## MATHEMATICS 322

## ASSIGNMENT 8

Due: November 04, 2015
$01^{\bullet}$ Consider a source free solution:

$$
E(t, x, y, z), \quad B(t, x, y, z)
$$

of Maxwell's Equations. The components of $E$ and $B$ are real valued functions. The energy stands as follows:
$\delta(t)=\frac{1}{2} \int_{\mathbf{R}^{3}}(E(t, x, y, z) \bullet E(t, x, y, z)+B(t, x, y, z) \bullet B(t, x, y, z)) m(d x d y d z)$
It is constant in time. Consider a homogeneous solution:

$$
\gamma(t, x, y, z)
$$

of the Wave Equation. Let it be real valued. The energy stands as follows:

$$
\epsilon(t)=\frac{1}{2} \int_{\mathbf{R}^{3}}\left(\gamma_{t}(t, x, y, z)^{2}+\|\nabla \gamma(t, x, y, z)\|^{2}\right) m(d x d y d z)
$$

It is constant in time. The components of $E$ and $B$ :

$$
E=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right), \quad B=\left(\gamma_{4}, \gamma_{5}, \gamma_{6}\right)
$$

are homogeneous solutions of the Wave Equation. One would expect that:

$$
\delta=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+\epsilon_{5}+\epsilon_{6}
$$

Is it true?

