MATHEMATICS 331

ASSIGNMENT 3

Due: February 12, 2015
01° Find two bases:

$$
\mathcal{B}^{\prime}: \quad B_{1}^{\prime}, B_{2}^{\prime}, B_{3}^{\prime}, B_{4}^{\prime} ; \quad \mathcal{B}^{\prime \prime}: \quad B_{1}^{\prime \prime}, B_{2}^{\prime \prime}, B_{3}^{\prime \prime}, B_{4}^{\prime \prime}
$$

for \mathbf{R}^{4} such that:

$$
B_{1}^{\prime}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), B_{2}^{\prime}=\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), B_{1}^{\prime \prime}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), B_{2}^{\prime \prime}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

but which have no members in common.
02° Show that the sequence \mathcal{C} :
$C_{1}=\left(\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right), C_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right), C_{3}=\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 1\end{array}\right), C_{4}=\left(\begin{array}{l}0 \\ 1 \\ 1 \\ 0\end{array}\right), C_{5}=\left(\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right), C_{6}=\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right)$
generates \mathbf{R}^{4}. By Reduction of \mathcal{C}, find a basis for \mathbf{R}^{4}.
03° Let \mathbf{P} be the linear space composed of all polynomials of degree not greater than 8:

$$
P(x)=\sum_{j=0}^{8} c_{j} x^{j}
$$

where the $c_{j}(0 \leq j \leq 8)$ are any real numbers and where is a real variable. Let L be the linear mapping carrying \mathbf{P} to itself, defined as follows:

$$
L(P)(x)=\int_{0}^{x} P^{\circ \circ}(y) d y+2 P^{\circ \circ \circ}(x)
$$

where P is any polynomial in \mathbf{P} and where x is a real variable. Describe the linear subspaces $\operatorname{ker}(L)$ and $\operatorname{ran}(L)$ and find their dimensions.
04° Find a member B_{4} of \mathbf{R}^{4} such that:

$$
\mathcal{B}: \quad B_{1}=\left(\begin{array}{l}
2 \\
1 \\
2 \\
2
\end{array}\right), B_{2}=\left(\begin{array}{l}
2 \\
0 \\
1 \\
1
\end{array}\right), B_{3}=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right), B_{4}
$$

is a basis for \mathbf{R}^{4}, or show that it cannot be done.
05° Let \mathbf{V} be a linear space. Let $\mathcal{L}(\mathbf{V})$ be the set consisting of all linear mappings carrying \mathbf{V} to itself. Of course, $\mathcal{L}(\mathbf{V})$ is an algebra under the familiar operations of addition, scalar multiplication, and multiplication:

$$
\begin{aligned}
\left(L^{\prime}+L^{\prime \prime}\right)(X) & =L^{\prime}(X)+L^{\prime \prime}(X) \\
(c L)(X) & =c L(X) \\
\left(L^{\prime \prime} L^{\prime}\right)(X) & =L^{\prime \prime}\left(L^{\prime}(X)\right)
\end{aligned}
$$

where $L^{\prime}, L^{\prime \prime}$, and L are any linear mappings in $\mathcal{L}(\mathbf{V})$, where c is any number in \mathbf{F}, and where X is any member of \mathbf{V}. Let L be a linear mapping in $\mathcal{L}(\mathbf{V})$. Show that if:

$$
L^{2}-L+I=0
$$

then L is invertible.
06° In context of the foregoing problem, show that if $\operatorname{dim}(\mathbf{V})=n$ then $\operatorname{dim}(\mathcal{L}(\mathbf{V}))=n^{2}$. The first problem in the second assignment should prove helpful.

