MATHEMATICS 331 ASSIGNMENT 3 Due: February 12, 2015

 01° Find two bases:

$$\mathcal{B}': B_1', B_2', B_3', B_4'; \qquad \mathcal{B}'': B_1'', B_2'', B_3'', B_4''$$

for \mathbf{R}^4 such that:

$$B_1' = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}, B_2' = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, B_1'' = \begin{pmatrix} 1\\1\\1\\0 \end{pmatrix}, B_2'' = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

but which have no members in common.

 02° Show that the sequence C:

$$C_{1} = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}, C_{2} = \begin{pmatrix} 1\\0\\1\\0 \end{pmatrix}, C_{3} = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix}, C_{4} = \begin{pmatrix} 0\\1\\1\\0 \end{pmatrix}, C_{5} = \begin{pmatrix} 0\\1\\0\\1 \end{pmatrix}, C_{6} = \begin{pmatrix} 0\\0\\1\\1 \end{pmatrix}$$

generates \mathbf{R}^4 . By Reduction of \mathcal{C} , find a basis for \mathbf{R}^4 .

 $03^\circ\,$ Let ${\bf P}$ be the linear space composed of all polynomials of degree not greater than 8:

$$P(x) = \sum_{j=0}^{8} c_j x^j$$

where the c_j $(0 \le j \le 8)$ are any real numbers and where is a real variable. Let L be the linear mapping carrying **P** to itself, defined as follows:

$$L(P)(x) = \int_0^x P^{\circ\circ}(y) dy + 2P^{\circ\circ\circ}(x)$$

where P is any polynomial in **P** and where x is a real variable. Describe the linear subspaces ker(L) and ran(L) and find their dimensions.

 04° Find a member B_4 of \mathbf{R}^4 such that:

$$\mathcal{B}: \ B_1 = \begin{pmatrix} 2\\1\\2\\2 \end{pmatrix}, B_2 = \begin{pmatrix} 2\\0\\1\\1 \end{pmatrix}, B_3 = \begin{pmatrix} 0\\1\\1\\1 \end{pmatrix}, B_4$$

is a basis for \mathbf{R}^4 , or show that it cannot be done.

05° Let \mathbf{V} be a linear space. Let $\mathcal{L}(\mathbf{V})$ be the set consisting of all linear mappings carrying \mathbf{V} to itself. Of course, $\mathcal{L}(\mathbf{V})$ is an *algebra* under the familiar operations of addition, scalar multiplication, and multiplication:

$$(L' + L'')(X) = L'(X) + L''(X)$$
$$(cL)(X) = cL(X)$$
$$(L''L')(X) = L''(L'(X))$$

where L', L'', and L are any linear mappings in $\mathcal{L}(\mathbf{V})$, where c is any number in \mathbf{F} , and where X is any member of \mathbf{V} . Let L be a linear mapping in $\mathcal{L}(\mathbf{V})$. Show that if:

$$L^2 - L + I = 0$$

then L is invertible.

 06° In context of the foregoing problem, show that if $dim(\mathbf{V}) = n$ then $dim(\mathcal{L}(\mathbf{V})) = n^2$. The first problem in the second assignment should prove helpful.