MATHEMATICS 322

ASSIGNMENT 9

Due: November 11, 2015

01• Consider the following Autonomous First Order ODE on \mathbf{R}^{3} :
(o)

$$
\begin{aligned}
& x^{\circ}=-\sigma x+\sigma y \\
& y^{\circ}=r x-y-x z \\
& z^{\circ}=-b z+x y
\end{aligned}
$$

where b, r, and s are positive numbers. We assume that $b+1<\sigma$. Show that the integral curves for (o) are complete, that is, that they are defined for all time (past and future). To that end, let (a, b, c) be an initial condition for which:

$$
(a, b, c) \neq(0,0,0)
$$

and let γ be the maximum integral curve for (o) passing through (a, b, c) at time 0:

$$
\gamma(t)=(x(t), y(t), z(t)), \quad \gamma(0)=(a, b, c)
$$

Let δ be the function defined as follows:

$$
\delta(t)=x(t)^{2}+y(t)^{2}+z(t)^{2}
$$

Show that there is a positive number λ such that:

$$
\left|\delta^{\circ}(t)\right| \leq \lambda \delta(t)
$$

Then show that:

$$
\max \{\delta(-t), \delta(t)\} \leq \exp (\lambda t) \quad(0 \leq t)
$$

Finally, show that γ would be future bounded if future incomplete and would be past bounded if past incomplete, in either case a contradiction. To see the contradiction, review article 12° (Escape to the Boundary) in Chapter 1 of our "text."

