MATHEMATICS 322

ASSIGNMENT 2
Due: September 16, 2015
Wronskian
01• Let h_{1} and h_{2} be solutions of the Second Order Linear ODE:

$$
\begin{equation*}
f^{\circ \circ}(t)+p_{1}(t) f^{\circ}(t)+p_{0}(t) f(t)=0 \quad(t \in J) \tag{○}
\end{equation*}
$$

Show that the wronskian:

$$
w(t)=\operatorname{det}\left(\begin{array}{ll}
h_{1}(t) & h_{2}(t) \\
h_{1}^{\circ}(t) & h_{2}^{\circ}(t)
\end{array}\right)
$$

for h_{1} and h_{2} satisfies the First Order Linear ODE:

$$
w^{\circ}(t)+p_{1}(t) w(t)=0
$$

Show that either: (1) for each t in $J, w(t)=0$; or: (2) for each t in J, $w(t) \neq 0$.

Variation of Constants

02^{\bullet} Find the (unique) solution f of the following (Inhomogeneous) Second Order Linear ODE:

$$
\begin{equation*}
f^{\circ \circ}(t)+4 t^{-1} f^{\circ}(t)+2 t^{-2} f(t)=1 \quad(0<t) \tag{○}
\end{equation*}
$$

such that:

$$
f(1)=1, \quad f^{\circ}(1)=0
$$

To that end, note that the functions:

$$
h_{1}(t)=t^{-2}, \quad h_{2}(t)=t^{-1} \quad(0<t)
$$

compose a basis of solutions for (o).
Power Series'
03^{\bullet} Consider the Second Order Linear ODE of Airy:

$$
\begin{equation*}
f^{\circ \circ}(t)+t f(t)=0 \quad(t \in \mathbf{R}) \tag{○}
\end{equation*}
$$

Find a basis of solutions for ((\circ) in the form of power series':

$$
f(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+\cdots+c_{j} t^{j}+\cdots
$$

