MATHEMATICS 322
ASSIGNMENT 3
Due: September 23, 2015

Fourier Series
1*  Let h be a complex valued function defined and continuous on R. Let

h be periodic with period 27w. One defines the even and odd parts of h as
follows:
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Obviously:
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The Fourier Coefficients for f, g, and h stand as follows:

1 [T .
a; = o ft)e “tdt
_ 1 T —ijt .
b = Py g(t)e ™t (j€2)
_1 /[ —ijt
Show that:
1 1
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so that:
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Let h be twice continuously differentiable. By the Theorem of Fourier:
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Now let:
o = 2a4, B = 2ib;

Show that: o o7
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Then verify the Fourier Cosine Series:
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F(t) =00+ > ajcos(jt)
j=1

and the Fourier Sine Series:

9(t) = 3 Bsin(jt)

Green

2*  Study Theorem A in Chapter 3 of our Notebook. We will discuss this
theorem in the lectures.

Sturm/Liouville

3®* Study Theorem B in Chapter 3 of our Notebook. We will discuss this
theorem in the lectures.



