reciprocals of
one another. Conversely, if L is not invertible then there must be a nonzero
member B of V such that L(B) = 0. If it were not so then, by the Rank
Theorem, we would find that:

dim(ker(L)) =0 and dim(ran(L))=mn

so that L would be both injective and surjective, hence invertible. Of course,
we may take B to be the first member of a basis B for V:

B: B:Bl,BQ, ,Bn

Borrowing the now familiar basic member A of A™(V), we find that:

0=A(0,L(B2), ... ,L(Bn))
=L*(A)(By,Ba, ... ,By)
=det(L)A(B1,Bs, ... ,By)
= det(L)

26° Finally, let us engage in the computation of determinants. Of course, L
is a linear mapping carrying V to itself. Let us compute det(L). For now, let
us assume that n = 4, so that dim(V) = 4. Let us introduce a basis for V:

B: BI;B27B3;B4
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As usual:

L(B1) = m11B1 + ma1 B2 + m31 Bs + my1 By
L(B3) = m12B1 + maaBa + m32Bs + my2 By
L(B3) = mi3B1 + ma3 By + m33B3 + my3By
L(By4) = m14B1 + may By + m34 B3 + myy By

and:
mi1 M1z M3 Mig

ma21 M22 123 124
m31 MM32 1MM33 1M34
mg1 MMy M43 TM44

is the rectangular (indeed, square) array defined by L relative to the bases B
and B for V and V. We contend that we can compute det(L) directly from
M:

() det(L) = Z |U| Mig(1)M20(2)M30(3) = Z |7'| Mr(1)1M7(2)21M7(3)3

o T

Both of the foregoing summations yield the sum of the following list of 24
numbers:

|o| M10(1)M20 (2) M30(3)Mac(4) = |T| Mr(1)1Mr (2)2Mr(3)3MM7 (4)4

where o and 7 run through Sy, while o = 771

27° One may view the products in the foregoing list, in terms of the ”neutral
positions” of four rooks on a four by four chess board. In such a position,
no one rook can attack any of the others. Consequently, no two of the rooks
can occupy the same row or the same column. Let us label the rooks by
the positive integers 1, 2, 3, and 4. Now every neutral position defines a
permutation in Sy, in two different ways, as follows:

o(j) =k

iff the rook named j occupies the k-th column of the chess board. Just as
well:

T(j) =k
iff the rook named j occupies the k-th row of the chess board. Obviously,
o and 7 are inverse to one another. These permutations correspond to the
following products in the foregoing list:
0 — Mig(1)M25(2)M30(3) M40 (4)

T — My(1)1M7(2)2M7(3)3M1(4)4
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Of course, the plus and minus signs attached to the products reflect the signs
of the corresponding permutations. One should note that ¢ and 7 have the
same sign, that is, both are even or both are odd.

28° Let us prove the relation (\). We have:

det(L) = det(L)A(By, Ba, Bs, By)
= L*(A)(By, B2, Bs, By)
= A(L(By), L(Bz), L(Bs), L(By))

Since A is 4-linear, we find that det(L) is the sum of the following 4* = 256
products:

Ma1TMp2MM 3T d4 A(Ba; By, B, Bd)

(1<a<4,1<b<4,1<c<4,1<d<4)

However, if any two among a, b, ¢, and d are equal then the corresponding
value of A is 0. Consequently, just 24 of the products survive:

M (11N (2)2M7(3)3Tar (4) A (B (1), Br2), Br(3), Br(a)
where 7 runs through Sy. Of course:
A(Br(1), Br2y, Br3); Bray) = |7|
The proof of relation () is complete.

29° The same pattern of argument will prove relation (A) for the general case
in which dim(V) = n.

30° Let us show that the Determinant Mapping;:
det : L(V) — F
can be identified, through a choice of basis for V, with a member § of A" (F™).

31° To be explicit, let us set n = 4. Let V be a linear space for which
dim(V) = 4. Let B be a basis for V:

B: B15B27B3)B4
Let K be the linear isomorphism carrying F4 to V, determined by B:
K(E1) = B1, K(F3) = By, K(E3) = Bs, K(E4) = By
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Now let L be any linear mapping carrying V to V:
L:V—YV
let M be the matrix for L relative to the bases B and B for V and V:
M=K"'LK

and let M be the corresponding square array, having 4 rows and 4 columns,
of numbers in F*:

mi1 Mi2 M1z Mg
m21 M2 M23 M2yg
mg31 MMg32 M33 M34
Mg My Mgz May

In review:

J
where k is any relevant index (1 < k < 4).

32° Finally, let X1, X5, X3, and X, be the columns of M:

mi1 mi2 mis mig
m m mo: m
X, = 21 Xy = 22 X5 = 23 Xy = 24
ms3i ma32 ms3s3 ms3y4
my1 my2 M43 v

In this way, we identify:

L(V) and F*xF*xF*xF!

33° Now we introduce the member § of A*(F*), as follows::
Eo’ o] M1g(1)M20(2)M30(3) M40 (4)
5(X1;X27X37X4) = or
> 1Tl My 1imr 2)2mr (3)3M07 (44
Through the foregoing torrent of notation, we see that:

det(L) == 6(X17 XQ; X37 X4)

34° At this point, one might imagine a practical computational route to the
definition of determinants. One may run the procedure from L through B to
M and M in reverse. The foregoing relation shows the first step. However,
proofs of the uniqueness of the determinant of L and of the basic relations
involving products and inverses would be complicated.
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07 Characteristic Values

01° Let V be a finite dimensional linear space and let L be a linear mapping
carrying V to itself:
L:V—YV

Let a be a number in F. It may happen that there is a nonzero member X of
V such that:

(c) L(X)=aX

In such a case, we refer to a as a characteristic value for L. In turn, the
members Y of V for which L(Y) = aY form a linear subspace U of V. We
refer to U as the characteristic subspace for L and to the members of U as
characteristic members for L, relative to a.

02° Obviously, a is a characteristic value for L iff al — L is not invertible,
which is to say that:
det(al —L)=0

03° Now we are led to introduce the characteristic function for L:

p(C) = det(CI — L)
where ( is any number in F. We contend that p is a polynomial.

04° To prove the contention, we reprise our conventional notation: L, B, A.
For simplicity, we set n = 4. We find that:

det(CI — L) = det(CI — LYA(By, B, B3, By)
= ((¢I = L)*(A))(B1, B2, Bs, By)
= A((B1 — L(B1),(Bs — L(B2),(Bs — L(B3),(Bs — L(By))
= e Hel®+al+o

where c3, ca, ¢1, and ¢y are the sums of terms, as follows:

A(By, Ba, B, L(By))
.~ A(B, By, L(By). B)
* T~ A(B1,L(B»). B3, By)
A( )

1
L( ) B25B37B4
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( (B4))
+ A(By, L(Bs), B3, L(B4))
_ +A(L(B1), B2, B3, L(By))
T 4 A(B1,L(By), L(Bs), By)
+ A(L(By), B2, L(B3), By)
+ A(L(B1), L(B2), B3, Bs)
— A(B1, L(B2), L(B3), L(Ba))
= A(L(Bx1), B, L(Bs), L(Ba))
T A(L(B1), L(Bs), B3, L(By))
— A(L(Bh1), L(B2), L(B3), Ba)

and:

The degree of p is the dimension of V and the leading coefficient of p is 1. By
design, the characteristic values of L are the roots of p.

05° Just as well, we may pass to the square array M for L relative to B. We
find that:

¢—m mi2 mi3 mig
m —-m m m
det(CI — L) = det ( 21 ¢ 22 23 2 )
ma1 m32  (—m33  M34
m41 M4 ma3z ¢ — My

The former computation requires the assembly of 24 —1 = 15 terms, while the
latter requires 4! — 1 = 23. In general, the former requires 2" — 1, the latter
n!—1.

06° For the case in which F = R, the characteristic polynomial p may have
no roots, so that L admits no characteristic values. However, for the case in
which F = C, we may apply the Fundamental Theorem of Algebra to obtain
a completely satisfactory conclusion. In fact, the characteristic polynomial
would stand as follows:

p(Q) = (C—a)™(C—az)"™ -+ (C—an)™

where a1, as, ..., and a, are the distinct roots of p. The exponents count the
multiplicities of the roots.
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08 The Theorem of Jordan

01° Now let us develop one of the central theorems of our subject:
THE THEOREM OF JORDAN

We will assume that F = C.

02° For the statement of the theorem, we require certain terminology and
certain basic types of linear mapping. Let V be a finite dimensional linear
space, having dimension n, and let L be any linear mapping in L(V). We say
that L is diagonalizable iff there exists a basis:

B: By1,Bs, ... .,B,
for V and there exists a corresponding array:
T: ti,ta, ...ty
of numbers in C such that, for each index j (1 < j < n):
L(Bj) =t;B;

Obviously, the displayed numbers are the characteristic values of L. They are
not necessarily distinct.

03° In turn, we say that L is nilpotent iff there is a positive integer k such
that:
L* =0

One refers to the smallest such positive integer, let it be v, as the nilpotent
degree for L.

04° We also require the algebra P of polynomials, with coefficients in C. The
members of P have the following familiar form:

d
FQO =) el
j=0

where ( represents an arbitrary complex number. Presuming that cq # 0, we
declare that the degree of f is d. The operations of addition, scalar multipli-
cation, and multiplication stand as follows:

(f +9)(O) = F(¢) +9(O)
(ch)(¢) = ch(C)
(f9)(€) = f(Og(C)
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Under these operations, P is a commutative algebra.

05° Let us note that L(V) is also an algebra, but it fails to be commutative.
By article 14° in Section 04, we know that dim(V) = n?, where n is the
dimension of V.

06° Now let f be any polynomial in P and let L be any linear mapping in
L(V). Granted the foregoing form for f, we may apply f to L, obtaining a
linear mapping f(L) in L(V) as follows:

d
FL)=Y ¢l
j=0

We refer to it as a polynomial in L.

07° By patient computation, we find that:

(f +9)(L) = F(L) + (L)
(ch)(L) = ch(L)

(f9)(L) = f(L)g(L)

08° Now let V be a finite dimensional linear space, having dimension n. The
Theorem of Jordan asserts that, for any linear mapping L in L(V), there
exist a diagonalizable linear mapping L° and a nilpotent linear mapping L*®
in L(V) such that:

(JT) L=1L°+1L°

Both L° and L® are polynomials in L. Moreover, under the stated conditions,
L° and L°® are unique.

09° For the proof of the theorem, we require three elements:

() the Theorem of Cayley and Hamilton
(e) the concept of Direct Sum Decomposition
() the Zero Places Theorem of Hilbert

The sense of the first element is simple:
(CH) p(L) =0
where p is the characteristic polynomial for L:

p(¢) = det(¢ — L)
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This remarkable, though elementary result is critical to the argument which
follows. To prove it, we return to article 33° in Section 06 and to article 05°
in the preceding section. (For those articles, we had set n = 4.)
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11° Now let consider the second element. We mean the concept of Direct
Sum Decomposition of V. It is in fact a natural generalization of the concept
of basis for V. Let U be a list of linear subspaces of V.
Uu: U, U, ... U,

We say that U generates V iff, for each member X of V, there are members:

X15X27 cee 7X7"
of V such that, for each index j (1 < j <r), X; € U; and such that:
(%) X=X1+Xo+ -+ + X,
We say that U is independent iff, for any members:

X1, X0, ..., X44
of V, if, for each index j (1 <j <r), X; € U, and if:

Xi+Xo+ - +X, =0

then, for each index j (1 < j <r), X; =0.
12° Obviously, if U is independent and if U generates V then every member
of V can be presented, uniquely, in the form displayed in relation (k). In
this context, we say that U defines a Direct Sum Decomposition of V. We

summarize this complex of relations as follows:

V=U,aeU® --- & U,
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13° Finally, let us turn to the third element, a Theorem of Hilbert, often
called “der NullStellenSatz.” Let H be a finite list of polynomials in P:

H hl,hg, ,hr
Let us assume that, for each number ¢ in C, at least one of the numbers:

hl(C)ﬂ hQ(C)v s ahT(C)

is nonzero. We claim that there exists a corresponding list F of polynomials
in P:
F: flaf27 afr

such that:
(HN) fihi + foho + -+ + frh, =1
We will sketch a proof of the claim at the end of this section.

14° Let us return to our original objective: to prove the Theorem of Jordan.
Let V be a finite dimensional linear space, having dimension n, and let L
be any linear mapping in L(V). We must show that there exist polynomials
L° = f°(L) and L®* = f*(L) in L, the first diagonalizable and the second
nilpotent, such that:

L=L°+1L*

and we must show that, subject to the stated conditions, L° and L°® are
unique.

15° Let us prove existence. To that end, we introduce the polynomials:

p1(Q) = (¢ —a1)™, p1(€)
p2(¢) = (¢ —a2)™, p2(¢)

related as follows:



For the case in which r = 4, we would have:

P1(¢) = p2(¢)p3(¢)
P2(¢) = p1(¢)p3(¢)
p3(¢) = p1(Q)p2(Q)
pa(¢) = p1(Q)p2(Q)

16° Obviously, the polynomials in the list:

have no zeros in common. By the Theorem of Hilbert, we may introduce a

list:

of polynomials such that:

P plap%

F flaf27

’ﬁ’l"

’f”’

flﬁ1+f2ﬁ2+ +frﬁ7":1

Finally, we introduce the following linear mappings in L(V):

P1 = a1I,
P2 = GQI,
P. =asl,

These mappings will provide a clear proof of the Theorem of Jordan.

Ql :L_alIv
QQZL_G'QIv
Qr:L_aslv

Hs = fs(L)ﬁr(L)

17° In fact, we contend that the linear mappings:

L° =PI + PRIy + --- +P.1I,
L* =1L + Qo1 + -+ + Q1L

(*)

serve the purposes of the theorem.

18° Let us emphasize that all the linear mappings now under consideration

are polynomials in L. As a result, any two of them commute:

L/L// — L//L/
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19° By elementary observations, we find that:

M 4+ T+ - 10, =1
Moreover, for any indices j and k (1 < j <r, 1 <k <), if j # k then p
divides p;pr. By the Theorem of Cayley and Hamilton, we have p(L) = 0.

Hence:
IL;II, =0

It follows that, for any index ¢ (1 < ¢ < s):
12 = 11,101, =TI,

Consequently, the list P consisting of the ranges of Il Il, ... , and II,. defines
a direct sum decomposition of V:

V =ran(Ily) @ ran(Ilz) @ --- @ ran(Il,)
For each X in V, we find that:
X=X1+Xo+ --- + X,
where, for each index j (1 < j <r):
X; = 10,(X)

The linear mapping II; serves as a projection, which assigns to each member
X of V its (unique) “representative” in ran(Il;).

20° For each index £ (1 < ¢ <r):
(Qelly)™ = Q1L = pe(L) fe(L)pe(L) = fe(L)p(L) =0
Hence, QII; is nilpotent. It follows that L*® is nilpotent.

21° In turn, it is obvious that L° is diagonalizable. Moreover, the character-
istic values of L° are the roots of p.

22° Let us prove uniqueness. ............
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23° Let us sketch, very quickly, a proof of the Theorem of Hilbert. Let P
be the algebra of polynomials with coefficients in C. Let H be a finite list of
(nonzero) polynomials in P:

H hl,hg, ,hr

and let J be the subset of P consisting of all polynomials of the form:
Jiha + faha -0 + frhy

where F is any (finite) list of polynomials in P:

F flaf27 afr
Obviously, for any polynomial f in P and for any polynomials g, g1, and g
inJ, fg and g1 + g2 are in J. Now let ¢ be a polynomial in J\{0} for which
the degree, let it be v, is the smallest among the degrees of all polynomials

in J\{0}. In turn, let g be any polynomial in J. By division in P, we may
introduce polynomials § and p in P such that:

g=19dq+p

where the degree of p is less than v. Clearly, g — d¢ must be in J. Hence, p
must be 0. We infer that J consists of all and only multiples of ¢::

J=Pgq

Now it is plain that, if the polynomials in the list H have no common zeros
in C, then ¢ is constant. In such a case, there would be a list F for which:

fihi + fahe -+ + fshs =1

This result figured in our proof of the Theorem of Jordan.
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09 Positive Definite Orthogonal Geometries

01° We plan to study the relation between Linear Algebra and Geometry.
With reference to article 09° in Section 06, we distinguish, by symmetry
and by antisymmetry, two basic cases:

ORTHOGONAL GEOMETRY and SYMPLECTIC GEOMETRY

Mindful of scope and of practical applications, we will concentrate upon the
special case of Positive Definite Orthogonal Geometry.

02° Hereafter, we will assume that F = R. Let V be a linear space, having
finite dimension n, and let I' be a 2-linear functional in A?(V). We will refer
to I' as a bilinear form. For the various members X and Y in V, we prefer

to write:
not I'(X,Y) but (X,Y)

At the outset, we require that I' be nondegenerate. We mean to say that:

for each X in V,
if X # 0 then there exists Y in V such that {( X,Y ) #0

for each Y in V,
if Y # 0 then there exists X in V such that ( X,Y ) #0

Subject to the requirement just stated, we refer to the ordered pair (V,T') as
a geometry.

03° For the case in which I' is symmetric, we refer to the geometry (V,I') as
an orthogonal geometry. For the case in which I' is antisymmetric, we refer
to the geometry (V,T') as a symplectic geometry.

04° For a given orthogonal geometry (V,T), it may happen that, for each X
in V, if X # 0 then:

(%) 0<(X,X)

In such a case, we refer to the geometry (V,T') as a positive definite orthogonal
geometry. Hereafter, we focus our attention exclusively upon such geometries.
We will refer to them simply by mentioning the underlying linear space V,
taking for granted that V has been supplied, in some manner, with a positive
definite symmetric bilinear form and, in turn, presenting the values of the
form as follows:

(X.Y)
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05° For a simple example, we need only cite the familiar case of R?, supplied
with the standard inner product:

(x,y)=z151 + 2292 + x3Y3

where:
T Y1
X = i) s Yy = Y2
T3 Ys

06° Let V be a positive definite orthogonal (pdo) geometry. Let n be the
dimension of V. For each Z in V, we introduce, as usual, the norm of Z:

12l =v(Z,2)
and the normalization of Z:
Z=—2z (z]=1)
1Z]]

Of course, for the latter, we require that Z # 0.

07° By simple (very familiar) arguments, we find that, for any X and Y in
V:

(YN < [IXIY] and  [|X + Y[ < | X[+ [[Y]

08° For our first step forward, we concentrate upon the special character of
certain bases for V, which figure in the fundamental theorems to follow. Let
C be a basis for V:

C: Cl,CQ,...,Cn

We say that C is an orthonormal basis iff:

= {0 1221

09° Relative to such a basis, we can calculate coordinates very easily. For
each X in V:
X =201 + 220 + -+ + 2,0,
we find that, for each index 7 (1 < j < n):
T; = <<X, Cj >>
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10° Orthonormal bases are in one sense very special, in another sense rather
common. In any case, we contend that, for any basis B for V:

B: Bl,B27...,Bn

we may “convert” B to an orthonormal basis C for V while causing “minimal
disturbance”. The latter (vaguely phrased) condition means that, for any
index k (1 <k <n):

B depends on C,Cs, ... ,Cy

and:
Cyr depends on By, Bs, ..., By

Just as well, the condition means that, for any index k (1 < k < n), the linear
subspaces of V generated by:

Bl,BQ, ,Bk and Cl,CQ, ,Ck
respectively, are the same.
11° Let us prove the contention. In fact, let us describe an algorithm for
converting an arbitrary basis B to an orthonormal basis C. We set n = 4.

The pattern of computation runs as follows:

Ch=hB

Cy = By —<<B2,01>>C'1

Cs = Bs — (B3, (5 )Cy — (B3, C1 )4

Cy =By —(B4,C3)Cs —(By,Ca)Cy — ( By, C1 ) G

By this pattern of computation, we obtain the orthonormal basis:
C: C/\(156/\(27CA(-f57C/\(4

Obviously, the condition of “minimum disturbance” is satisfied.
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10 The Spectral Theorem

01° Let V' and V" be pdo geometries. Let L’ and L” be linear mappings,
the first carrying V' to V” and the second carrying V" to V':

L' e L(V, V"), L'"eLV" V)

We say that L' and L are compatible iff, for any members X of V' and Y of
AV
«L,(X)7Y>> = <<Xa L”(Y)>>

To express this relation, we will write:
LI ~ L/I

02° We contend that, for each L, there is precisely one L” such that L' ~ L".
Of course, it would follow that, for each L”, there is precisely one L’ such that
L'=~L".

03° The argument for uniqueness is simple. We imagine linear mappings L/,
LY, and LY such that L’ ~ L} and L' ~ L}. Clearly, for any X in V' and Y
in V”:

(X, LY(Y) = Ly(Y) ) =(L'(X),Y) = (L'(X),Y ) =0

Since the bilinear form on V' is nondegenerate, we infer that LY (Y) = L (Y).
Hence, LY = Lj.

04° The argument for existence requires further developments. We define
linear mappings )’ carrying V' to V/* and Q" carrying V" to V"’*, as follows:

Q/(X//)(X/) — <<X/, XI/ >>, Q//(YI/)(Y/) :<<Y/7YH>>

where X" and X’ are any members of V' and Y and Y’ are any members of
V”. Since the bilinear forms on V' and V" are nondegenerate, we find that
Q' and Q" are injective. Since the dimensions of V' and V'* are the same and
the dimensions of V" and V"* are the same, we infer that Q' and Q" are in
fact bijective.

05° In practical terms, we infer that, for each A’ in V’*| there is precisely one
X" in V'’ such that Q'(X") = A/, while for each A” in V"*  there is precisely
one Y in V" such that Q”(Y"”) = A”. These assertions mean that, for each

X’ in V' and for each Y’ in V"':

(%) N(X)=(X',X") and A'(Y)=(Y",Y")
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06° Now let L’ be any linear mapping in L(V’, V"), For any Y in V" we
find that Q”(Y") lies in V”* and Q”(Y") - L’ lies in V'*. Hence, there is
precisely one X" in V' such that:

Q/(X//) — Q//(Y//) . L/
Denoting X" by L”(Y") and unwinding the notation, we infer that, for any
Y"” in V" and any X’ in V"
(X, L"(Y"))=(L'(X),Y")

In this way we have succeeded in defining a linear mapping L” in L(V" V')
for which L’ ~ L”. The argument is complete.

07° Let us introduce the conventional notation and terminology:
I'~L" <+ L['=L"and L'=L1"
We say that L' and L” are adjoints of one another.
08° To understand the relation:
L'~L"

let us consider corresponding matrices for L’ and L”. Let the dimensions of
V' and V” be n/ and n”, respectively. Let:

C/ : Ci,Cé, ey ;L/, CH: Ci’,cg, ey 7,,://
be orthonormal bases for V' and V" respectively. Clearly, the entries in the
corresponding rectangular arrays stand as follows:

miy =(L(C)),00)  mll={L"(C}),C})

where 7 and k are any indices for which 1 < j <n/ and 1 < k <n”. Now the
relation L' ~ L" means that:

ro_

09° Now let us assume that V' and V" are the same. Accordingly, we may
introduce a pdo geometry V such that V' =V = V", Let S and T be linear
mappings in L(V) for which S~ T. So S and T are adjoints of one another.
We say that S is self adjoint iff S =T, that is:

S=5"
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The condition means that, for any X and Y in V:
(5(X),Y)=(X,5(Y))

It is the same to say that T'= T*. Now the condition on the corresponding
quadratic array takes the following form:

Skj = Sjk

10° Let us turn to describe another of the central theorems of our subject:
THE SPECTRAL THEOREM

It states that, in effect, every self adjoint linear mapping is diagonalizable.
But we can describe the matter much more clearly.

11° For precision of expression, we present a refinement of the concept of
direct sum decomposition. Let V be a pdo geometry. Let U/ be a list:

U: U,Us, ... U,

of linear subspaces of V which defines a direct sum decomposition of V,
but which, in addition, meets the condition that, for any indices j and k
(1<j<s,1<k<s),if j# kthen U; and Uy are orthogonal to one
another:

U; LUy

We mean to say that, for any X in U; and Y in Uy, ( X,Y ) = 0. For such a
case, we declare that U defines an Orthogonal Direct Sum Decomposition of
V. We summarize this complex of relations as follows:

V=U, 10Uy 1L -+ LT,

12° Here is a simple example of such a decomposition. Let U be a linear
subspace of V. Let the dimensions of U and V be d and n, respectively. Let
U+ be the linear subspace of V composed of all Y in V such that, for all X
in U, (X,Y )= 0. We refer to U as the orthogonal complement of U in V.
We claim that:

V=UL1lU"

To prove the claim, we introduce a basis B’ for U, extend B’ to a basis B for
V:
B: By,B, ...,B); BY,BYy ...,Bl ,
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then convert B to an orthonormal basis C for V:
c: C1,C, ....Ch:ocy.cy, .l
while meeting the condition of minimum disturbance. Obviously:
¢: C,Ch ...,C, and C": Oy, CY ... 00,

are orthonormal bases for U and U+, respectively. Now one may complete
the proof by simple observations.

13° Let V be a pdo geometry, having dimension n. Let S be a self adjoint
linear mapping in L(V). In precise terms, the Spectral Theorem states that
there exist an orthonormal basis C for V:

C: C,Cy, ..., C,
and a list 7 of real numbers:

T: ti,te, ...ty
such that, for each index k (1 <k <n):
(ST) S(Cx) = t;Ci

14° Obviously, the numbers in the list 7 are characteristic values for S.
However, as displayed, they may not be distinct. In any case, we claim that
there are no others. To prove the claim, we imagine a real number a and a
nonzero member X of V such that S(X) = aX. Of course, there must be an
index j (1 < k <n) such that { X, Cj, ) # 0. It would follow that:

a{ X, Cr ) =(S(X),Cr ) =(X,S(Ck) ) = t, (X, Ck )

Consequently, a = tj.

15° Let us compress the list 7, so that the entries are mutually distinct:
T: T1,T2, ... ,Tr

For each index j (1 < j < r), let U; be the characteristic subspace of V
corresponding to 7;. By definition, U; consists of all members X of V for
which S(X) = 7;X. Obviously, for any indices jand k (1 <j <7, 1<k <r),
if j # k then:

U; L Uy,

because, for any X in U; and Y in Uy:
Tj<<X7Y>>:<<S(X)ay>>:<<X7‘S(Y)>>: Tk<<X7Y>>
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16° The foregoing developments show that the list:
u: U0, ..., 0,
of subspaces of V defines an orthogonal direct sum decomposition of V:
v=U;1LUyl --- LU,

Reflecting upon the presentation of the Theorem of Jordan in Section 07,
we introduce the following linear mappings in L(V):

PIZTII; Hl
Py, =11, 11,

P =71, 11,

The various linear mappings II; (1 < j < r) are defined, by projection, as
follows:

X =IL1(X)+12(X)+ -+ +1,.(X)

where X is any member of V. We mean that, for each index j (1 < j <),
IL;(X) is the representative of X in U;. Obviously:

m+1I+ -y =1
One can easily verify that:
LI, = O, IO =10, ran(Ily) = Uy, ker(Ily) = Ui
We say that the list P of self adjoint projections:
P Iy, s, ... T

forms a resolution of the identity in V. We obtain the following elegant
presentation of S:

S =PRIl + Pl + - 4+ Bl

17° Let us prove the Spectral Theorem. To that end, we will state a basic
fact, then proceed to prove the theorem by induction. In the last section,
Section 12, we will prove that basic fact, by borrowing a well known theorem
from Multivariable Calculus.
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18° Let V be a pdo geometry, having dimension n. Let S be a self adjoint
linear mapping in L(V). We must design an orthonormal basis C for V:

C: C,Cy, ... ,C,
and a list 7 of real numbers:
T: ti,te, ...ty
such that, for each index k (1 <k <n):
S(Cr) =t;Cy

We will argue by induction. However, in process, we will assume a basic
fact: that S admits at least one characteristic value. We will prove that fact,
independently, in the last section. For the case in which n = 1, we declare the
theorem to be obvious. Let m be any positive integer. Let us assume that the
theorem holds true for the case in which n = m. Let us prove that it holds
true for the case in which n = m + 1. To begin, we apply the foregoing basic
fact. We introduce a real number ¢ and a member C' of V such that:

s(cy=tc, (C,Cy=1

In turn, we introduce the linear subspaces U = R C and UL of V. The former
consists of all scalar multiples of C' while the latter consists of all members
Y in V for which ( C,Y ) = 0. Of course, the dimension of Ut is m. The
corresponding list defines an orthogonal direct sum decomposition of V:

V=RC LU

We find that, for each Y in V, if Y is in Ut then S(Y) is in Ut as well,
because:

(C,5(Y))=(5(C),Y)=a{C,Y)=0

Now we may apply the induction hypothesis, to introduce an orthonormal
basis C* for Ut:
Ct: Co,Cs, ... 0

and a list 7 of real numbers:
TZ tg,tg, ;tn
such that, for each index &k (2 < k < n):
S(Cx) = txCk

The proof is complete.
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11 The Singular Value Decomposition
01° Let V' and V" be pdo geometries. Let p and ¢ be the dimensions of V'
and V" respectively. Let L be any linear mapping in L(V’', V"). Let r be
the dimension of the range of L. Obviously, r < min{p,q}. We contend that
there exist orthonormal bases:

c': C,Cy, ... ,Cp ¢’ cr.cy, ..., CY
for V' and V”, respectively, and a list:

: 01,09, ... ,0p

of positive real numbers such that:

L(C) =Y LY(CY) =1 Ch
L(Cy) = 02C3  L*(Cy) = 02C}

L(C)) =o:C) L(C)) = 0,C;

(SV)
L(C;) =0 L (CY)=0
L)) 0 L*(Cl) 0

where s = r + 1. This foregoing contention presents:
THE SINGULAR VALUE DECOMPOSITION
The entries in the list ¥ are the singular values for L.

02° 1In the last section, we will describe and apply the Singular Value De-
composition in terms of matrices.

03° As a preamble to the proof, we observe a very neat relation between
ker(L) and ran(L*). For each X in V"
X €ker(L)<= L(X)=0
— (VY e V')(L(X),Y)=0
— (VY e V)(X,L*(Y))=0
— X €ran(L*)*
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Hence:
ker(L) = ran(L*)*

Similarly:
ker(L*) = ran(L)*

Consequently, we obtain the following orthogonal direct sum decompositions
of V' and V”:

V' = ker(L) L ran(L*), V" = ker(L*) L ran(L)
We infer that L carries ran(L*) bijectively to ran(L) and L* carries ran(L)

bijectively to ran(L*). Hence, the dimensions of ran(L) and ran(L*) are the
same, namely, r

ran(L*) ran(L)

ker(L) | w w | ker(L*)

SVD Format
04° Now we introduce the linear mapping S in L(V'), as follows:
S=L"L

Obviously, S carries ran(L*) bijectively to itself, while S carries ker(L) to
{0}. We find that, for any X and ¥ in V:

(5(x),Y)

(L*
<<()L(Y
(XL
={X,5(¥))

54



Hence, S is self adjoint. In fact, S is nonnegative. That is, for any X in V':

0<(S(X),X)

because:
0 <(L(X), L(X ) =(L"(L(X)), X ) =(5(X), X )

It follows that the characteristic values for S are nonnegative real numbers:

0<(S(X),X)=(aX,X)=a(X,X) (X#£0)

05° By the Spectral Theorem, we may introduce an orthonormal basis ¢’ for
ran(L*):

¢ oca, ... C

and a list T of positive real numbers:
T: 71,72, - T
such that, for each index j (1 <j <r):

S(C%) = 7;C

06° Of course, we may extend C’ to an orthonormal basis for V':
=/
c': C,Cl, ....C
The latter members in the list form an orthonormal basis for ker(L).
07° In turn, for any indices k and ¢ (1 <k <r, 1 </l <r):

0 teep.zepy=tseant={7 fili_;

We are led to introduce the list X of (positive) square roots:
Yoi 01 =4T1, 00 =4/T2, ..., 00 =+/Tr

Now we can introduce an orthonormal basis C” for ran(L), as follows:

=11

I Cil _ %L(Ci)vcﬂ = iL(Cé), ,C,,«/ = ULL(C;)

1 02
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For each index j (1 < j <r), we observe that:

L(C}) = 0;C7

Moreover:
LY(C)) = o C

because:

vtuep = rwep = Lsep= Lo

0j 0j

08° Of course, we may extend ¢" to an orthonormal basis for V"
c’ - C// " oid
: , Crr -+, Cy
The latter members in the list form an orthonormal basis for ker(L*).

09° One should note that the members Ci, C%, ..., and C/ of V' and the
members CY, C¥, ..., and C of V" are subject to meaningful restrictions
while the members C; , ..., and C}, of V/ and the members C}/, , ..., and
C of V' are not.

10° The proof of the theorem is complete.

11° For a first impression of the utility of the Singular Value Decomposition
(SVD), let us consider the following computation. Let us reprise the foregoing
context. We imagine the following Problem:

L(X)=Y

where X is a member of V/ and Y is a member of V”. Given Y, we search
for X. Of course, Y need not be in Aran(L), so the search requires flexibity.
Precisely, we search for a member X of ran(L*) such that, among all such
members, the error: R

IL(X) - Y2

is least. The solution stands as follows:
X = (S71LY)(Y)
because Y = L(X) is the orthogonal projection of ¥ on ran(L):
(LS™'L*)* = LS~ 'L*, (LS™'L*)(LS™'L*)=LS'L*

We have interpreted S~! to be the inverse of S, regarded as a (self adjoint)
linear isomorphism carrying ran(L*) to itself.
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12° In context of matrices, the foregoing procedure supports many important
applications, notably, in Mathematical Statistics. In the last section, we will
describe the procedure in detail, in terms of coordinates.
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12 Matrices Redux

01° Let V be a pdo geometry, having dimension n. We begin this (our last)
section by noting that, for our practical purposes, V and R" are indistin-
guishable. We mean to say that there is a linear isomorphism K carrying R"
to V such that, for any members X and Y of R™:

(K(X),K(Y))=(X,Y)
In the foregoing relation, we have invoked one common symbol to represent
the two bilinear forms, one for R™ and one for V. In any case, it is plain that,
whatever we can prove for R™, we can prove for V, and conversely.
02° To design such a linear isomorphism, we need only introduce the standard

basis £ for R™:
E: E17E2, ;En

together with an orthonormal basis C for V:
C: Cl,CQ, ,Cn
Now we may characterize K as follows:
K(E,)=Cy, K(Ey)=Cs, ..., K(E,)=C,

03° Let us commit our exposition, now, to computation. From here forward
we will consider nothing other than the specific pdo geometries:

RTL
together with the various linear mappings M in L(RP,R?), called matrices:

M :RP — R1

and the corresponding rectangular arrays M having ¢ rows and p columns:

mir Mmi2 -0 Mip

m21 M22 -+ M2y
M =

Mq1 Mg2 -+ Mgp

Let us recall that:
mk]‘ :<<MEj,Ek>>
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where j and k are any indices (1 < j <p, 1 <k <gq). Of course:

E17E2,... Ep; E17E2,...,Eq

?

are the standard bases in RP and RY, respectively. Mindful of the relations
just stated, we will simply identify mapping and array.

04° Of course, we will make use of the operations on arrays, reflecting the
operations on linear mappings:

M/—i—M//’ CM, M//M/

05° We will also make use of the operation of adjunction:

M*
As one should anticipate, this operation reflects the relation between the linear
mappings M and M* in L(R?, R?) and L(R?, R?), respectively. For instance,
if p=5and ¢g=3:

mi1 M21 M3i

miir M2 MmMi3 Mig Mis miz2 M22 M32

*
M= | ma1 Mgz Mma3z Moy M2 |, M = | miz ma3 ma33
m31 MM32 1MM33 TM34 M35 mi4 M24 M34

mis Me2s M35

06° Let n be a positive integer. We must describe the relation between the
standard basis:
E: E17E2, ;En

and the various orthonormal bases for R™:
C: C1,Cy, ... ,Cy
To that end, let U be the linear isomorphism in L(R"™), determined as follows:
UE, =C,UEy, =Cs, ... ,UE, =C),
Such a mapping is a matrix for which the columns form an orthonormal basis
for R™. We will refer to U as an orthogonal matrix. One may characterize it

very neatly, by the condition:

U'v=1I

59



07° Obviously, U is invertible. It follows that:
Ur=vvvt=u""
Hence, UU* = I. Moreover, since det(U*) = det(U), we find that:
det(U) = +1
08° Now let us present the Spectral Theorem and the Singular Value Decom-
position, in the current context of cartesian spaces. Let n be a positive integer.
Let S be a self adjoint matrix in L(R™). We may introduce an orthonormal

basis C for R™:
C: C1,Cy, ... ,Cy,

and a list 7 of real numbers:
T ti,to, ... ,tn
such that, for each index k (1 <k <n):
SCr = t,Cy

Let U be the corresponding change of basis matrix. In turn, let S = U*SU.
We find that, for each index k (1 < k < n):

‘S_’Ek =t g

because:
U*SUE, =U*SC), =U"t,C, =t ,U*C},

We may say that U converts S to diagonal form.

09° Here is a simple example. We set n = 3 and we set S as follows:
1 2 1
S=12 0 2
1 2 1
By tinkering, we find the list T
T: —2,0,4

and we find the corresponding orthonormal basis C:

e L) o) L
) el L) v
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In this way, we obtain:

/=2 0 0
S=| 000
00 4

10° Let us look back to Section 10. In that context, we stated a basic fact,
then applied that fact to prove the Spectral Theorem. Let us complete the
proof of the theorem by proving the fact. Let n be a positive integer. Let S be
a self adjoint linear mapping carrying R"™ to itself. Relative to the standard
basis for R", the matrix .S would stand as follows:

S11 S12 c Sin
S21 S22 Son

S = . . . . (Sjk = Skj)
Snl Sn2 o Snn

We contend that there are a real number ¢ and a member C' of R™ for which:
(C,C)y=1 and S(C)=tC
To prove the contention, we introduce a particular Constrained Extremum
Problem:
fX)={5(X),X), g(X)=(X,X)=1
where X runs through R™:

x
T2

Tn

We find that:

n n
flzi, o, ... Jap) = Zijsjkxk

j=1k=1

2 2 2
g(x1, 22, ... ,xp) =27+ 25+ -+ +x

11° The constraint:
g(X)=1

defines a compact subset of R™, namely, the unit sphere S™. The Extreme
Value Theorem guarantees that there is a member C' of S™ such that the value
f(C) is the largest among all values:

f(X)
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where X is any member of S™. In turn, the Theorem of Lagrange guarantees
that there is a real number ¢ such that:

(VH(C) =t (Vg)(C)
By straightforward computation, we find that:
(VA(C) =25(C) and (Vg)(C)=2C

We conclude that:
(c,cy=1 S(C)=tC

The proof is complete.

12° Now let us describe the Singular Value Decomposition in terms of ma-
trices. We return to the context of article 01° in Section 11. Let us identify
V’ with R? and V" with R?. Let U and V be the change of basis matrices
corresponding to C" and C”, respectively:

UE;=C; (1<j<p), VE/=C/ (1<k<gq)

We have employed the markers ' and ” to distinguish the standard bases in
R” and RY, respectively. In turn, let L = V*LU. We find that, for each
index £ (1 < ¢ <r):

LE, = oyE]

because:
V*LUE, =V*LC; = V*0,C}) = o,V*C/

The remaining columns of L equal 0. We may say that U and V convert L to
pseudo diagonal form.

13° For p=4, ¢=7, and r = 3, we have:

op 0 0 O

0 oo 0 O

0 0 o3 O
L=10 0 0 0
0 0 0 O

0 0 0 O

0 0 0 O
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Granted this simple context, let us return to article 11° in Section 11. We
begin with a member ¥ of R7:

We search for a member X of R*:

z1
T2
z3
T4

such that, among all such members, the error:
ILx —Y|?

is least. In fact, we need only consider members X of ran(L*), discounting
the members of ker(L).

14° Tet us recall that L = VLU* and let us introduce X = U*X and YV =
V*Y. We find that: o
ILX —Y|* = |LX - Y|

because:

I[VLU*X =Y || = |LU*X — V*Y|]?

By comparing:

o1 0 0 O Y1
0 oo 0 O _ Yo
0 0 o3 Of (™ 7
0 0 0 0 ;2 with | 7
0 0 0 0 ;’ s
0 0 0 0 4 7o
0 0 0 0 r
we find the best choice of X:

T 0191

Ty | _ | 0202

Z3 03Y3

T4 0
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where &1 = 0, !, 52 = 05, ', and &3 = o5 '. It is the same to say that:

X=8"'*Y
because: o
I 20 0 0\ /oo O 0 0 0 0 0\ |%
Z| [0 m 0 0)[0 oo 0 000 O0)]|®
|- lo 0o & o 0 0 o3 000 0%
T 0 0 0 0 0 0 0 0000/ |%
Ye
Y7

Y1

. 0 0 0 0 0 0\ |®

o & 0 000 o0)|®

o 0 & 0000f|%

0 0 0 0000/ |%

Ye

Y7

where 71 = 7,1, o = 75 1, and 73 = 75 ', One should note that L S~'L* is
the projection on the range of L:

« 0 0 0 1000000
0 % 0 0 0100000
00 % 0 3288888 0010000
0000y 04+0000l=l0000000
0000f\y 05000 0 0000000
000 0 0000000
000 0 0000000

15° Recalling the foregoing relations and definitions, we recover the result
put forward in article 11° in Section 11:

X =87y
because: ~ ~ ~ ~
X=UX=US'U"UuL*V*VY = S7'L*Y
16° Here is an example which motivates application of the Singular Value

Decomposition. We imagine three variables:

X, X" Y
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We set the values of X’ and X" prior to observation, then proceed to observe
the value of Y. Following eight repetitions, we obtain the following matrix:

I )
Ty To Y2
T3 T3 Y3
M=% T4 Ya
r5 5 Ys
Tg Tg Yo
L7 7 Y7
Ty Ty Y

We assume that the variables satisfy a linear relation
Y —_ a+ bIX/ + b/IX/I + C/XIQ + COX/XI/ + C/IX/IQ
We require to find the “best estimate” of the coefficients:

a
b/
b//

consistent with the observations:

n
Y2
Ys
Y = Y4
Ys
Ys
Yt
Ys

65



To that end, we form the matrix :

1 o) o a:’12 xha
1z o a:’22 xhaly
1 zf o x§2 xhry
T 1z, = xﬁlz xhxl
1 a5 xf x’62 xrexy
1 ot o a:’72 aba
1 xf zy a:éQ xgry
and we seek to minimize the value:
ITW —Y|?

where:

a+ by +b"x] + c’a:’12 + cxix +
a+bah+ bl + c’a:’22 + cCxhaxl
+0'xf + c’xéQ + cxhxl + ' xf
+b'x + c’xf + cCxxy + 'xf
+ 0zl + c’x’52 + catay
+0'zf + c’x’62 + cxgag
a+bzh + bzl + c'a:’72 + cCahal
+0xf + c’méQ + cCxfxf

a+b'zh
a+b'z)
a+ bzl
a+ bz

T™W

a+ bz

72

"2
+cxy

The Singular Value Decomposition yields the answer:

W=8"'T"Y
For completeness, let us recall that:
TS'T*

is the projection carrying V” to the range of T.
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