MATHEMATICS 322

ASSIGNMENT 3

Due: September 23, 2015
Fourier Series
1- Let h be a complex valued function defined and continuous on \mathcal{R}. Let h be periodic with period 2π. One defines the even and odd parts of h as follows:

$$
f(t) \equiv \frac{1}{2}(h(t)+h(-t)), \quad g(t) \equiv \frac{1}{2}(h(t)-h(-t)) \quad(t \in \mathcal{R})
$$

Obviously:

$$
h(t)=f(t)+g(t), \quad f(-t)=f(t), \quad g(-t)=-g(t)
$$

The Fourier Coefficients for f, g, and h stand as follows:

$$
\begin{aligned}
a_{j} & \equiv \frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i j t} d t \\
b_{j} & \equiv \frac{1}{2 \pi} \int_{-\pi}^{\pi} g(t) e^{-i j t} d t \quad(j \in \mathcal{Z}) \\
c_{j} & \equiv \frac{1}{2 \pi} \int_{-\pi}^{\pi} h(t) e^{-i j t} d t
\end{aligned}
$$

Show that:

$$
c_{j}=a_{j}+b_{j}, \quad a_{j}=\frac{1}{2}\left(c_{j}+c_{-j}\right), \quad b_{j}=\frac{1}{2}\left(c_{j}-c_{-j}\right)
$$

so that:

$$
a_{-j}=a_{j}, \quad b_{-j}=-b_{j}, \quad a_{0}=c_{0}, \quad b_{0}=0
$$

Let h be twice continuously differentiable. By the Theorem of Fourier:

$$
\begin{aligned}
& f(t)=\sum_{j=-\infty}^{\infty} a_{j} e^{i j t} \\
& g(t)=\sum_{j=-\infty}^{\infty} b_{j} e^{i j t} \\
& h(t)=\sum_{j=-\infty}^{\infty} c_{j} e^{i j t}
\end{aligned}
$$

Now let:

$$
\alpha_{j} \equiv 2 a_{j}, \quad \beta_{j} \equiv 2 i b_{j}
$$

Show that:

$$
\begin{aligned}
& \alpha_{j}=\frac{2}{\pi} \int_{0}^{\pi} f(t) \cos (j t) d t \\
& \beta_{j}=\frac{2}{\pi} \int_{0}^{\pi} g(t) \sin (j t) d t
\end{aligned}
$$

Then verify the Fourier Cosine Series:

$$
f(t)=\frac{1}{2} \alpha_{0}+\sum_{j=1}^{\infty} \alpha_{j} \cos (j t)
$$

and the Fourier Sine Series:

$$
g(t)=\sum_{j=1}^{\infty} \beta_{j} \sin (j t)
$$

Green

2• Study Theorem A in Chapter 3 of our Notebook. We will discuss this theorem in the lectures.

Sturm/Liouville
3• Study Theorem B in Chapter 3 of our Notebook. We will discuss this theorem in the lectures.
4^{\bullet} \qquad
5°

