MATHEMATICS 322

ASSIGNMENT 11

Due: December 02, 2015
01^{\bullet} Let J be an open interval in \mathbf{R} containing 0 . Let n be a positive integer. Let A be a continuous mapping carrying J to the linear space composed of all matrices (with real entries) having n rows and n columns:

$$
A: \quad t \longrightarrow A(t)=\left\{A_{j k}(t)\right\}_{j, k=1}^{n}
$$

Let Q be any matrix (with real entries) having n rows and n columns:

$$
Q=\left\{Q_{j k}\right\}_{j, k=1}^{n}
$$

Let P be a differentiable mapping carrying J to the linear space composed of all matrices (with real entries) having n rows and n columns:

$$
P: \quad t \longrightarrow P(t)=\left\{P_{j k}(t)\right\}_{j, k=1}^{n}
$$

which provides the solution to the following linear ODE:

$$
P^{\prime}(t)=A(t) P(t), \quad P(0)=Q \quad(t \in J)
$$

Show that:

$$
\operatorname{det} P(t)=\operatorname{det} Q \exp \left(\int_{0}^{t} \operatorname{tr} A(s) d s\right) \quad(t \in J)
$$

