MATHEMATICS 331

ASSIGNMENT 5

Due: February 26, 2015
01^{\bullet} Let n be a positive integer and let \mathcal{N} be the set consisting of the first n positive integers:

$$
\mathcal{N}=\{1,2,3, \ldots, n\}
$$

Let \mathbf{S}_{n} be the set of all bijections carrying the set \mathcal{N} to itself. We refer to the members of \mathbf{S}_{n} as permutations. For any members σ and τ, the composition:

$$
\tau \cdot \sigma
$$

is itself a bijection carrying \mathcal{N} to itself. Under this operation of composition, \mathbf{S}_{n} is a group. The identity mapping ϵ carrying \mathcal{N} to itself serves as the identity element for \mathbf{S}_{n} :

$$
\epsilon \cdot \sigma=\sigma=\sigma \cdot \epsilon
$$

Of course, the operation is associative:

$$
v \cdot(\tau \cdot \sigma)=(v \cdot \tau) \cdot \sigma
$$

It is not commutative. Moreover, for every member σ of \mathbf{S}_{n}, there is a member τ of \mathbf{S}_{n} such that:

$$
\sigma \cdot \tau=\epsilon=\tau \cdot \sigma
$$

Of course, τ is the mapping inverse to $\sigma: \tau=\sigma^{-1}$. Now let j and k be (positive) integers in \mathcal{N} for which $j<k$. Let π be the permutation in \mathbf{S}_{n} defined as follows:

$$
\pi(\ell)= \begin{cases}\ell & \text { if } \ell \neq j \text { and } \ell \neq k \\ k & \text { if } \ell=j \\ j & \text { if } \ell=k\end{cases}
$$

We refer to π as a transposition. By a simple induction argument, one may prove that, for any σ in \mathbf{S}_{n}, there exist transpositions:

$$
\pi_{1}, \pi_{2}, \ldots, \pi_{r}
$$

such that:

$$
\sigma=\pi_{1} \cdot \pi_{2} \cdot \cdots \cdot \pi_{r}
$$

By the following two articles, one may prove that, for any two such presentations of σ :

$$
\sigma=\pi_{1}^{\prime} \cdot \pi_{2}^{\prime} \cdot \cdots \cdot \pi_{p}^{\prime}, \quad \sigma=\pi_{1}^{\prime \prime} \cdot \pi_{2}^{\prime \prime} \cdot \cdots \cdot \pi_{q}^{\prime \prime}
$$

the numbers p and q must have the same parity, which is to say that both p and q are even or both p and q are odd.
02° Let \mathbf{A} be the set of all functions A of n variables, in the following form:

$$
A\left(X_{1}, X_{2}, \ldots, X_{n}\right)
$$

We imagine that the variables stand for arbitrary members of some hypothetical set \mathbf{V}. Let the group \mathbf{S}_{n} act on the set \mathbf{A} as follows:

$$
(\sigma \cdot A)\left(X_{1}, X_{2}, \ldots, X_{n}\right)=A\left(X_{\sigma(1)}, X_{\sigma(2)}, \ldots, X_{\sigma(n)}\right)
$$

where σ is any member of \mathbf{S}_{n} and where A is any member of \mathbf{A}. Verify that, for any members σ and τ of \mathbf{S}_{n} and for any member A of \mathbf{A} :

$$
(\tau \cdot \sigma) \cdot A=\tau \cdot(\sigma \cdot A)
$$

To do so, set $n=6$. Interpret the foregoing definition in terms of the following notation:

$$
\begin{aligned}
& X_{\sigma(1)}=\sigma\left(X_{1}\right) \\
& X_{\sigma(2)}=\sigma\left(X_{2}\right) \\
& X_{\sigma(3)}=\sigma\left(X_{3}\right) \\
& X_{\sigma(4)}=\sigma\left(X_{4}\right) \\
& X_{\sigma(5)}=\sigma\left(X_{5}\right) \\
& X_{\sigma(6)}=\sigma\left(X_{6}\right)
\end{aligned}
$$

Note that σ does not change the given variables. It simply permutes them. In effect, the action of σ on \mathcal{N} has migrated to a corresponding action on the variables. It is the same for τ and $\tau \cdot \sigma$.
03° Review the foregoing articles 01° and 02°. Consider the function:

$$
\Phi\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{1 \leq j<k \leq n}\left(X_{k}-X_{j}\right)
$$

Show that, for any transposition π :

$$
\pi \cdot \Phi=-\Phi
$$

Show that this fact proves the claim about parity at the end of the first article. To prove the fact, note that the transposition $\pi=(p q)$ will change the sign of Φ precisely $2 b+1$ times, where b is the number of integers between p and q. Of course, b might be 0 . In any case, $2 b+1$ is odd.

