MATHEMATICS 331

ASSIGNMENT 1

Due: January 29, 2015
01° Let \mathbf{V} be the set of all polynomial functions of the form:

$$
p(x)=a+b x+c x^{2}+d x^{3}
$$

where a, b, c, and d are any real numbers. Of course, one should interpret x as a real variable. Let L be the mapping carrying \mathbf{V} to itself, defined as follows:

$$
L(p)=p^{\circ}
$$

where p is any polynomial function in \mathbf{V}. By p°, we mean the derivative of p with respect to x. Under the familiar operations of addition and scalar multiplication:

$$
\begin{aligned}
\left(p_{1}+p_{2}\right)(x) & =\left(a_{1}+a_{2}\right)+\left(b_{1}+b_{2}\right) x+\left(c_{1}+c_{2}\right) x^{2}+\left(d_{1}+d_{2}\right) x^{3} \\
(u . p)(x) & =u a+u b x+u c x^{2}+u d x^{3}
\end{aligned}
$$

\mathbf{V} is a linear space. Verify that L is a linear mapping. Describe the kernel and the range of L :

$$
\operatorname{ker}(L), \quad \operatorname{ran}(L)
$$

02° Let \mathbf{V} be the set of all twice differentiable real valued functions of the real variable x for which:

$$
f^{\circ \circ}(x)+f(x)=0
$$

Under the familiar operations of addition and scalar multiplication, \mathbf{V} is a linear space. Of course, the trivial function $\overline{0}$ having constant value 0 lies in \mathbf{V}. Find two nontrivial functions f_{1} and f_{2} in \mathbf{V} such that neither is a scalar multiple of the other.

