MATHEMATICS 331

ASSIGNMENT
Due: April 2, 2015
01° Let \mathbf{V} be a finite dimensional linear space. Let \mathbf{N}_{1} and \mathbf{N}_{2} be nilpotent linear mappings carrying \mathbf{V} to itself, for which:

$$
N_{1} N_{2}=N_{2} N_{1}
$$

Show that $N_{1}+N_{2}$ is nilpotent. To that end, introduce positive integers k and ℓ for which:

$$
N_{1}^{k}=0, \quad N_{2}^{\ell}=0
$$

Then prove that:

$$
\left(N_{1}+N_{2}\right)^{k+\ell}=0
$$

You will benefit by reviewing Professor Thomas Moriarty's monograph on the Binomial Theorem.
02° Let \mathbf{V} be a finite dimensional linear space, for which the scalar field is \mathbf{C}. Let the dimension of \mathbf{V} be n. Let L be a linear mapping carrying \mathbf{V} to itself. Let ϕ be the characteristic polynomial for L :

$$
\phi(\zeta)=\operatorname{det}(\zeta I-L)
$$

where ζ is any number in \mathbf{C}. Of course, we may present ϕ as follows:

$$
\phi(\zeta)=\prod_{j=1}^{r}\left(\zeta-a_{j}\right)^{d_{j}}
$$

where:

$$
a_{1}, a_{2}, \ldots, a_{r}
$$

are the characteristic values, mutually distinct. Show that:

$$
\operatorname{det}(L)=(-1)^{n} \prod_{j=1}^{r} a_{j}^{d_{j}}
$$

03° Find polynomials f and g such that:

$$
f(z)\left(z^{3}-1\right)+g(z)\left(z^{3}+1\right)=1
$$

where ζ is any complex number, or show that it cannot be done.
04° Let M be a linear mapping carrying \mathbf{R}^{6} to itself, for which the square array stands as follows:

$$
\bar{M}=\left(\begin{array}{llllll}
6 & 1 & 0 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 6 & 1 & 0 & 0 \\
0 & 0 & 0 & 6 & 1 & 0 \\
0 & 0 & 0 & 0 & 6 & 1 \\
0 & 0 & 0 & 0 & 0 & 6
\end{array}\right)
$$

Find the smallest positive integer ν for which:

$$
(M-6 I)^{\nu}=0
$$

