MATHEMATICS 331

ASSIGNMENT 2

Due: February 5, 2015
01° Let \mathbf{M} be the set of all matrices (with real entries) which have 2 rows and 3 columns. Let \mathbf{M} be supplied with the operations of addition and scalar multiplication. Note that \mathbf{M} is a linear space. Describe the matrix which serves as the neutral matrix 0 for \mathbf{M}. Show that the following sequence \mathcal{B} of six members of \mathbf{M} is a basis for \mathbf{M} :

$$
\begin{aligned}
B_{1} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
B_{2} & =\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
B_{3} & =\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right) \\
B_{4} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) \\
B_{5} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
B_{6} & =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

02° Let \mathbf{P} be the set of all polynomial functions of the form:

$$
P(x)=\sum_{j=0}^{5} c_{j} x^{j}
$$

where $c_{0}, c_{1}, c_{2}, c_{3}, c_{4}$, and c_{5} are any (real) numbers. Let \mathbf{P} be supplied with the familiar operations of addition and scalar multiplication. Note that the following sequence \mathcal{P} of six members of \mathbf{P} is a basis for \mathbf{P} :

$$
\begin{aligned}
& P_{0}(x)=x^{0}=1 \\
& P_{1}(x)=x^{0}+x^{1}=1+x \\
& P_{2}(x)=x^{0}+x^{1}+x^{2} \\
& P_{3}(x)=x^{0}+x^{1}+x^{2}+x^{3} \\
& P_{4}(x)=x^{0}+x^{1}+x^{2}+x^{3}+x^{4} \\
& P_{5}(x)=x^{0}+x^{1}+x^{2}+x^{3}+x^{4}+x^{5}
\end{aligned}
$$

Let L be the mapping carrying \mathbf{P} to itself, defined as follows:

$$
L(P)=P^{\circ \circ}
$$

where P is any member of \mathbf{P} and where x is any (real) number. Of course, the domain and the codomain for L are the same. Let both of them be supplied with the basis \mathcal{P}. Find the matrix for L relative to \mathcal{P} and \mathcal{P}.
03° In context of the foregoing two problems, describe a linear isomorphism L carrying \mathbf{M} to \mathbf{P}. In fact, there are many. For the linear isomorphism which you have described, display the matrix relative to \mathcal{B} and \mathcal{P}.
04° Let \mathbf{V} be a linear space. Let \mathcal{B} be a basis for \mathbf{V} containing precisely two members:

$$
\mathcal{B}: \quad B_{1}, B_{2}
$$

Consequently, \mathbf{V} is two dimensional. Let L^{\prime} and $L^{\prime \prime}$ be linear mappings carrying \mathbf{V} to \mathbf{V} and let M^{\prime} and $M^{\prime \prime}$ be the matrices for L^{\prime} and $L^{\prime \prime}$, respectively, relative to \mathcal{B} and \mathcal{B} :

$$
L^{\prime} \longleftrightarrow M^{\prime}=\left(\begin{array}{ll}
m_{11}^{\prime} & m_{12}^{\prime} \\
m_{21}^{\prime} & m_{22}^{\prime}
\end{array}\right), \quad L^{\prime \prime} \longleftrightarrow M^{\prime \prime}=\left(\begin{array}{ll}
m_{11}^{\prime \prime} & m_{12}^{\prime \prime} \\
m_{21}^{\prime \prime} & m_{22}^{\prime \prime}
\end{array}\right)
$$

Let $L=L^{\prime \prime} \cdot L^{\prime}$ be the composition of L^{\prime} and $L^{\prime \prime}$ and let M be the matrix for L relative to \mathcal{B} and \mathcal{B} :

$$
L \longleftrightarrow M=\left(\begin{array}{ll}
m_{11} & m_{12} \\
m_{21} & m_{22}
\end{array}\right)
$$

By definition:

$$
L(X)=L^{\prime \prime}\left(L^{\prime}(X)\right)
$$

where X is any member of \mathbf{V}, and:

$$
M^{\prime \prime} M^{\prime}=\left(\begin{array}{ll}
m_{11}^{\prime \prime} m_{11}^{\prime}+m_{12}^{\prime \prime} m_{21}^{\prime} & m_{11}^{\prime \prime} m_{12}^{\prime}+m_{12}^{\prime \prime} m_{22}^{\prime} \\
m_{21}^{\prime \prime} m_{11}^{\prime}+m_{22}^{\prime \prime} m_{21}^{\prime} & m_{21}^{\prime \prime} m_{12}^{\prime}+m_{22}^{\prime \prime} m_{22}^{\prime}
\end{array}\right)
$$

By EXPLICIT calculation, verify that:

$$
M=M^{\prime \prime} M^{\prime}
$$

To do so, you must recognize that, by definition:

$$
\begin{array}{rlrl}
L^{\prime}\left(B_{1}\right) & =m_{11}^{\prime} B_{1}+m_{21}^{\prime} B_{2} & L^{\prime}\left(B_{2}\right) & =m_{12}^{\prime} B_{1}+m_{22}^{\prime} B_{2} \\
L^{\prime \prime}\left(B_{1}\right) & =m_{11}^{\prime \prime} B_{1}+m_{21}^{\prime \prime} B_{2}, & L^{\prime \prime}\left(B_{2}\right) & =m_{12}^{\prime \prime} B_{1}+m_{22}^{\prime \prime} B_{2} \\
L\left(B_{1}\right) & =m_{11} B_{1}+m_{21} B_{2} & L\left(B_{2}\right) & =m_{12} B_{1}+m_{22} B_{2}
\end{array}
$$

05^{\bullet} Study the following example. Let \mathcal{E}^{\prime} and $\mathcal{E}^{\prime \prime}$ be the standard bases for \mathbf{R}^{3} and \mathbf{R}^{5}, respectively:

$$
\begin{gathered}
\mathcal{E}^{\prime}: \quad E_{1}^{\prime}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right), E_{2}^{\prime}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right), E_{3}^{\prime}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
\mathcal{E}^{\prime}: \quad E_{1}^{\prime \prime}=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right), E_{2}^{\prime \prime}=\left(\begin{array}{l}
0 \\
1 \\
0 \\
0 \\
0
\end{array}\right), E_{3}^{\prime \prime}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0 \\
0
\end{array}\right), E_{4}^{\prime \prime}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right), E_{5}^{\prime \prime}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

Let Λ be a linear mapping carrying \mathbf{R}^{3} to \mathbf{R}^{5}. By definition, the matrix M for Λ relative to \mathcal{E}^{\prime} and $\mathcal{E}^{\prime \prime}$ stands as follows:

$$
M=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43} \\
m_{51} & m_{52} & m_{53}
\end{array}\right)
$$

where:

$$
\begin{aligned}
& \Lambda\left(E_{1}^{\prime}\right)=m_{11} E_{1}^{\prime \prime}+m_{21} E_{2}^{\prime \prime}+m_{31} E_{3}^{\prime \prime}+m_{41} E_{4}^{\prime \prime}+m_{51} E_{5}^{\prime \prime}=\left(\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31} \\
m_{41} \\
m_{51}
\end{array}\right) \\
& \Lambda\left(E_{2}^{\prime}\right)=m_{12} E_{1}^{\prime \prime}+m_{22} E_{2}^{\prime \prime}+m_{32} E_{3}^{\prime \prime}+m_{42} E_{4}^{\prime \prime}+m_{52} E_{5}^{\prime \prime}=\left(\begin{array}{l}
m_{12} \\
m_{22} \\
m_{32} \\
m_{42} \\
m_{52}
\end{array}\right) \\
& \Lambda\left(E_{3}^{\prime}\right)=m_{13} E_{1}^{\prime \prime}+m_{23} E_{2}^{\prime \prime}+m_{33} E_{3}^{\prime \prime}+m_{43} E_{4}^{\prime \prime}+m_{53} E_{5}^{\prime \prime}=\left(\begin{array}{l}
m_{13} \\
m_{23} \\
m_{33} \\
m_{43} \\
m_{53}
\end{array}\right)
\end{aligned}
$$

In this way, Λ defines M. Just as well, M defines Λ. In fact, for any \mathbf{x} in \mathbf{R}^{3} and for any \mathbf{y} in \mathbf{R}^{5} :

$$
\mathbf{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right), \quad \mathbf{y}=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right)
$$

we find that:

$$
\mathbf{y}=\Lambda(\mathbf{x}) \Longleftrightarrow\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4} \\
y_{5}
\end{array}\right)=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43} \\
m_{51} & m_{52} & m_{53}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

because:

$$
\begin{aligned}
\Lambda(\mathbf{x}) & =\Lambda\left(x_{1} E_{1}^{\prime}+x_{2} E_{2}^{\prime}+x_{3} E_{3}^{\prime}\right) \\
& =x_{1} \Lambda\left(E_{1}^{\prime}\right)+x_{2} \Lambda\left(E_{2}^{\prime}\right)+x_{3} \Lambda\left(E_{3}^{\prime}\right) \\
& =x_{1}\left(\begin{array}{l}
m_{11} \\
m_{21} \\
m_{31} \\
m_{41} \\
m_{51}
\end{array}\right)+x_{2}\left(\begin{array}{l}
m_{12} \\
m_{22} \\
m_{32} \\
m_{42} \\
m_{52}
\end{array}\right)+x_{3}\left(\begin{array}{l}
m_{13} \\
m_{23} \\
m_{33} \\
m_{43} \\
m_{53}
\end{array}\right) \\
& =\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33} \\
m_{41} & m_{42} & m_{43} \\
m_{51} & m_{52} & m_{53}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
\end{aligned}
$$

Clearly, the correspondence between linear mappings Λ carrying \mathbf{R}^{3} to \mathbf{R}^{5} and matrices M having 5 rows and 3 columns is bijective. Moreover, composition of linear mappings corresponds to multiplication of matrices. Of course, one may replace the positive integers 3 and 5 by any positive integers p and q.

