MATHEMATICS 331

ASSIGNMENT 10
Due: April 16, 2015
01° Let S be the matrix defined by the following quadratic array:

$$
S=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Of course, S is a linear mapping carrying \mathbf{R}^{3} to itself. Show that S is self adjoint. Find the characteristic values for S :

$$
a_{1}, a_{2}, a_{3}
$$

Find an orthonormal basis for \mathbf{R}^{3} :

$$
C_{1}, C_{2}, C_{3}
$$

which serves to diagonalize S :

$$
S\left(C_{1}\right)=a_{1} C_{1}, S\left(C_{2}\right)=a_{2} C_{2}, S\left(C_{3}\right)=a_{3} C_{3}
$$

02° In context of the foregoing problem, let U be the orthogonal linear mapping carrying \mathbf{R}^{3} to itself, defined by the following relations:

$$
U\left(E_{1}\right)=C_{1}, U\left(E_{2}\right)=C_{2}, U\left(E_{3}\right)=C_{3}
$$

We refer to U as the "change of basis" matrix: Verify that:

$$
U^{*} U=I=U U^{*} \quad \text { hence } \quad U^{*}=U^{-1}
$$

In turn, verify that:

$$
U^{*} S U=\left(\begin{array}{ccc}
a_{1} & 0 & 0 \\
0 & a_{2} & 0 \\
0 & 0 & a_{3}
\end{array}\right)
$$

We say that the change of basis defined by U serves to "diagonalize" S. We infer that the "geometric properties" of S and $S^{*}=U^{*} S U$ are the same. To understand the sense of this inference, one should verify that, for any X and Y in \mathbf{R}^{3} :

$$
《 U(X), U(Y)\rangle=\langle X, Y\rangle
$$

03° Show that, for any orthogonal linear mapping:

$$
\operatorname{det}(U)= \pm 1
$$

We say that U is a rotation iff $\operatorname{det}(U)=1$. We say that U is a reflection iff $\operatorname{det}(U)=-1$.
04° Let N be a member of \mathbf{R}^{3} for which:

$$
《\langle N, N\rangle=1
$$

Let U be the linear mapping carrying \mathbf{R}^{3} to itself, defined as follows:

$$
U(X)=X-2\langle X, N\rangle / N
$$

where X is any member of \mathbf{R}^{3}. Show that U is a reflection. To that end, study the cases in which $\langle X, N\rangle=0$ and $X=\xi N$.
05^{\bullet} Again let N be a member of \mathbf{R}^{3} for which:

$$
\langle\langle N, N\rangle=1
$$

Let A be the corresponding matrix:

$$
A=\left(\begin{array}{rrr}
0 & -c & b \\
c & 0 & -a \\
-b & a & 0
\end{array}\right), \quad \text { where } \quad N=\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)
$$

Of course, $a^{2}+b^{2}+c^{2}=1$. Show that, for any real number t :

$$
V(t)=\exp (t A)=I+\sin (t) A+(1-\cos (t)) A^{2}
$$

Show that $V(t)$ is a rotation. The axis of $V(t)$ is N :

$$
V(t) N=N
$$

because $A N=0$.

