MATHEMATICS 331 ASSIGNMENT 4 Due: February 19, 2015

 01° Let **P** be the set of all polynomial functions of the form:

$$P(x) = \sum_{j=0}^{5} c_j x^j$$

where c_0 , c_1 , c_2 , c_3 , c_4 , and c_5 are any (real) numbers. Let **P** be supplied with the familiar operations of addition and scalar multiplication. Note that the following sequence \mathcal{P} of six members of **P** is a basis for **P**:

$$\mathcal{P}_{0}(x) = x^{0} = 1$$

$$P_{1}(x) = x^{1} = x$$

$$\mathcal{P}_{2}(x) = x^{2}$$

$$P_{3}(x) = x^{3}$$

$$P_{4}(x) = x^{4}$$

$$P_{5}(x) = x^{5}$$

Let L be the mapping carrying **P** to **R**, defined as follows:

$$L(P) = P^{\circ}(1) - \int_0^2 P^{\circ \circ \circ}(y) dy$$

where P is any member of \mathbf{P} . Verify that L is a linear functional. Find the matrix Λ for L relative to the basis \mathcal{P} for \mathbf{P} and the standard basis \mathcal{E} for \mathbf{R} . Describe the rectangular array M corresponding to Λ .

 02° Let **V** be a finite dimensional linear space, having dimension 6. Let \mathcal{B} be a basis fir **V**:

$$\mathcal{B}: B_1, B_2, B_3, B_4, B_5, B_6$$

Let \mathbf{V}^* be the linear space which consists of all linear functionals defined on \mathbf{V} . Such functionals are, by definition, linear mappings Z carrying \mathbf{V} to \mathbf{R} . Let \mathcal{Z} be the basis of \mathbf{V}^* corresponding to the basis \mathcal{B} for \mathbf{V} :

$$\mathcal{Z}: Z_1, Z_2, Z_3, Z_4, Z_5, Z_6$$

The following relation between \mathcal{B} and \mathcal{Z} defines and characterizes \mathcal{Z} :

$$Z_j(B_k) = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$

Now let L be a linear mapping carrying **V** to itself, let Λ be the matrix defined by L relative to the bases \mathcal{B} and \mathcal{B} for **V** and **V**, and let M be the corresponding rectangular array, having 6 rows and 6 columns:

m_{11}	m_{12}	m_{13}	m_{14}	m_{15}	m_{16}
m_{21}	m_{22}	m_{23}	m_{24}	m_{25}	m_{26}
m_{31}	m_{32}	m_{33}	m_{34}	m_{35}	m_{36}
m_{41}	m_{42}	m_{43}	m_{44}	m_{45}	m_{46}
m_{51}	m_{52}	m_{53}	m_{54}	m_{55}	m_{56}
$\backslash m_{61}$	m_{62}	m_{63}	m_{64}	m_{65}	m_{66} ,

Show that:

$$m_{jk} = Z_j(L(B_k))$$

where $1 \le j \le 6$ and $1 \le k \le 6$.

 03° Let M be a rectangular array having 2 rows and 2 columns:

$$M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$$

One defines the *determinant* of M as follows:

$$det(M) = m_{11}m_{22} - m_{21}m_{12}$$

Let P be the quadratic polynomial defined as follows:

$$P(x) = det(xI - M)$$

where x is any number and where, of course, I is identity array having 2 rows and 2 columns:

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Find the coefficients a, b, and c for P:

$$P(x) = ax^2 + bx + c$$

Show that:

$$aM^2 + bM + cI = 0$$