MATHEMATICS 322

 ${\bf ASSIGNMENT} \ 5$

Due: October 7, 2015

 01^{\bullet} Let I = [0,1] and let $J = [0,\infty)$. Let f be a complex valued function defined on I and let γ be a complex valued function defined on $J \times I$ which meets the conditions:

(H)
$$\gamma_t(t,x) = \gamma_{xx}(t,x)$$
$$\gamma(0,x) = f(x)$$

where $0 \le t$ and $0 \le x \le 1$. The foregoing assembly (H) is a simple form of the Heat Equation. One may interpret $\gamma(t,x)$ as the *temperature* at time t at the position x in the $rod\ I$. Given f, find various solutions γ by the method of Separation of Variables:

$$\gamma(t, x) = \alpha(t)\beta(x)$$

Of course, you may form linear combinations of the solutions you find. In particular, find solutions subject to the following boundary conditions:

(1)
$$\gamma(t,0) = 0 \text{ and } \gamma(t,1) = 0$$

Do the same for the cases:

(2)
$$\gamma_x(t,0) = 0 \text{ and } \gamma(t,1) = 0$$

(3)
$$\gamma(t,0) = 0 \text{ and } \gamma_x(t,1) = 0$$

and, finally, for the case:

(4)
$$\gamma_x(t,0) = 0 \text{ and } \gamma_x(t,1) = 0$$