MATHEMATICS 331

ASSIGNMENT 4

Due: February 19, 2015
01° Let \mathbf{P} be the set of all polynomial functions of the form:

$$
P(x)=\sum_{j=0}^{5} c_{j} x^{j}
$$

where $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5} are any (real) numbers. Let \mathbf{P} be supplied with the familiar operations of addition and scalar multiplication. Note that the following sequence \mathcal{P} of six members of \mathbf{P} is a basis for \mathbf{P} :

$$
\begin{aligned}
& P_{0}(x)=x^{0}=1 \\
& P_{1}(x)=x^{1}=x \\
& P_{2}(x)=x^{2} \\
& P_{3}(x)=x^{3} \\
& P_{4}(x)=x^{4} \\
& P_{5}(x)=x^{5}
\end{aligned}
$$

Let L be the mapping carrying \mathbf{P} to \mathbf{R}, defined as follows:

$$
L(P)=P^{\circ}(1)-\int_{0}^{2} P^{\circ \circ \circ}(y) d y
$$

where P is any member of \mathbf{P}. Verify that L is a linear functional. Find the matrix Λ for L relative to the basis \mathcal{P} for \mathbf{P} and the standard basis \mathcal{E} for \mathbf{R}. Describe the rectangular array M corresponding to Λ.
02° Let \mathbf{V} be a finite dimensional linear space, having dimension 6. Let \mathcal{B} be a basis fir \mathbf{V} :

$$
\mathcal{B}: \quad B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}
$$

Let \mathbf{V}^{*} be the linear space which consists of all linear functionals defined on \mathbf{V}. Such functionals are, by definition, linear mappings Z carrying \mathbf{V} to \mathbf{R}. Let \mathcal{Z} be the basis of \mathbf{V}^{*} corresponding to the basis \mathcal{B} for \mathbf{V} :

$$
\mathcal{Z}: \quad Z_{1}, Z_{2}, Z_{3}, Z_{4}, Z_{5}, Z_{6}
$$

The following relation between \mathcal{B} and \mathcal{Z} defines and characterizes \mathcal{Z} :

$$
Z_{j}\left(B_{k}\right)= \begin{cases}0 & \text { if } j \neq k \\ 1 & \text { if } j=k\end{cases}
$$

Now let L be a linear mapping carrying \mathbf{V} to itself, let Λ be the matrix defined by L relative to the bases \mathcal{B} and \mathcal{B} for \mathbf{V} and \mathbf{V}, and let M be the corresponding rectangular array, having 6 rows and 6 columns:

$$
\left(\begin{array}{llllll}
m_{11} & m_{12} & m_{13} & m_{14} & m_{15} & m_{16} \\
m_{21} & m_{22} & m_{23} & m_{24} & m_{25} & m_{26} \\
m_{31} & m_{32} & m_{33} & m_{34} & m_{35} & m_{36} \\
m_{41} & m_{42} & m_{43} & m_{44} & m_{45} & m_{46} \\
m_{51} & m_{52} & m_{53} & m_{54} & m_{55} & m_{56} \\
m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66}
\end{array}\right)
$$

Show that:

$$
m_{j k}=Z_{j}\left(L\left(B_{k}\right)\right)
$$

where $1 \leq j \leq 6$ and $1 \leq k \leq 6$.
03° Let M be a rectangular array having 2 rows and 2 columns:

$$
M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

One defines the determinant of M as follows:

$$
\operatorname{det}(M)=m_{11} m_{22}-m_{21} m_{12}
$$

Let P be the quadratic polynomial defined as follows:

$$
P(x)=\operatorname{det}(x I-M)
$$

where x is any number and where, of course, I is identity array having 2 rows and 2 columns:

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Find the coefficients a, b, and c for P :

$$
P(x)=a x^{2}+b x+c
$$

Show that:

$$
a M^{2}+b M+c I=0
$$

