MATHEMATICS 331

ASSIGNMENT 7

Due: March 12, 2015
01° Let \mathbf{V} be a finite dimensional linear space and let L_{1} and L_{2} be linear mappings carrying \mathbf{V} to itself. Show that if $L_{1} \cdot L_{2}=I$ then $L_{2} \cdot L_{1}=I$. Of course, I is the identity mapping carrying \mathbf{V} to itself.
02° Let \mathcal{B}^{\prime} and $\mathcal{B}^{\prime \prime}$ be bases for \mathbf{V} :

$$
\mathcal{B}^{\prime}: B_{1}^{\prime}, B_{2}^{\prime}, \ldots, B_{n}^{\prime} ; \quad \mathcal{B}^{\prime \prime}: B_{1}^{\prime \prime}, B_{2}^{\prime \prime}, \ldots, B_{n}^{\prime \prime}
$$

Let L be the linear mapping carrying \mathbf{V} to itself, defined by the following relations:

$$
L\left(B_{j}^{\prime}\right)=B_{j}^{\prime \prime}
$$

where j is any index $(1 \leq j \leq n)$. Show that $\operatorname{det}(L) \neq 0$.
03° Let L be a linear mapping carrying \mathbf{V} to itself, which meets the following condition:

$$
L \cdot L=L
$$

Show the characteristic values for L can only be 0 or 1 .
04° Imagine that the following square arrays (aka matrices):

$$
\begin{array}{cc}
\left(\begin{array}{ll}
6 & 3 \\
3 & 2
\end{array}\right), & \left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 6 & 3 \\
0 & 3 & 2
\end{array}\right), \\
& \left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{array}
$$

derive from linear mappings. Calculate the determinants and the characteristic values. Which among them are invertible?
05° Let L^{\prime}, L, and $L^{\prime \prime}$ be linear mappings carrying \mathbf{V} to itself. In particular, let L be invertible. Show that if:

$$
L^{\prime \prime}=L \cdot L^{\prime} \cdot L^{-1}
$$

then L^{\prime} and $L^{\prime \prime}$ have the same characteristic values.

