MATHEMATICS 322

ASSIGNMENT 10
Due: November 18, 2015

01• We define the Associated Legendre Functions $P_{l, m}$ on the open interval $(-1,1)$ by the following relation:

$$
P_{l . m}(u) \equiv \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(u+i \sqrt{1-u^{2}} \cos t\right)^{\ell} e^{-i m t} d t
$$

In this context, ℓ and m are integers for which $0 \leq \ell$ and $-\ell \leq m \leq \ell$. With reference to the Theory of Fourier Series, show that:

$$
\left(u+i \sqrt{1-u^{2}} \cos t\right)^{\ell}=\sum_{m=-\ell}^{\ell} P_{\ell, m}(u) e^{i m t}
$$

Why is the sum finite? Verify that:

$$
P_{\ell,-m}(u)=P_{\ell, m}(u)
$$

Let us denote $P_{\ell, 0}$ by the simpler symbol P_{ℓ} :

$$
P_{\ell}(u) \equiv \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(u+i \sqrt{1-u^{2}} \cos t\right)^{\ell} d t
$$

Show that (the Legendre Function) P_{ℓ} satisfies the Legendre Equation:

$$
\begin{equation*}
\left(1-u^{2}\right) W^{\circ \circ}(u)-2 u W^{\circ}(u)+\ell(\ell+1) W(u)=0 \tag{L}
\end{equation*}
$$

To do so, you might want to introduce the changes of variables:

$$
Q_{\ell}(\theta)=P_{\ell}(\sin \theta)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(\sin \theta+i \cos \theta \cos t)^{\ell} d t
$$

and $V(\theta)=W(\sin \theta)$, so that relation (L) becomes the following relation:

$$
\begin{equation*}
V^{\circ \circ}(\theta)-\tan \theta V^{\circ}(\theta)+\ell(\ell+1) V(\theta)=0 \tag{L}
\end{equation*}
$$

02• Show that:

$$
\begin{equation*}
P_{\ell, m}(u)=\left(1-u^{2}\right)^{m / 2} \frac{d^{m}}{d u^{m}} P_{\ell}(u) \quad(0 \leq m \leq \ell) \tag{D}
\end{equation*}
$$

03^{\bullet} Show that $P_{\ell, m}$ satisfies the Associated Legendre Equation:

$$
\begin{equation*}
\left(1-u^{2}\right) W^{\circ \circ}(u)-2 u W^{\circ}(u)+\left(\ell(\ell+1)-\frac{m^{2}}{1-u^{2}}\right) W(u)=0 \tag{A}
\end{equation*}
$$

Patient application of (L) and (D) will yield the result.
04• Memorize the following display of the Spherical Harmonics:

$$
\begin{equation*}
Y_{\ell, m}(\phi, \theta) \equiv P_{\ell, m}(\sin \theta) e^{i m \phi} \tag{Y}
\end{equation*}
$$

Of course, $0 \leq \ell$ and $-\ell \leq m \leq \ell$. The Spherical Harmonics are eigenfunctions for the Spherical Laplacian:

$$
-\left(\frac{1}{\cos ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}-\tan \theta \frac{\partial}{\partial \theta}+\frac{\partial^{2}}{\partial \theta^{2}}\right) Y_{\ell, m}(\phi, \theta)=\ell(\ell+1) Y_{\ell, m}(\phi, \theta)
$$

Suitably normalized:

$$
\begin{equation*}
\mathcal{Y}_{\ell, m}(\phi, \theta) \equiv \sqrt{(2 \ell+1) \frac{(\ell-|m|)!}{(\ell+|m|)!}} P_{\ell, m}(\sin \theta) e^{i m \phi} \tag{Y}
\end{equation*}
$$

they form an orthonormal basis for the inner product space $\mathbf{L}^{2}\left(\mathbf{S}^{2}\right)$, composed of all complex valued square integrable (borel) functions defined on \mathbf{S}^{2} and supplied with the inner product and the corresponding norm:

$$
\begin{gathered}
\langle f, g\rangle \equiv \frac{1}{4 \pi} \iint_{\mathbf{S}^{2}} f(\phi, \theta) \overline{g(\phi, \theta)} \cos \theta d \phi d \theta \\
\langle h\rangle \equiv \sqrt{\langle h, h\rangle}
\end{gathered}
$$

To be clear, let us emphasize that ϕ and θ stand for longitude and latitude, respectively.

