MATHEMATICS 322

ASSIGNMENT 5

Due: October 7, 2015
01^{\bullet} Let $I=[0,1]$ and let $J=[0, \infty)$. Let f be a complex valued function defined on I and let γ be a complex valued function defined on $J \times I$ which meets the conditions:

$$
\begin{align*}
\gamma_{t}(t, x) & =\gamma_{x x}(t, x) \\
\gamma(0, x) & =f(x) \tag{H}
\end{align*}
$$

where $0 \leq t$ and $0 \leq x \leq 1$. The foregoing assembly (H) is a simple form of the Heat Equation. One may interpret $\gamma(t, x)$ as the temperature at time t at the position x in the $\operatorname{rod} I$. Given f, find various solutions γ by the method of Separation of Variables:

$$
\gamma(t, x)=\alpha(t) \beta(x)
$$

Of course, you may form linear combinations of the solutions you find. In particular, find solutions subject to the following boundary conditions:
(1) $\gamma(t, 0)=0$ and $\gamma(t, 1)=0$

Do the same for the cases:
(2) $\quad \gamma_{x}(t, 0)=0$ and $\gamma(t, 1)=0$
(3) $\quad \gamma(t, 0)=0$ and $\gamma_{x}(t, 1)=0$
and, finally, for the case:
(4) $\quad \gamma_{x}(t, 0)=0$ and $\gamma_{x}(t, 1)=0$

