EXAMINATION

MATHEMATICS 322

Due: L306, High Noon, Wednesday, December 16, 2015 NO LIVING SOURCES
01^{\bullet} Find all real valued functions x_{1}, x_{2}, x_{3}, and x_{4} which are defined on \mathbf{R} and which satisfy the following homogeneous linear ODE:

$$
\begin{aligned}
& x_{1}^{\circ}=x_{1}+x_{2}-x_{3} \\
& x_{2}^{\circ}=x_{2}+x_{4} \\
& x_{3}^{\circ}=x_{3}+x_{4} \\
& x_{4}^{\circ}=x_{4}
\end{aligned}
$$

02^{\bullet} Find all real valued functions x which are defined on \mathbf{R} and which satisfy the following linear (but inhomogeneous) ODE:

$$
x^{\circ \circ}(t)-x^{\circ}(t)-2 x(t)=\sin (2 t) \quad(t \in \mathbf{R})
$$

03^{\bullet} Consider the following (nonlinear) ODE:

$$
\begin{equation*}
m x^{\circ \circ}(t)=-G M m \frac{1}{x(t)^{2}} \quad(0<x(t)) \tag{*}
\end{equation*}
$$

where G, m, and M are positive constants. Let ξ be the maximum solution for equation $(*)$, subject to the initial conditions:

$$
\xi(0)=a, \quad \xi^{\circ}(0)=b \quad(0<a, 0<b)
$$

Let J be the interval of definition for ξ :

$$
J=(p, q) \quad(-\infty \leq p<0<q \leq \infty)
$$

Let h be the function defined as follows:

$$
h(x, v)=\frac{1}{2} m v^{2}-G M m \frac{1}{x} \quad(0<x, v \in \mathbf{R})
$$

Show that the function:

$$
h\left(\xi(t), \xi^{\circ}(t)\right) \quad(t \in J)
$$

is constant. Of course, its constant value must be:

$$
\epsilon=\frac{1}{2} m b^{2}-G M m \frac{1}{a}
$$

Show that:

$$
\begin{aligned}
& \epsilon<0 \Longrightarrow q<\infty \text { and } \lim _{t \rightarrow q} \xi(t)=0 \\
& 0<\epsilon \Longrightarrow q=\infty \text { and } \lim _{t \rightarrow \infty} \xi(t)=\infty
\end{aligned}
$$

For the case in which $\epsilon=0$, one refers to b as the Escape Speed from the position a :

$$
b^{2}=2 G \frac{M}{a}
$$

Now let G be the Gravitational Constant, let M be the mass of a spherically symmetric central body, and let a be its radius. For what values of M / a would b exceed the speed of light c ?
04^{\bullet} One of the central studies in our course produced the solutions of the (homogeneous) Wave Equation in \mathbf{R}^{3} by Spherical Means. By imitating the method, show that one can produce the solutions of the (homogeneous) Wave Equation in \mathbf{R}^{2} by Circular Means or show that the procedure does not work.
05^{\bullet} Let \mathbf{B} be the open ball of radius 1 in \mathbf{R}^{3}, centered at $(0,0,0)$:

$$
(x, y, z) \in \mathbf{B} \quad \text { iff } \quad x^{2}+y^{2}+z^{2}<1
$$

Let \mathbf{S} be the sphere of radius 1 in \mathbf{R}^{3}, centered at $(0,0,0)$:

$$
(u, v, w) \in \mathbf{S} \quad \text { iff } \quad u^{2}+v^{2}+w^{2}=1
$$

Let δ be a complex valued function defined and continuous on \mathbf{S}. Let γ be the complex valued function defined on \mathbf{B} as follows:

$$
\begin{aligned}
& \gamma(x, y, z) \\
& \quad=\frac{1}{4 \pi} \iint_{\mathbf{S}} \frac{1-\left(x^{2}+y^{2}+z^{2}\right)}{\left[(x-u)^{2}+(y-v)^{2}+(z-w)^{2}\right]^{3 / 2}} \delta(u, v, w) \cos \theta d \phi d \theta
\end{aligned}
$$

where:

$$
x^{2}+y^{2}+z^{2}<1 \quad \text { and } \quad(u, v, w)=(\cos \theta \cos \phi, \cos \theta \sin \phi, \sin \theta)
$$

Show that γ satisfies Laplace's Equation in B:

$$
\begin{equation*}
(\Delta \gamma)(x, y, z)=\gamma_{x x}(x, y, z)+\gamma_{y y}(x, y, z)+\gamma_{z z}(x, y, z)=0 \tag{o}
\end{equation*}
$$

Try to show that, for each (u, v, w) in \mathbf{S} :

$$
\lim _{(x, y, z) \rightarrow(u, v, w)} \gamma(x, y, z)=\delta(u, v, w)
$$

